Course-Plan Autumn 2011

School Engineering

Department Computer Science and Engineering

Course Code CO 504

Course Name Natural Language Processing

Instructor Utpal Sharma

1. **Abstract**: CS 504 Natural Language Processing (NLP) covers how computers can deal with human languages. Human languages, referred to as natural languages, can be the ultimate language for human-machine communication. Due to the nature of these languages, the challenges in making computers deal with natural languages make it a topic of artificial intelligence. This course covers the issues involved, some possible approaches to tackling these issues, and various applications that can be built based on NLP.

2. **Objective:**

Module	Topic	Learning Objectives
1	Introduction	To get an overall idea of the characteristics of natural languages and the phases in NLP.
2	Text Representation	To understand the issues in representation of texts in a computer, and the standards.
3.	Linguistic Resources	To learn what different linguistic resources can be used for NLP.
4.	Structure of words	To understand how words are formed in a natural language, and how to analyse words for NLP.
5.	Part-of-Speech (POS) Tagging	To understand how the role of words or groups of words in a sentence have to be determined so as to recognise the syntactic structures of sentences.
6.	Structural analysis	To understand the structural aspects of correctness of sentences, and formal grammars used for this task. To learn about techniques for this task- parsing.
7.	Semantic Analysis	To understand how meaning of natural langauge expressions can be determined, firstly from structure of the expressions, then from groups of expressions (discourse) and then from extra knowlwdge about the context. The issues due to ambiguity are also discussed.
8.	Applications	To understand various applications of NLP, from simple ones to complicated ones, upto

3. Prerequisites of the course:

Knowledge of programming, and familiarity with basic linguistic concepts.

4. Course outline (See Syllabus)

Suggested reading:

Text Book:

Daniel Jurafsky and James H Martin. *Speech and Language Processing, 2e,* Pearson Education, 2009

Reference Books:

- **James A.**. *Natural language Understanding 2e*, Pearson Education, 1994
- **Bharati A., Sangal R., Chaitanya V**.. *Natural language processing: a Paninian perspective*, PHI, 2000
- Siddiqui T., Tiwary U. S.. Natural language processing and Information retrieval, OUP, 2008

5. (a)Time-Plan

Tentative Lectures	Topics		
1-2	Introduction Human languages, models, ambiguity, processing paradigms Phases in Natural Language Processing		
3-4	Text representation in computers, encoding schemes		
5	Regular expressions, FSA, word recognition, Lexicon		
6-7	Morphology, Acquisition models, FST		
8-10	N-grams, smoothing Entropy		
11-14	POS tagging, Stochastic POS tagging, HMM Transformtion based tagging (TBL) Issues		
15-16	CFG, spoken language syntax, word order		
17-22	Parsing, Unification, Probabilistic parsing, Treebank		
23-24	Semantics, Meaning representation		
25-29	Semantic Analysis, Lexical semantics, WordNet, Summarization		
30-32	WSD Selectional restriction Machine learning approaches, dictionary based approaches		
33-35	IR Vector space model, term weighting, Homonymy, Polysemy,		

	synonymy Improving user queries	
36-39	Discourse Reference resolution, constraints on coreference, algorithm for pronoun resolution Text Coherence Discourse structure	
40	Generation – Overview	
41-42	Machine Translation - Overview	

Term Paper and Seminar:

Each student shall have to choose a relevant topic of the subject, explore literature and prepare a write-up. They shall have to submit the write-up (**term paper**) and give a **Seminar** presentation on their findings, by end of October 2011. Some possible topics for term paper are-

- 1. Paninian Grammar
- 2. Paninian Parser
- 3. Karaka Theory
- 4. Anusaraka System
- 5. Lexical Functional Grammar
- 6. Tree Adjoining Grammar
- 7. Government and Binding

(b) Evaluation plan

Mid Term Test	60
Term Paper	30
Seminar	30
Attendance	5
End Term	100
Total	225

6. Pedagogy :

Teaching-learning methods to be used Lecture and Discussion Term assignment Class assignments

7. Expected outcome: Towards the end of the course the student would understand the utility of natural language processing, the issues involved, methods to deal with the issues, create simple NLP applications, and how to build resources useful for NLP.