
Course-Plan
Spring 2019

School Engineering
Department Computer Science and Engineering
Course Code CO 308 / CS 532
Course Name Compiler Design
Instructor Utpal Sharma

1. Abstract: The course CO 308 / CS 532 Compiler Design deals with the topic of compiler
design for students who are well aware of the structure and semantics of programming
languages. A compiler is a software tool that translates programs written in high level
language to a specific machine language. The challenges in this task are interesting and
have been well studied over time. The task is considered in phases and suitable modelling
and mechanisms are employed. For some of these sub-tasks useful tools are available.
This course covers these aspects with adequate practical exercises.

2. Objective:
Module Topic Learning Objectives

1 Introduction To get an overall idea of Languages and grammar
and the phases of a compiler.

2 Lexical Analysis To understand the different ways in which lexical
units (tokens) can be identified in an input
program.

3. Syntax Analysis To learn the formal representation of program
language syntax, and the different parsing
techniques available.

4. Intermediate code-
generation

To understand the need and ways of suitable
representation of the output of the syntax analysis
(parsing).

5. Semantic Analysis To understand the how different syntactic
constructs have different semantics, and how these
can be dealt with for the purpose of translation.

6. Code Optimization To understand the scope of optimization in
producing the machine language instruction
sequence for a given input HLL program.

7. Code-generation To understand the run-time environments,
translation of language constructs, scope for
optimization specific to a given machine, and
algorithms for code-generation.

8. Error Handling To understand the different types of errors in an
input program and how the exercise of translation
can be carried out in presence of these.

3. Prerequisites of the course:
Knowledge of programming, computer organisation and architecture, and formal
languages and automata.

4. Course outline (See Syllabus)

 Text Book:
Aho, A.V., Sethi, and Ullman J.D: Compiler Design. Pearson Education, 2009

Reference Books:
• Dhandhere, System programming and operating systems, Tata McGraw Hill.
• Jean-Paul Tremblay and Paul G. Sorrenson. The Theory and Practice of Compiler

Writing, McGraw Hill Book Co.

5. (a)Time-Plan

Tentative
Lectures

Topics

1-2 Characteristics of HLL, overview of a compiler's task, phases of compilation task
3 Lexical Analysis (refer to coverage in System Software/System Programming)

4-5 An operator precedence parsing scheme without considering a grammar,
advantages and limitations.
Exercise: Implement a desk calculator using operator precedence parsing.

6-8 CFG description of programming languages; parse trees, derivation
sequences, ambiguity, top-down and bottom-up parsing
Exercise: Familiarise with grammar representation in C.

9,10 Automatic creation of an operator precedence table from a CFG
Exercise: Implement algorithms for computing LEADING and TRAILING sets,
and construction of operator precedence table

11-14 Top down Parsing: Recursive descent parser; predictive parser;
construction of a LL(1) parsing table; LL(K) grammar
Exercise: Implement the FIRST and FOLLOW algorithms required for LL(1)
parsing table construction

15-22 Bottom-up parsing: LR parsing; SLR parsing table creation; CLR and
LALR parsing table creation
Exercise: 1. Implement the SLR parsing table creation method.

2. Learn use of tool bison.
23-25 Intermediate code generation: Syntax directed translation;

Intermediate code formats;
Exercise: Generate intermediate code using semantic actions in bison program.

26,27 Storage allocation and Symbol table
Exercise: Create symbol table using semantic actions in bison program.

28-33 Code optimization: Basic block, flow-graphs, loop detection,
loop optimization, data flow analysis

34-36 Code generation: Efficient use of registers, instructions.
Exercise: Produce m/c code from intermediate code.

37-39 Error Handling: Different types of error, techniques for error handling
Note:

Laboratory exercises:
Laboratory exercises are indicated against relevant topics in the above plan. Evaluation of
laboratory works will be covered within Test IV mentioned in the evaluation plan.

 (b) Evaluation plan
Test I 25
Test II (Major I) 40
Test II (Lab Assignments) 25
End Term 60
Total 150

 6. Pedagogy :
 Teaching-learning methods to be used
 Lecture and Discussion
 Term assignment
 Class assignments

7. Expected outcome: Towards the end of the course the student would understand the task of
translation of high level language programs into machine language programs, the formal
modelling of the problem at various stages and techniques and tools for carrying out the task.
This course is also expected to provide the more keen students the skills to model some other
problems in a suitable ways so as to be able to use some tools and techniques that are used in the
compilers.

