
Introductory Computing

Computer Fundamentals

2

Computer Fundamentals:

Sl. No Topics Hrs

1
History, Generations, Classification of Computers;

1

2 Organization of a Computer; (functional block diagram,
ALU, CU, Memory, I/O), Instruction Execution Cycle.

3

3 Concept of Programming and Programming Languages;
(M/C language, Assembly Language, HLL), OS,
Software tools

3

3

What is a Computer?

Earlier: A Calculating Device that can perform
arithmetic operations at enormous speed.

It was the main objective for inventing the computer.
But more than 80% of the work done by computers
today is of non-numeric/mathematical in nature.

More Accurately: It may be defined as an Electronic
Device that operates on input data according to a
program stored in its memory to produce result(s).

A Computer is capable of performing almost any task
provided that the task can be reduced to a series of
logical steps. (More on this later, when we will discuss
the term Algorithm)

4

Characteristics of Computer

Automatic

Speed (most of the cases in MIPs, MFLOPs)

Accuracy (Very accurate provided the program is
written correctly, and Input are according to
specification) – Garbage-In-Garbage-Out

Diligence (Free from monotony, tiredness, lack of
concentration)

Versatility

Power of Remembering

No Feelings

No IQ

5

Evolution of Computer

Abacus (simple addition & Subtraction) , around 600
B.C.

First Mechanical Adding Machine by Blaise Pascal in
1642.

Later, Calculator for Multiplication by Baron Gottfried in
1671

In 1822 Charles Babbage‟s Difference Engine, later
Analytical Engine (completely automatic, basic
arithmetic operations at speed 60 OPs) in 1842.

In 1952, IBM introduced 700 series machine. In 1953
IBM produced IBM-650 and sold over 1000 no. of
computers

6

Computer Generations

To distinguish varying Hardware and Software
Technologies.

First Generation (1942-1955): Vacuum Tubes; EM
relay memory; punched cards secondary mem; M/C
and Assembly languages; stored program concept;
Bulky in size; Unreliable; difficult to use; Scientific
applns (e.g., ENIAC, UNIVAC 1, IBM 701)

Second Generation (1955-1964): Transistors; Magnetic
Disk/Tapes/cores memory;Batch OS; HLL;
Scientific/Commercial applns; faster,smaller, more
reliable and costly (e.g., Honeywell 400, IBM 7030 etc)

7

Computer Generations (contd)

Third Generation (1964-1975): ICs (SSI and MSI); larger
capacity in storage; Minicomputers; Timesharing OS;
Standardization of HLL; Faster, Reliable, easier and
cheaper to produce; Scientific, Commercial, Interactive on-
line applications (e.g., IBM 360/370, PDP-11, CDC 6600
etc.)

Fourth Generation (1975-1989): ICs (VLSI technology);
Microprocessors; Semiconductor Memory; larger capacity
disk (Hard, floppy); PC, Super Computer based on
Vector/Symmetric multiprocessing; Computer networks;
Multiprocessing OS; GUI; Concurrent Language, OOPD,
n/w based applns; Small, reliable PCs, Mainframe; rapid
s/w development (e.g., IBM PC, Apple II, VAX 9000, CRAY
-1,2 etc.)

8

Computer Generations (contd)

Fifth Generation (1989-present): ICs (ULSI); larger
capacity memory; RAID; Optical Disks; Notebook
Computers; Powerful Desktop/Workstations; Internet;
Cluster computing; Microkernal-based OS;
Multithreading; Parallel programming library MPI, PVM;
JAVA, WWW, Internet-based applications; AI;
Portable/powerful/cheaper/reliable desktop computers;
mobile computing; general purpose m/cs; easy to
upgrade; rapid s/w development (e.g. IBM Notebook, P-
IV, SUN Workstations, SGI, PARAM 10000)

9

Classification of Computers

Traditionally: Computers were classified by their size,
processing speed and cost (e.g. microcomputer,
minicomputer, mainframe computer and
supercomputer).

With rapidly changing technology, this classification is no
more relevant.

Nowadays: Computers are classified based on their
mode of use. These are – Notebook, personal computer,
workstations, mainframe systems, supercomputers, and
client and servers.

Functional Block Diagram

Input
Unit

Output
Unit

Control
Unit

ALU

Primary
Memory

Secondary
Memory

Program
and Data Results

CPU

Storage
Unit

Registers

11

The CPU & Von-Neumann

What‟s in the box? – reminder

CPU Overview

 Control Unit

 ALU

 Registers

Catching a Bus

 Tying it all together

Mr Von Neumann

 His legacy

12

Computer Architecture
CPU

 Central processing Unit

 Speed measure in clock cycles

 Hertz (Hz) – usually MHz or GHz

 How quickly the CPU can execute instructions

CPU often measured in „bits‟

 32-bit Processor / 64-bit processor

 Confusion!!

 Is this CPU memory word length?

 Is this data bus width? usually the answer

13

Central Processing Unit (CPU)

CPU has three important parts:

 ALU (Arithmetic and Logic Unit)

 Control Unit

 Registers

High Speed Registers

ALU
Control

Unit

CPU

14

Central Processing Unit (CPU)
Arithmetic & Logic Unit

 Handles mathematical and logical functions
(numerical)

 Deals with non-numerical logic operations

Control Unit

 Handles all low-level hardware operations

 Input & Output Devices and CPU

 Carries out instruction handling

 Fetch Execute Cycle

15

CPU Registers

Storage areas within the CPU
 Used to temporarily store data read from memory

Accessible at High Speed

Anything for processing must be kept in a register

Can also hold the address of a memory location

Registers are used to process instructions and data
during the Fetch Execute Cycle
 Two main types of register:

 Instruction Register (IR)

 Commands to be performed

 Data Registers

 Data upon which operations will be performed

16

CPU Registers
Common registers in the CPU:

 Program Counter (PC)
 Holds the memory address of the next instruction to be

executed

 Memory Buffer Register (MBR)
 Briefly holds data and instructions that travel to and

from memory

 Sometimes called MDR (Memory Data Register)

17

CPU Registers
Common registers in the CPU:

 Memory Address Register (MAR)
 Holds the memory address locations of data and/or

instructions to be read / written to memory

 Current Instruction Register (CIR)
 Holds the instruction which is to be executed

 General Purpose Registers
 „Working areas‟ for data processed by the ALU

18

Buses

A collection of wires which connects together the
internal components of the computer

 Allows transfer of data

Main types of bus:

 Data bus

Carries actual data bits (information)

 Address bus

Transfers locations where data should be sent

 Control bus

Carries status information

19

Buses

How buses fit into the computer system:

INPUT OUTPUTCPU

MEMORY

ADDRESS BUS

DATA BUS

CONTROL BUS

20

CPU Buses
Parallel connections between low-level components
of the computer

 Size is measured by the number of parallel
connections on the bus

E.g.- 32-bit wide bus = 32 individual wires

These bursts are called words

A word is a set measure of bits (in this case
we have a 32-bit word)

Signals on buses follow strict timing sequences

Some buses are bi-directional

 Allowing two way flow of information

21

Computer Architecture
The Von Neumann Model

 1903 - 1957

 Mathematician

 Quantum physicist

 Worked on ENIAC

 Electronic Numerical Integrator and Computer

 Major development in computer technology

 Responsible for developing the Fetch Execute Cycle, and his
namesake -

 „Von Neumann Model‟

22

Von Neumann Model

Logically defines a complete computer system

Centralised control of all processes of the computer
system

Defines main parts of the machine:

 Memory
 Storage for instructions and data

 Processing unit
 ALU functions

 Control unit
 Interpreting instructions

 Issuing commands

 Input and Output
 For entering and retrieving data

23

Von Neumann Model
Logical Structure of the computer system

 Routes of data transfer during processing

24

Von Neumann Model

Problem?
 Von-Neumann Bottleneck

 All instructions must be retrieved from memory
before they are processed

 Memory (RAM) runs at slower speeds than the
processor is capable of

 The difference between the speed of the RAM and the
speed of the processor is the „bottleneck‟

 This is being remedied by faster RAM technologies

 Such as SDRAM

25

Fetch Execute Cycle

Defines how instructions

are retrieved and

carried out inside the

processor (CPU)

Sometimes called the

Instruction Cycle or

Automatic Sequence

Control

START

Fetch next instruction

from memory to CIR

Increment PC

Execute instruction in

CIR

STOP?

END

no

yes

26

Fetch Execute Cycle

Fetch Stage

 Copy contents of PC

into MAR

 Value of PC presented

via the address bus

 Increment PC

(point to next instruction)

 Copy instruction from

MBR into CIR via data bus

 Instruction retrieved from memory

 Placed in CIR

START

Fetch next instruction

from memory to CIR

Increment PC

Execute instruction in

CIR

STOP?

END

no

yes

27

Fetch!

28

Fetch Execute Cycle

Execute Stage

 Decode instruction

from CIR

 Run instruction in CIR

 May require getting data
from memory

 Unless current instruction is

STOP, repeat cycle

START

Fetch next instruction

from memory to CIR

Increment PC

Execute instruction in

CIR

STOP?

END

no

yes

29

Execute...

30

MIPS & Hertz

MIPS = Millions of Instructions per Second

 How many instructions a processor can carry out each
second

 Old form of measurement

 Inaccurate

 Some instructions take longer than others

Hz = number of complete cycles per second

MHz = Millions of cycles per second

 In a processor a cycle is when the state of the control lines
are changed

31

CPU Instructions

Instruction Set

 The types of instruction that a particular machine can
execute

 The instructions that are carried out during the Fetch
Execute Cycle

 Types of instruction:

 Arithmetic and logical calculations on data

 Input and output of data

 Changing the sequence of program execution

 Transferring data between memory and CPU registers

 Transferring data between CPU registers

32

CPU Instructions

Instructions are split into two parts:

 Opcode (Operation Code)- the operation to be carried out

 Operand- The data upon which the operation should be performed

Different manufacturers - different instruction sets

 Can vary in architecture

 Functions will often be the same or similar but may vary in name

 More advanced functions may be present

 Likely to vary between manufacturers

 e.g.- Intel instruction set Vs. AMD instruction set

33

Assembly Language

Is at a level below programming languages

 Eg.- C++, Java, Pascal

Assembly language is converted into machine code

 Machine code is raw data that would take ages for a
human to decipher

 This is the data and instructions which is used by the Fetch
Execute Cycle

34

Assembly Language

Programs or sequences can be written in assembly language

 Which is what is effectively done when we compile a C++
program

Why write in assembly language?

 Faster (direct) access to CPU

 Some programs need to be written to operate at a lower level

 E.g.- Device Drivers

35

A simple Assembly program
(Honest!)

org 100h

mov dx,msg

mov ah,9

int 21h

mov ah,4Ch

int 21h

msg db 'Hello, World!',0Dh,0Ah,'$'

36

A simple Assembly program (Honest!)

org 100h

mov dx,msg

mov ah,9

int 21h

Tells the compiler (NASM) the program will be loaded at
memory address 100h

Moves the address of our message (msg) into a register
which is known as the DX Register (Data Register)

Moves the value 9 into a register called the AH Register

„int‟ calls an ISR (interrupt service routine) “DOS Services”
this is combined with contents of AH (9) to determine that
we want to output a message– contents of DX (msg)

37

A simple Assembly program (Honest!)

mov ah,4Ch

int 21h

msg db 'Hello, World!',0Dh,0Ah,'$'

Effectively tells the processor to stop (combines int 21h
with contents of AH <now 4Ch>). Otherwise it will try to
fetch and execute the next instructions it comes to

msg is a variable name (the name of out message string)

db is an instruction to the compiler to use the information
the follows as data

Then out message „Hello, World!‟ (note: „ „ marks)

0Dh, 0Ah – performs carriage return and line feed

$ terminate string output – (int 21h & 9 in ah requirement)

38

A simple Assembly program (Honest!)

OK, so what does it actually do?

 Output “Hello, World!” to the screen

How?

 Type the program into a text document and call it
„hello.asm‟

 Use the NASM program

 This is used to compile assembly language programs

 Rename the produced file as type COM

 ren hello hello.com

 Run the program

 hello

39

A simple Assembly program (Honest!)

40

Von-Neumann Bottleneck

Originally CPU & RAM ran at similar speeds

 CPU development began to increase faster than RAM

Fundamental problem:
 CPU is faster than RAM

Attempt to solve the problem:
 Sophisticated RAM technologies

www.knozall.com/squeezingthroughthevonneuman.htm

41

Memory (RAM)

Many different types of RAM

 SDRAM

 Synchronous Dynamic RAM

 Synchronises with processor buses

 Max. approx 133 MHz

 Contemporary

 DDR SDRAM

 Double Data Rate SDRAM

 Transfers data on both sides of the clock cycle

 Effectively doubles transmission rate

42

Memory (RAM)
FPRAM

 Fast Page RAM

 “Page Mode Memory”

 Dynamic RAM

 Allows faster access to adjacent memory locations

 Does not always store complete addresses

NVRAM

 Non Volatile RAM

 Retains it‟s contents when power is switched off

 Powered by a battery

 Or uses an EEPROM chip

 Electrically Erasable Programmable ROM

 Combination of SRAM and EEPROM chips

 SRAM is an NVRAM derivative

43

Video Memory (VRAM)
WRAM

 Windows RAM

 Windows are large blocks of memory

 Supports two paths to transport data
 Sends data for display as new information is being sent to the graphic

adapter‟s memory

 Same principle as standard VRAM

 Faster than ordinary VRAM because of Windowing

SGRAM

 Synchronous Graphic RAM

 Dynamic RAM

 Synchronise with processor buses up to 100 MHz

 Capable of opening two memory pages at once
 Simulates dual data transmission of VRAM and WRAM

 Better than standard VRAM

