TEZPUR UNIVERSITY Assignment (Spring 2020) MMS 402: FunctionalAnalysis

Total Marks: 30

The figures in the right-hand margin indicate marks for the individual question. All questions are compulsory. Answers should be concise and entire answer to a question should be together. State assumptions wherever made.

1. Let X, Y be normed linear spaces and $T: X \to Y$ be bounded linear. We know that

$$||T|| = \sup_{0 \neq x \in X} \frac{||Tx||}{||x||} = \inf\{c > 0 : ||Tx|| \le c ||x|| \, \forall x \in X\}.$$

 $\text{If } \alpha := sup_{\|x\| \le 1} \|Tx\|, \ \beta := sup_{\|x\| = 1} \|Tx\|, \ \gamma := sup_{\|x\| < 1} \|Tx\|, \text{ then show that } \alpha = \beta = \gamma = \|T\|.$

- 2. Let X and Y be two normed linear spaces, and B(X, Y) denote the space of all bounded linear operators from X to Y. Show that B(X, Y) is a Banach space if and only if Y is a Banach space. 6+6=12 (It may be assumed that B(X, Y) is a normed linear space.)
- 3. Let $S, T: C[0,1] \rightarrow C[0,1]$ be defined as $(Sx)s = s \int_0^1 x(t)dt$ and (Tx)s = sx(s) for $x \in C[0,1]$ and $s \in [0,1]$. Show that $ST \neq TS$ and find ||ST||, ||TS||. 2+3+3=8
- 4. Let X be a normed linear space and X', X" denote the dual and the second dual of X respectively. For $x \in X$ define $\varphi_x : X' \to \mathbb{F}$ as $\varphi_x(f) = f(x)$. Show that $\varphi_x \in X''$. 3
- 5. If $\varphi: X \to X''$ is defined as $\varphi(x) = \varphi_x$, where $\varphi_x(f) = f(x) \forall f \in X''$, then show that φ is an isometry. 2

- - × - -