TU/CODL/MMS/SPR/2018

5

3

TEZPUR UNIVERSITY Assignment (Spring) 2018 Functional Analysis

Total Marks: 30

The figures in the right-hand margin indicate marks for the individual question.

All questions are compulsory.

Answers should be concise and entire answer to a question should be together. State assumptions wherever made.

- 1. Show that a bounded metric on a non trivial linear space can never be induced by a norm.
- 2. Let d be a metric on Ω , and d_1 be another metric on Ω defined as $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Show that d_1 cannot be induced by a norm.
- 3. For $1 \le p \le \infty$, show that the map $\nu(x) = |x(a)| + ||x'||_p$ is a norm on $C^1[a, b]$. Also show that the map $\eta(x) = ||x'||_p$ is not a norm on $C^1[a, b]$.
- 4. Let X be a normed linear space and X_0 be a closed subspace of X. Show that $||[x]|| = dist(x, X_0)$ defines a norm on the quotient space X/X_0 . Here $dist(x, X_0) = \inf\{||x y|| : y \in X_0\}$.
- 5. Let X be an inner product space with $||x|| := \langle x, x \rangle^{1/2} \, \forall x \in X$. Show that $|\langle x, y \rangle| \le ||x|| \, ||y|| \, \forall x, y \in X$.
- 6. Show that l^p cannot be an inner product space unless p=2.
- 7. Let X be an inner product space and $x, y \in X$. If $||kx + y||^2 = ||kx||^2 + ||y||^2 \ \forall \ k \in \mathbb{F}$, then show that $x \perp y$.