ASSIGNMENT MMS 202

Total marks: 30

The students may attempt any 6 (six) questions. All questions carry equal marks.

- 1. On the three point-set $X = \{a, b, c, d\}$, find 5 topologies having more than 5 and less than 8 members.
- 2. Let X be an infinite set and let $p \in X$. Let $\mathscr{T} = \{A \subseteq X : X A \text{ is either finite or contains } p\}$. Verify whether \mathscr{T} is a topology on X.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as f(x) = x + 2. Determine if f is continuous.
- 4. Let X be a topological space. Let \triangle denote the set $\{(x,x):x\in X\}$ which is a subset of $X\times X$. If A,B are two subsets of X, show that $(A\times B)\cap\triangle=\phi$ iff $A\cap B=\phi$.
- 5. On \mathbb{R} , consider the equivalence relation defined by $x \sim y$ if $x y \in \mathbb{Z}$. Describe the quotient space that results from the partition of \mathbb{R} into the equivalent classes in the equivalence relation.
- 6. Let X, Y be two topological spaces. Let $x_0 \in X$. Show that $x_0 \times Y$ is homeomorphic to Y.
- 7. Examine the space \mathbb{R}_{ℓ} (Real line with Lower limit topology) for the following:
 - (a) Separability (b) First Countability (c) Second Countability
- 8. Show that if X is compact and $f: X \to \mathbb{R}$ is continuous, then there exists $a, b \in X$ such that $f(x) \leq f(x) \leq f(b)$, for every $x \in X$.
- 9. Let $p: X \to Y$ be a closed continuous surjective map, where Y is compact, such that $p^{-1}(\{y\})$ is compact, for each $y \in Y$. Show that X is compact.
- 10. Find out which of the following are connected:
 - (a) \mathbb{R}_{ℓ} (The real line with lower limit topology)
 - (b) X a two point space with indiscrete topology.
 - (c) The set \mathbb{Q} of rationals in \mathbb{R}
 - (d) The subset $X = \{x \times y : y = 0\} \cup \{x \times y : x > 0 \text{ and } y = \frac{1}{x}\}$ as a subset of \mathbb{R}^2