9

6

TEZPUR UNIVERSITY Assignment (Spring) 2018 MMS103: Real Analysis

Total Marks: 30

The figures in the right-hand margin indicate marks for the individual question.

All questions are compulsory.

Answers should be concise and entire answer to a question should be together. State assumptions wherever made.

- 1. Show that the following are equivalent.
 - (a) A is countable
 - (b) There exists a injection from A to \mathbb{N} .
 - (c) There exists a surjection from \mathbb{N} to A.
- 2. Show that a subset of a metric space is closed if and only if its complement is open.
- 3. In a discrete metric space (X, d), prove that a sequence $\{x_n\}$ is convergent iff it is eventually constant. 5
- 4. Let (X, d_1) and (Y, d_2) be two metric spaces and $f: X \to Y$ be a function. Then, the following statements are equivalent:
 - (a) f is continuous.
 - (b) If $\{x_n\}$ converges to $x \in X$ then $\{f(x_n)\}$ converges to f(x) in Y.
 - (c) $f^{-1}(G)$ is open in X whenever G is open in Y.

 $--\times--$