TEZPUR UNIVERSITY Assignment (Spring) 2018 MMS101: Abstract Algebra

Total Marks: 30

The figures in the right-hand margin indicate marks for the individual question.

All questions are compulsory.

Answers should be concise and entire answer to a question should be together. State assumptions wherever made.

- 1. Let G be a group and $a \in G$. Let Z(G) denotes the center of G and $C_G(a)$ denotes the centralizer of a in G. Then show that 3+3+3=9
 - (a) Z(G) is a subgroup of G.
 - (b) $C_G(a)$ is a subgroup of G.
 - (c) Z(G) is equal to $\bigcap_{a \in G} C_G(a)$.
- 2. Consider the symmetric group of degree 3 denoted by S_3 .

4+2=6

- (a) Determine all the centralizers in S_3 .
- (b) Using 1(c), find the center of S_3 .

3. Let
$$S = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z} \right\}$$
. 4+2=6

- (a) Show that S is a subring of $M_2(\mathbb{Z})$.
- (b) Does unity exist in S?
- 4. Answer the following questions.

3+3+3=9

- (a) Define Euclidean domain, principal ideal domain and unique factorization domain.
- (b) Show that every Euclidean domain is a principal ideal domain.
- (c) Give an example of a principal ideal domain but not an Euclidean domain.

 $--\times--$