## TEZPUR UNIVERSITY <br> Assignment Spring 2022 MMS 401: Mathematical Methods Total Marks: 30

The figures in the right-hand margin indicate marks for the individual question. All questions are compulsory.
Answers should be concise and entire answer to a question should be together. State assumptions wherever made.

1. Convert the differential equation $\frac{d^{2} \phi}{d x^{2}}+x \phi=1$ with boundary condition $\phi(0)=0, \quad \phi(1)=1$ to its corresponding Fredholm integral equation of second kind and also recover the boundary value problem from the integral equation that you obtain. 7
2. Show that $\int x^{m} J_{n}(x) d x=\frac{x^{m+2} J_{n+1}}{(m+1-n)(m+1+n)}+\frac{x^{m+1} J_{n}}{(m+n+1)}+\frac{\int x^{m+2} J_{n} d x}{(m+1-n)(m+1+n)}$ and evalute $\int x^{-2} J_{4}(x) d x$. $\quad \mathbf{7}$
3. Show $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$ for $n \geq 1$. 5
4. Show that Legendre polynomils are orthogonal . 5
5. Find the Green's function for damped harmonic oscillator given by the equation $m \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}+k y=f(t)$, with $m$ mass of the spring, $c$ damping coefficient, $k$ spring constant and $f(t)$ force .
