TEZPUR UNIVERSITY

Assignment Spring 2022

MMS102: LINEAR ALGEBRA

Full Marks: 30

The figures in the right-hand margin indicate the marks for the individual questions.

1. Show that the 4 vectors

$$
v_{1}=(2,1,3,1), v_{2}=(-1,0,1,2), v_{3}=(3,2,7,4), v_{4}=(1,2,0,-1)
$$

are linearly dependent, and find three of them that are linearly independent.
2. Give a basis for the kernel of the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x-2 y+z, 2 x-3 y+z, 3 x-y-2 z)
$$

3. Let $V=\mathbb{R}^{2}$, and define $f_{1}, f_{2} \in V^{*}$ by $f_{1}(x, y)=-x+3 y, f_{2}(x, y)=x-2 y$. Prove that $\left\{f_{1}, f_{2}\right\}$ is a basis for V^{*}, and then find a basis for V for which it is the dual basis. 6
4. Show that the matrix $\left[\begin{array}{ccc}0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2\end{array}\right]$ is not diagonalizable.
5. In \mathbb{R}^{4}, let $w_{1}=(1,0,1,0), w_{2}=(1,1,1,1)$, and $w_{3}=(0,1,2,1)$. Find an orthonormal basis for $\operatorname{span}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$.
