Centre for Distance and Online Education TEZPUR UNIVERSITY

Assignment Spring 2022

Total Marks : 30

1. Let G be an abelian group. Let $x, y \in$ h that $o(x) = 5$ and $o(y) =$ the order of $(xy)^{14}$.	7 then find 3
2. Show that any quotient group of an abelian group is abelian.	4
3. Suppose that H_1 and H_2 are two subgroups of a group G . If $ H_1 = 36$ and then find all the possible values of $ H_1 \cap H_2 $.	ad $ H_2 = 70$ 4
4. Let G be a group and H a non empty subset of G. Prove that H is a s G if and only if $ab^{-1} \in H$ for all $a, b \in H$.	subgroup of 4
5. Let α and β be two elements of S_8 such that $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 1 & 6 & 4 & 2 & 7 & 3 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 8 & 1 & 7 & 2 & 5 & 3 \end{pmatrix}$. Find $\beta \alpha \beta^{-1} \alpha^{-1}$. Also find the order of $\beta \alpha \beta^{-1} \alpha^{-1}$.	3+2=5
 6. Let f: R → S be a ring homomorphism. (a) What is Kerf? (b) Show that Kerf is an ideal of R. (c) Show that any ideal of R is a kernel of some ring homomorphism 	1 2 1. 2
7. Let A_n and B_n denote the set of even and odd permutations of S_n , respectively. Show that $ A_n = B_n $. Also find the order of B_n .	for $n \ge 2$, 5
