PREFACE OF THE COURSE FILE DEPARTMENT OF MECHANICAL ENGINEERING TEZPUR UNIVERSITY

Code and Title of the Course	:	${ m ME530-Numerical~Methods}$
L-T-P Structure of the Course	:	3-0-1-4-5
Category of the Course	:	Core
Course offering Department	:	Mechanical Engineering
Name of the Programme	:	M.Tech. in Mechanical Engineering
		(Specialization: Thermal and Fluid Engineering)
Academic Year	:	2024 - 2025
Session	:	Spring Semester, 2025
Students' Batch	:	2024–2026
Semester	:	Second
Class Timetable of the Course	:	$\frac{\mathrm{Mon}}{11.30-12.30}, \ \frac{\mathrm{Wed}}{15.30-16.30}, \ \frac{\mathrm{Thu}}{15.30-17.30}, \ \frac{\mathrm{Fri}}{11.30-12.30}$
Course Coordinator/Instructor	:	Prof. Dilip Datta

1 Objectives

- (1) The main objective of the course is to impart knowledge to students on how to solve a mathematical model numerically using the computing power of a computer, which is very tough or even impossible to solve by an exact method.
- (2) To teach students both theory and programming of important numerical methods often required in practical computations.

2 Lesson Plan

CN	T T *4	Characterized Salt Haritz (CSH-)	TID	Completie	on Date	D
511	Unit	Chronological Sub-Units (CSUS)		Proposed	Actual	Remarks
1	Introduction*	Approximations and error analysis	2+1			
2	Roots of	1. Bracketing methods (bisection and false	3+1			
	transcendental	position methods).				
	equations	2. Open methods (Newton-Raphson, secant,				
		and fixed-point methods).				
3	Roots of	Polynomial deflation, Müller method and	3+1			
	polynomial	Bairstow's method.				
	equations					
4	System of linear	1. Direct methods (Gauss elimination,	6+2			
	algebraic equations	Gauss-Jordan elimination, LU decompo-				
		sition, and matrix inversion methods).				
		2. Iterative methods (Jacobian, Gauss-				
		Seidel, and successive relaxation meth-				
		ods).				
5	System of	Fixed point iteration and Newton's	3+1			
	nonlinear algebraic	methods.				
	equations					
6	Eigenvalues and	Direct power, inverse power, and shifted	2 + 1			
	eigenvectors	power methods.				
7	Numerical	Finite difference methods (for first and	3+1			
	differentiation	second order derivatives).				
8	Numerical	1. Newton-Cotes methods (Trapezoidal rule,	3+1			
	integration	Simpson's rules, Romberg integration).				
		2. Gauss quadrature (Two-point and higher-				
		point Gauss-Legendre formulae).				
9	Ordinary	1. Initial value problems (Euler, Runge-	6+2			
	differential	Kutta, and predictor-corrector methods).				
	equations (ODEs)	2. Boundary value problems (Shooting and				
		finite difference methods).				
10		3. Eigenvalue problems.	2 + 2			
10	Partial differential	1. Classification and characteristics of	3+2			
	equations (PDEs)	PDES.				
		2. Elliptical, parabolic and hyperbolic equa-				
11	G: :1 :4	tions.	0 + 1			
	Similarity	QR decomposition with Householder	2+1			
	transformation	transformation	00114			
		Total contact hours	36 + 14			

3 Course Outcome

\mathbf{SN}	Course Outcome (CO)	Units
1	Find roots of single-variable transcendental and polynomial equations	2, 3
2	Solve both linear and nonlinear systems of algebraic equations	4, 5, 6
3	Perform numerical differentiation and integration	7, 8
4	Solve both ordinary and partial differential equations	9,10
5	Programming various numerical methods and apply them to different relevant	1–11
	real-life problems	

4 Textbooks

- 1. Gerald, C.F. and Wheatley, P.O. Applied Numerical Analysis. 5/e, Addison-Wesley, 1994.
- 2. Conte, S.D. and de Boor, C. *Elementary Numerical Analysis.* 3/e, Tata McGraw-Hill Education, 2005.
- Hildebrand, F.B. Introduction to Numerical Analysis. 2/e (revised), Courier Dover Publications, 1987.

5 References

- 1. Kreyszig, E. Advanced Engineering Mathematics. 10/e, John Wiley and Sons, 2010.
- 2. Burden, R.L. and Faires, J. D. Numerical Analysis. 9/e, Brooks/Cole, 2011.
- 3. Chapra, S.C. and Canade, R.P. Numerical Methods for Engineers. Tata McGraw-Hill, 2006.
- 4. Mathews, J.H. Numerical Methods for Mathematics, Science and Engineering. Prentice-Hall of India, 2000.

How to record your class notes?

- (1) Take a separate notebook for this Course only.
- (2) Make numbering of each class on the top-left corner, along with the date on which it was held, as demonstrated below.
- (3) Note down the lecture as delivered.
- (4) At the end of each class, summarize what you have learned from this lecture, as shown below.

$\frac{\text{CN-1}}{\text{22-01-2025}}$								
Introduction to Numerical Methods								
		l						
Summary								