Course Plan

School	Engineering
Department	Energy
Course Code	EN570
Course Name	Energy Management and Auditing
Session	Spring 2024
Credit	4
Lecture	3
Tutorial	1
Instructor	Sadhan Mahapatra

Abstract

This course deals with the understanding on energy management, and conservation and energy auditing. It deals with energy conversion processes in various utilities, energy cost optimization etc. It also deals the various features of Energy Conservation Act and the duties of Energy Manager and Energy Auditors. Apart from these, this course deals with electrical and thermal energy management in industry and residential sectors. This is a broad course aimed to expose the students on various aspects of energy auditing and conservation techniques.

Objectives

- (a) To understand the energy management, conservation processes, principles of energy auditing, energy flow diagram, economics of energy conservation opportunities.
- (b) To understand the energy management information systems, various key features of Energy Conservation Act and ECBC.
- (c) To understand the scope for energy conservation in electrical and thermal energy utilities.

Course Outcomes

- CO1: Discuss the principles of energy management, conservation and auditing in thermal and electrical utilities
- CO2: Assess scope of energy conservation in electrical and thermal utilities
- CO3: Analysis of economics of energy conservation opportunities in electrical and thermal utilities and reporting of energy audit

Prerequisites of the course

Student must have understanding on various energy conversion processes in various utilities.

Lecture Plan

Tentative Lecture/	Topic (s)
Tutorial	
1	Energy units conversion, understanding on energy demand and supply
	energy cost, energy conservation and its importance
2	Electricity tariff, load management and maximum demand control
3	Thermal energy contents of fuel, heat capacity, Stoichiometric air-fuel ratio,
	flue gas analysis
4	Concept of energy management, need for energy management.

5	Energy auditing, basic components of an energy audit, types of energy audit,
6	Industrial, commercial and residential energy audit planning, measuring
0	instruments, report preparation
7	
	Energy performance index, system efficiencies, input energy requirements
0	optimization
8	Understanding energy used pattern and fuel & energy substitution, concepts
0.10	of energy conservation and efficiency
9-10	Sankey diagrams, energy and material balances for different processes,
	methods for preparing process flow chart, procedure to carry out the
11	material and energy balance in different processes
11	Energy conservation act and its features, duties and responsibilities of
10	energy managers and auditor
12	Financial analysis techniques: simple payback period, return on investment,
	net present value, internal rate of return, cash flows and sensitivity analysis
10.1.1	Case studies
13-14	Problem solving to calculate NPV, IRR
15-16	Project definition and scope, technical design and financing, project planning
	techniques; CPM and PERT, case studies
17	Energy Service Companies (ESCO), energy performance contracts and role
	of ESCOs
18-19	Energy action planning, force field analysis, energy policy purpose,
	perspective, contents, formulation, roles and responsibilities of energy
	manager, accountability
20	Energy monitoring and targeting various elements of monitoring & targeting
21	Data and information analysis; techniques, cumulative sum of differences
	(CUSUM)
22	Energy conservation in household, transportation, agricultural, service and
	industrial sectors
23	Energy management information systems, Smart grid, SCADA systems
24	Electric power systems, maximum demand management, load management,
	energy efficient technologies in electrical power systems
25-26	Role of power factor and its improvement,
27	Electrical energy management: supply and demand side management
28-29	Electric motors, energy efficient motors, factors affecting energy efficiency
	of a motor, Soft starters, Variable speed drives
30-32	Basic terms of lighting systems; lamp and luminaries types, recommended
	illumination level, methodology of lighting systems energy efficiency study,
	case study
33-35	Energy conservation opportunities in HVAC and refrigeration systems,
	compressed air systems, fans and blowers, pumping systems and cooling
	towers
36	DG Set systems, Operational parameters, Performance assessment of DG
	Systems, Energy conservation opportunities
37-38	Stoichiometric air fuel ratio, theoretical and excess air, combustion in
	boilers
	performances evaluation, analysis of losses, energy conservation
	opportunities
39	opportunities Energy conservation in buildings, building heating and cooling load

40	Heat load calculation of a building.						
41	Solar passive buildings, climate responsive buildings, Green buildings						
	concept						
42	Performance analysis of furnaces, energy conservation opportunities						
43-44	Cogeneration and waste heat recovery, performance parameters, case						
	studies						
45	Thermal insulation, economic thickness of insulations						
46-47	Types and properties of refractory, industrial use of refractory, heat losses						
	from furnace walls						
48	Energy performance assessment of heat exchangers						

Pedagogy

Teaching-learning methods to be used

- Lecture and Discussion
- Case studies
- Assignment and Presentations
- Problem Solving

Evaluation Plan

Course Outcome	s	C01		C02			СО3	
Weightage (%)		35		30		35		
Marks		52.5		45.0		52.5		
Course Outcomes Weight		tage of Marks	Test I (25)	Mid Term Test (40)		Test II (25)	Semester End (60)	Total (150)
C01		35		15			17.5	52.5
C02	30 5 15			5	20	45		
CO3		35		10		20	22.5	52.5
Total		100	25	40		25	60	150
Assess	Marks distribution							
Bloom Taxonomy	Level	Marks Weightage (%)	Marks	Test I (25)		id Term est (40)	Test II (25)	Semester End (60)
Knowledge	Easy	10	15	5		5		5
Understanding	Easy	10	15	5		5		5
Application	Average	30	45	15		15		15
Analysis	Above average	30	45			10	15	20
Synthesis	Difficult	12	18				10	8
Evaluation	Difficult	8	12			5		7
TOTAL		100	150	25		40	25	60

Text Books

- [1] Doty S. and Turner W. C. (2012); *Energy Management Handbook*, Eighth Edition, Fairmont Press
- [2] Kreith F. and West R. E. (1996); Handbook of Energy Efficiency, First Edition, CRC Press

Suggested Readings

- [1] Thumann A. and Mehta D. P. (2008); *Handbook of Energy Engineering*, Sixth Edition, Fairmont Press
- [2] Capehart B. L. Turner W. C. and KennedyW. J. (2011); *Guide to Energy Management*, Seventh Edition. Fairmont Press
- [3] Kao C. (1999); Energy Management in Illumination System, First Edition, CRC Press
- [4] Bureau of Energy Efficiency (BEE) (2012); *Study material for Energy Managers and Auditors Examination: Paper I to IV*
- [5] Thumann A. Niehus T. and Younger W. J. (2012); *Handbook of Energy Audits*, Ninth Edition, CRC Press