Course and Evaluation Plan

School	Engineering
Department	Energy
Semester	Autumn 2024
Course Code	EN565
Course Name	Wind and Hydro Energy
Instructor	Sadhan Mahapatra

Abstract

This course deals with wind and hydro energy sources and systems in detail. These are the two most important renewable energy sources in India. The installed capacities of these two renewable energy base conversion systems are highest and it also proved that the energy generation cost from these resources is economically competitive. This course deals with wind and hydro energy sources, conversion to useful energy, and systems in detail. This is a broad course aimed to teach the students on various aspects of wind and hydro energy resource assessment, conversion process, applications, and economics of energy generation.

Course Outcomes

CO1: Explain wind and hydro energy resource assessment techniquesCO2: Use of wind and hydro energy conversion principles for power generationCO3: Analyse the performance and cost of wind and hydro energy conversion devicesCO4: Assess the environmental issues related to wind and hydro energy systems

Prerequisites of the course

Students must have a minimum understanding of fluid mechanics.

Lecture Plan

Lectures	Topic (s)				
1-3	Introduction to wind energy, energy available from wind, factors influence the wind, wind energy potential in India and worldwide				
4-5	Wind speed monitoring, resource assessment, time and frequency distribution				
6-7	Weibull distribution, Capacity factor, Design Optimization based on Site				
8-9	Problem Solving				
10-11	Betz limit, power, torque and speed characteristics, wind energy conversion systems classifications				
12-13	Axial Momentum Theory, Maximum Power coefficient				
14-16	Aerodynamic design principles, Aerofoil, lift and drag characteristics, blade element theory and combined theory,				
17	Blade linearization techniques, theoretical simulations of wind turbine				
16	Wind pumps, performance analysis of wind pumps, design concept and testing				
17	Principle of WEG: stand alone, grid connected, Interconnection issues				
18	Hybrid applications of WECS, Economics of wind energy generation, case studies				
19-22	Introduction to hydropower systems, classification, working principles,				

	Assessment of hydropower potential, Hydrology			
23-25	Different types of turbines, elements of turbine, selection and design			
	criteria, characteristic curves, Power from hydro sources			
26	Economic operation of Hydro power systems			
27-31	Problem solving			
32-34	Site selection criteria, essential elements of hydro power plant, cost of			
	energy generation , case studies			
35-36	Environmental issues with large hydro projects			

Evaluation Plan

Evaluation Plan						
Test	Marks	Time	Tentative schedule			
Sessional Test I	25	1 hour	8 th September			
Mid Term	40	2 hour	13 th October			
Sessional Test II (Assignment)	25	15 days	10 th November			
End Semester	60	3 hours	15 th December			
Total	150	Semester				

Assessm	ent Criteria	Marks distribution				
Course Outcomes	Weightage of marks (%)	Sessional Test I (25)	Mid Term (40)	Sessional Test II (25)	End Semester (60)	
C01	25	15	15		7.5	
C02	30	10	15		20	
CO3	35		10	15	27.5	
C04	10			10	5	
TOTAL	100	25	40	25	60	

Assessment Criteria			Marks distribution			
Bloom Taxonomy	Level	Weightage of marks (%)	Sessional Test I (25)	Mid Term (40)	Sessional Test II (25)	End Semester (60)
Knowledge	Easy	10	5	5		5
Understanding	Easy	10	5	5		5
Application	Average	30	10	15	10	10
Analysis	Above average	30	5	10	15	15
Synthesis	Difficult	12		5		13
Evaluation	Difficult	8				12
TOTAL		100	25	40	25	60

Pedagogy

Teaching-learning methods to be used

- o Lecture
- \circ Presentation
- Problem solving

Text Books

- [1] Johnson G. L. (2006); Wind Energy Systems (Electronic Edition), Prentice Hall
- [2] Wagner H. and Mathur J. (2011); *Introduction to Hydro Energy Systems: Basics, Technology and Operation,* Springer

Suggested Readings

- [1] Ahmed S. (2011) Wind Energy: Theory and Practice, PHI Learning
- [2] Manwell JF. (2003) Wind Energy Explained: Theory, Design and Application, Wiley
- [3] Mathew S. (2006); *Wind Energy: Fundamentals, Resource Analysis and Economics,* Springer
- [4] Burton T. Sharpe D. Jenkins N. and Bossanyi E. (2001); *Wind Energy Handbook*, John Wiley
- [5] Nag P. K. (2014); *Power Plant Engineering*, Third Edition, Tata McGraw Hill
- [6] Jiandong T. (et al.) (1997); *Mini Hydropower*, John Wiley
- [7] Dandekar MM and Sharma KN. (2013) Water Power Engineering, 2nd Edition, Vikas Publishing House Pvt Ltd.
- [8] Rai HC. (2017) Power Plant Engineering, IK Publishing House Pvt Ltd
