Course-Plan [Autumn-2024]

School:	Engineering
Department:	Energy
Course Code:	EN 562
Course Name:	Heat Transfer
Instructors:	Vikas Verma (vikas@tezu.ernet.in; Intercom: 5310)

1. Abstract:

Comprehensive analysis of all the three modes of heat transfer (conduction, convection and radiation) will be taught in this course. The numerical tools and techniques, used to estimate the transfer of heat for all the three modes, are elaborately discussed. The dependency of heat transfer on material and environmental factors/properties are critically discussed with examples. Broader understanding is ensured incorporating practical examples of heat transfer.

2. **Objectives:** (what the course seeks to do)

- a) Enable the learners to identify appropriate mechanism(s) of heat transfer and understand it.
- b) Enable the learners to apply the understanding of heat transfer on design and management of heat transfer appliances (This is essentially required for different energy conservation and management practices).

3. Prerequisites of the course: (*What are the basic skills expected from the students or the courses s/he must have completed while opting for the course.*)

Basic knowledge on thermo-dynamics, 3-D geometry, differential calculus and SI units are required.

Units/Modules	Topics	Lecture no.
<u>Unit 1:</u> Heat transfer: An introduction	 Overview of heat transfer: conduction, convection and radiation Heat transfer and its importance: in relation to energy technology 	1
	Introduction to course outlines: books, journals, study materialsUnits and dimensions	
<u>Unit 2:</u> Theory of heat conduction	 Physical mechanisms of heat conduction Development of rate equation (one dimensional), numerical examples 	2
	 Thermal properties of matter in solid and fluid state Thermo-physical properties of material: transport and thermodynamic; volumetric heat capacity, thermal diffusivity and Insulation concept 	3
	 Determination of temperature field using Heat Diffusion Equation in Cartesian coordinates, Cylindrical coordinates and Spherical coordinates Boundary and initial conditions 	4
	• Numerical examples on (i) rate equation, (ii) thermo-physical properties, (iii) heat Diffusion Equation	5
<u>Unit 3:</u> Two dimensional	• Two dimensional steady state heat conduction problems : analytical solution for bodies without internal heat generation	6
heat conduction problems with and without internal heat generation and extended surfaces: Mathematical and numerical analysis	• Two dimensional steady state heat conduction problems : numerical solution for bodies without internal heat generation	7
	 Two dimensional steady state heat conduction problems : analytical & numerical solution for bodies with internal heat generation 	8
	• Heat transfer from extended surfaces: general representation of mathematical model and discussion on special cases	9
<u>Unit 4:</u> Transient and periodic state heat	 Two dimensional transient state heat conduction problems: Spatially uniform temperature distribution – lumped capacitance method 	10

4. Course outline and suggested reading:

conduction:	and its validity checking	
mathematical and	• Two dimensional transient state heat conduction problems:	11
numerical analysis	• Spatially non-uniform temperature distribution – approximate and	
	exact solution	
	• Concepts of convection heat transfer in natural and forced convection	12
	– practical examples	
	Velocity boundary layer & thermal boundary layer	13
	• Boundary layers: characteristics of laminar and turbulent flow,	14
	concepts of Reynolds number	
<u>Unit 5:</u>	• Development of convection transfer Equations in velocity boundary	15
Convective heat	layer	
transfer & boundary	Development of convection transfer Equations in thermal boundary layer	16
layer theory	• Velocity (momentum transfer) and thermal (energy transfer) boundary	17
	layer equations – simplifications for special cases,	10
	• Normalized equations and functional form of solutions of convective	18
	heat transfer equation	10
	• Physical significance of some important dimensionless parameters	19
Iluit 6.	• Introduction of fine and applications (commercial and industrial)	20
<u>Unil 0:</u> Heat transfer in	Infoduction of fins and applications (commercial and industrial) Convection correlations, laminar flow in gircular tubes, turbulant flow in	20
fins/extended surface	• Convection contentions, familiar now in circular tubes, turbulent now in circular tubes and numerical examples	21
	Boiling modes (Pool boiling and flow boiling) and variations of heat	22
	transfer coefficient	
	• Condensation- laminar film condensation and turbulent film	23
Unit 7:	condensation, film condensation	
Boiling,	• Condensation- film condensation inside horizontal tubes , dropwise	24
Condensation and	condensation	
Heat Exchanger	Heat exchanger: classifications & Design consideration	25
	• Estimation of heat transfer for parallel flow, counter flow and cross flow	26
	arrangements	
	Heat exchanger effectiveness – LMTD and NTU method	27
	• Fundamental concept of thermal radiation: volumetric vs. surface	28
	phenomenon, directional nature of radiation, emissive power, irradiation	
X 1.0	and radiosity	20
<u>Unit 8:</u> Redictive heat	• Fundamental concept of thermal radiation: directional nature of radiation,	29
transfer	Numerical example demonstrating concents of intensity of emission	30
transier	• Numerical example demonstrating concepts of intensity of emission, solid angle and rate of intercepted radiation by objects located at	50
	different positions	
	Laws of radiative heat transfer. Numerical examples	31
	• Concepts of Surface absorption, reflection, transmission, black surface vs.	32
	gray surface. Numerical examples concerning radiation heat transfer in	
Unit 9:	furnace.	
Radiation heat	Radiation exchange between surfaces: concept of view factor.	33
transfer between	• View factors of some common two and three dimensional geometries	
black and grey	Blackbody radiation exchange and real surface	34
bodies:	Radiation exchange between diffuse, gray surfaces inside enclosure	35
	• Multimode heat transfer: solution of numerical examples concerning heat	36
	transfer in radiative Superheater, Concept of view factors	
	Revision & Practices of Numerical problems	37
	Semester End term (Entire Syllabus)	

Suggested reading materials Text Book

- [1] Incropera F. P., DeWitt D. P., Bergman T. L. and Lavine A. S. (2011) *Introduction to Heat Transfer,* Fifth Edition, John Wiley
- [2] Özışık M. N. (1985); Heat transfer: A basic approach, McGraw Hill

Reference Book

- [1] Lienhard V J. H. and Lienhard IV J. H. (2011); *A Heat Transfer Textbook,* Fourth Edition, Dover Publication
- [2] Holman J. P. (1992); *Heat Transfer*, Seventh Edition, McGraw Hill
- [3] Gupta V. (1995); *Elements of Heat and Mass Transfer*, New Age International
- [4] Ghajar A. J. and Cengel Y. A. (2011); *Heat and Mass Transfer*, Tata McGraw Hill
- [5] Dutta B. K. (2009); *Heat Transfer: Principles and Applications*, First Edition, Prentice Hall India

5. (a) Time-Plan

As provided in the lesson plan in Section 4 above

(b) **Evaluation plan** (to be as per the University calendar)

Tests	Date*	Marks	Time
Sessional Test-I		25	*
Mid Term Examination	As per	40	*
Sessional Test-II	CoE	25	*
End Term Examination	notification	60	3 hr.
		150	
Total			

*As per University Calendar & Notification

6. Pedagogy:

Lectures and discussion with the aids of Blackboard and Power point presentation will be followed.

7. Course Outcomes

CO1: Understanding heat transfer modes for solution of thermal energy applications **CO2:** Design and analysis of the performance of heat transfer devices

CO3: Determine the optimal parameters through numerical solution of heat transfer problems