Design Course for Open Elective

L: Lecture, T: Tutorial, P: Laboratory, S: Studio, CH: Contact Hours, CR: Credit

Course Number:	Open Elective	Course				L	Т	Ρ	S	СН	CR
Course Name:	Basics of engi	neering p	oroduct	desig	n	2	0	0	1	4	3
Course Objective	s:										
1. The course aim	•				•	uct d	esigi	n and	d trai	n stuc	lents
, ,	ustomer needs an briefly cover des				•	ont a	000r	otion		ootion	and
	hen designing er	• • •	•		CONCE	ept g	ener	alion	, sei	ection	anu
3. The concept	•••	• •			of cor	nside	ring	sus	taina	ability	and
-	issues and their i		•				-			,	
Course Outcomes	s/Learnings										
	erstand the vario	us stages	and ph	ases o	f prod	uct d	lesig	n.			
	dents will develop	•	•		•		-		ser n	eeds.	
 CO3 – Stud 	dents will develop	creative i	ideas/ c	oncept	s base	ed or	n des	sign p	orinc	iples.	
 CO4 – Stud 	dents will be desig	gn produc	ts follow	ving a s	systen	natic	app	oach	۱.		
o											
Syllabus:		<i>.</i> .									
	CTION: Importance gulatory and soc	•		0						•	
	ycles-organizatio		•	•	•••		•		•		
•	al innovation.	e. p.									
	DEFINITION 8						-		•	•	
	of customer nee		•	•	•					ompe	titive
	ing- quality functi			•	-					a ara	o tiv co
	UAL DESIGN: C ethods-conceptua		•							0	
0	roblem Solving)-				0					•	
	eening and evalu		5								
 EMBODIME 	ENT DESIGN:	Product	archite	ecture-	step	os i	n d	evelo	oping	g pro	oduc

- EMBODIMENT DESIGN: Product architecture- steps in developing product architecture-configuration design-industrial design- human factors, product design-prototyping rapid prototyping, IoT aspects in product design and testing
- PRODUCT ECONOMICS & RELATED ISSUES: Risk, reliability and safety- failure mode & effects analysis-concept of total quality- robust design- economic decision making- time value of money-profitability of investment- cost estimation-design to cost. Consideration of ergonomics and aesthetics in product design. Importance of sustainability and environmental impact in product design.

Textbooks:

- Otto K. and Wood K. *Product Design: Techniques in Reverse Engineering and New Product development* (Pearson, 2001).
- Ulrich K. and Eppinger S. *Product Design and Development* (McGraw-Hill Education, 2011).
- Jamnia A. Introduction to Product Design and Development for Engineers (CRC Press, 2018).

Reference Books:

- Baxter M. Product design Design Toolkits (CRC Press, 1995).
- Morris R. The fundamentals of product design (Bloomsbury Publishing, 2017).
- Dieter G. E. and Schmidt L. C. Engineering design. (McGraw-Hill Education, 2012).
- Petroski H. Invention by design: How engineers get from thought to thing (Harvard University Press, 1998).

Approach:

• The course comprises lectures, studio sessions and case studies to train students in the aspects of systematic product design.

Evaluation Criteria:

• Students will be evaluated based on their performance in assignments (group /individual), sessional tests, final project outcomes (e.g., problem areas, the scope of improvements and design concepts, report, and presentation), and mid / end-semester examinations.

Program Outcomes

PO1 – An ability to independently carry out research /investigation and development work to solve practical problems.

PO2 – An ability to present the outcomes/deliverables in the form of a design portfolio or write and present a substantial technical report/document.

PO3 – Students will gain the knowledge and skillset to create innovative solutions to the emerging problems of society while working at the intersection of Design, Technology, and People.

PO4 – Students will develop the skillset in creative problem solving and critical thinking.

PO5 – The skill set and in-depth knowledge to demonstrate mastery in creating innovative design solutions in following specialized areas:

- 1. Technology-based Design
- 2. Life-centered Design
- 3. Inclusive Design

- 4. Integrated Design
- 5. Community-based Design
- 6. Sustainable Design

Mapping of Course Outcomes (CO's) with Program Outcomes (PO's)

Course Outcomes/Learnings	P01	P02	PO3	P04	PO5
CO1	-	-	1	1	-
CO2	-	-	2	2	1
CO3	-	2	1	2	1
C04	-	-	3	2	1

3 = Strong mapping

2 = Moderate mapping

1 = Gentle mapping

0 = Negligible/Very weak mapping