Course-Plan

School of Engineering Department of Civil Engineering Course Code: CE324

Course Name: Environmental Engineering I

Instructor

Dr K U Ahamad

Email: kahamad@tezu.ernet.in

1. ABSTRACT

Environmental engineering is the application of science and engineering principles to improve the natural environment (air, water, and/or land resources), to provide healthy water, air, and land for human habitation (house or home) and for other organisms, and to remediate polluted sites. It involves waste water management and air pollution control, recycling, waste disposal, radiation protection, industrial hygiene, environmental sustainability, and public health issues as well as a knowledge of environmental engineering law. It also includes studies on the environmental impact of proposed construction projects.

2. OBJECTIVE

The Course will try to introduce the concept of environmental engineering that emphasizes the relationship between the principles observed in natural systems and those employed in engineered processes. The objectives of the course are:

- 1. Identify and understand the various water and wastewater quality parameters.
- 2. To understand and analyze the water supply and distribution system.
- 3. Identify and apply chemistry and microbiology to wastewater treatment methodology
- 4. Analyze and evaluate the Water Purification Processes in Natural Systems
- 5. To understand, plan and design the wastewater flow

3. PREREQUISITES OF THE COURSE: None

4. COURSE SYLLABUS

Introduction, Population Forecasting and Water Demand, Physical, Chemical and Biological Characteristics of Water and Wastewater, Wastewater Flow, Basic Microbiology: cells, classification and characteristics of living organisms. Metabolic Processes, Microorganisms in Natural Water Systems, Biological Oxidation of Organic Matter. Introduction to Environmental Chemistry, Stoichiometry and Kinetics of Chemical Reactions, Equilibrium Constant and Solubility Products, pH and Alkalinity. Development of Oxygen Sag Model. Flow sheets for Water and Wastewater Treatment, Sewer Design, Introduction to Solid Waste, Air Pollution and Noise Pollution.

5. COURSE OUTLINE AND TENTATIVE SCHEDULE

Module No.	Lecture Topic	Lectures
M 1	Water and Wastewater Quantity Estimation Population forecast Water demand for various purposes Estimation of wastewater quantity Variation in quantity of water and wastewater	4
M 2	Water Supply/Distribution Systems	2
М3	Wastewater Collection Systems	2
M 4	Water Quality Physical Characteristics Chemical Characteristics Bacteriological Characteristics Water Quality Requirements	6
M 5	Introduction to Microbiology Microbial ecology and Growth kinetics Types of microorganisms Classification and characteristics of living organisms Metabolic Processes	6

Total Nu	mber of Lectures	40
M 11	Introduction to Solid Waste, Air Pollution and Noise Pollution: Definitions, Characteristics and Perspectives	4
M10	Sewer Design	3
M 9	Introduction to Water and Wastewater Treatment Basic Definitions Treatment Flowcharts	2
M 8	Dissolved oxygen Model	3
	Physical Processes Chemical Processes Biochemical Processes Response of streams to biodegradable organic waste	5
M7	Water Purification Processes in Natural Systems	
TT O	Stoichiometry and Kinetics of Chemical Reactions Equilibrium Constant and Solubility Products pH and Alkalinity	4
M 6	Introduction to Environmental Chemistry	
	Microorganisms in Natural Water Systems Biological Oxidation of Organic Matter Aerobic vs. anaerobic processes	

6. GRADING POLICY

The assessment of is based on revised guidelines on continuous evaluation with relative grading. The break-up of the scheme is as follows

Sl.	Mode of assessment	Туре	Marks	Duration (min.)	Syllabus
1	Test 1	Written	25	45	From beginning
2	Test 2 Mid Term	Written	40	75	From beginning
3	Test 3	objective type, assignment, Quiz, Seminar, Field visit etc	25	45	From Test-2 till Test-3
4	Test 4 End Term	Written	60	120	From Test-2 till Test 4 and the course instructor may include some units of the syllabus covered under Test-1 and Test-2
Gra	Grand total				is .

7. REFERENCE BOOK

- 1. S.K. Garg, Water Supply Engineering (Vol-I & II), Khanna Publishers
- 2. Terence J McGhee, "Water Supply and Sewerage", McGraw-Hill, Inc., 1991.
- 3. Mackenzie L Davis & David A Cornwell, "Introduction to Environmental Engineering", McGraw-Hill, Inc.,1991.
- 4. Metcalf & Eddy, "Wastewater Engineering- Treatment and Reuse," Tata McGraw Hill, $4^{\rm th}$ Edn., 2003.
- 5. Clair N Sawyer & Perry L McCarty, G. F. Parkin, "Chemistry for Environmental Engineers", McGraw Hill, 1994.
- 6. B.C. Punmia, Environmental Engineering (Vol-I & II), Laxmi Publishers.

8. PEDAGOGY

Teaching-learning methods to be used Lecture and Discussion Presentations Quiz

9. COURSE LEARNING OUTCOMES

On successful completion of the course students will be able to

			<u> High (1)</u>	Medium (2)	<u>Low (3)</u>
CO 1	:	Apply knowledge of science,	P01	PO12	PO10
		mathematics and engineering principles			
		to analyze and solve problems of			
		environmental engineering.			
CO 2	:	Identify, formulate, and analyse the	PO2	P07	P08
		complex environmental engineering			
		problems. Recognize the standards and			
		criteria for water quality and how they			
		relate to public health.			
CO3	:	Design and conduct various experiments	PO3	P09	PO12
		for water and wastewater with proper			
		understanding and research-based			
		knowledge of environmental			
		engineering.			
CO4	:	Select and apply the latest tools and	PO5	P011	PO12
		techniques in civil engineering to model			
		and predict the complexities in water and			
		wastewater treatment technologies and			
		understand its limitations.			