Physics

APPH100 Physics	3L:1T:0P	4 credits
-----------------	----------	-----------

Module I

Transformation of scalars and vectors under Rotation transformation; Forces in Nature; Newton's laws and its completeness in describing particle motion; Form invariance of Newton's Second Law; Solving Newton's equations of motion in polar coordinates; Problems including constraints and friction; Extension to cylindrical and spherical coordinates.

Module II

Potential energy function; F = - Grad V, equipotential surfaces and meaning of gradient; Conservative and non- conservative forces, curl of a force field; Central forces; Conservation of Angular Momentum; Energy equation and energy diagrams; Elliptical, parabolic and hyperbolic orbits; Kepler problem; Application: Satellite maneuvers;

Module III

Non-inertial frames of reference; Rotating coordinate system: Five-term acceleration formula. Centripetal and Coriolis accelerations; Applications: Weather systems, Foucault pendulum;

Module IV

Harmonic oscillator; Damped harmonic motion – over-damped, critically damped and lightly- damped oscillators; Forced oscillations and resonance.

Module V

Definition and motion of a rigid body in the plane; Rotation in the plane; Kinematics in a coordinate system rotating and translating in the plane; Angular momentum about a point of a rigid body in planar motion; Euler's laws of motion, their independence from Newton's laws, and their necessity in describing rigid body motion; Examples.

Module V

Introduction to three-dimensional rigid body motion — only need to highlight the distinction from twodimensional motion in terms of (a) Angular velocity vector, and its rate of change and (b) Moment of inertia tensor; Three-dimensional motion of a rigid body wherein all points move in a coplanar manner: e.g. Rod executing conical motion with center of mass fixed — only need to show that this motion looks two-dimensional but is three-dimensional, and two-dimensional formulation fails.

Laboratory - Introduction to Mechanics

- 1. Suggested list of experiments from the following:
- 2. Coupled oscillators;
- 3. Experiments on an air-track;
- 4. Experiment on moment of inertia measurement,
- 5. Experiments with gyroscope;
- 6. Resonance phenomena in mechanical oscillators.

TEXTBOOKS/REFERENCES:

- 1. <u>AICTE Prescribed Textbook: Physics (Introduction to Mechanics)</u>, A.B. Bhattacharya, Khanna Book <u>Publishing Co., 2023.</u>
- 2. Engineering Mechanics, 2nd ed. D.S. Bedi, M.P. Poonia
- 3. Basic Mechanical Engineering S.C. Sharma, M.P. Poonia
- 4. Engineering Mechanics, 2nd ed. MK Harbola
- 5. Introduction to Mechanics MK Verma
- 6. An Introduction to Mechanics D Kleppner & R Kolenkow
- 7. Principles of Mechanics JL Synge & BA Griffiths
- 8. Mechanics JP Den Hartog
- 9. Engineering Mechanics Dynamics, 7th ed. JL Meriam
- 10. Mechanical Vibrations JP Den Hartog
- 11. Theory of Vibrations with Applications WT Thomson

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute
1	ENGINEERING MECHANICS	PROF. MANOJ HARBOLA	IIT KANPUR

EXPERIMENTS THAT MAY BE PERFORMED THROUGH VIRTUAL LABS:

S. No.	Experiment Name	Experiment Link(s)
1	Experiment on moment of inertia	https://vlab.amrita.edu/?sub=1&brch=74∼=571&
	measurement.	<u>cnt=1</u>