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The integral quantum Hall effect was discovered in 1980 by Klaus von 
Klitzing, Michael Pepper, and Gerhardt Dordda. Truly remarkably, at low 
temperatures (~ 4 K), the Hall resistance of a two dimensional electron system is 
found to have plateaus at the exact values of 2h ie . In the above expression, i is 
an integer, h is Planck’s constant and e is the electron charge. At the same time, in 
the applied magnetic field range where the Hall resistance shows the plateaus, the 
magnetoresistance (i.e., the resistance measured along the direction of the current 
flow) drops to negligible values.  

Two years later, the even more intriguing fractional quantum Hall effect 
was discovered by Horst L. Störmer, Daniel C. Tsui, and Arthur C. Gossard. 
When cooled down below ~2 K, the Hall resistance of the 2D electron systems 
shows plateaus at the values of 2eh ν , where ν is a fraction such as 
1 3,  1 7,  2 3,  4 5 and so on. The value RH ≈ 25.812 kΩ for i = 1, the quantum 
of resistance, became the new world's resistance standard in 1990. 

We are thankful to Professor Horst Stromer, who kindly agreed to direct 
the setting up of the first integral quantum Hall effect experiment designed 
especially for the education of undergraduate students. We also wish to thank 
Alexander Elias, the remarkable undergraduate student who was in charge of this 
project. In the future, we hope we can expand the range of applications of this 
experiment to observe also the fractional quantum Hall effect.  

 

 
Figure 1: Left: original data of the discovery of the integral quantum Hall effect. Right: new 
data 



On the left hand side of Fig. 1 is shown the original data of the discovery 
of the integral quantum Hall effect. The data was taken using a Metal Oxide 
Semiconductor Field Effect Transistor (MOSFET). In the experimental setup 
shown in the inset, by adjusting the gate voltage one can change the career density 
in the sample. The plateaus of the Hall voltage and the minima of the magneto 
resistance are distinguishable as the gate voltage is varied. Newer data taken using 
a GaAs/AlGaAs heterojunction confirms the quantization of the Hall resistance, 
as shown on the right hand side of Fig. 2. 

 
  The standard Hall effect 
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Figure 2 shows the standard geometry for observing the Hall effect, with 
abeling used throughout the experiment. A specimen of rectangular cross – 
n is placed in a magnetic field, Bz. An electric field Ex is applied between 
d electrodes (the source and the drain) and makes an electric current of 
t density jx flow through the sample. The magnetic Lorentz force acting on 
ving electric charges causes the electrons to accumulate on one face of the 
en, leaving an excess of positive charges on the other face. These charges 

ce the transverse electric field Ey (Hall field). Ey increases as the electric 
 builds up on the sides of the sample, until the electrostatic force with 
 it acts on the electrons balances the Lorentz force created by the magnetic 
Disregarding the signs, eEy = evBz, or Ey = vBz., with v the drift velocity of 
ns along the x direction. The Hall resistance is defined as  H H xR V I= . VH 
Hall voltage, VH = wEy. The magnitude of the current flowing in the x 
on is Ix = Ajx. A = wh is the area of the cross-section of the sample 
dicular to the direction of the current. jx  = n3Dev, where n3D is the volume 



density of free electrons in the sample. Therefore, 
3

H
D

wvB BR
whn ev ne

= = . n = n3Dh 

is the density of electrons per unit area ( 3  Dn N whL=  and n N wL= , with N the 
number of electrons in the sample). 
 
Reading: Motion in magnetic field, Chapter 6 in Kittel 
  
 Devices used for observing the quantum Hall effect. 
 

The quantum Hall effect is a phenomenon occurring in a 2-dimensional 
electron gas. Originally, it was observed using a metal-oxide-semiconductor 
transistor (MOSFET). In a MOSFET, the electrons are trapped at the interface 
between silicon, which is a semiconductor, and silicon oxide, an insulator. The 
electric field Ez, applied perpendicular to the interface through the metal gate, 
pushes the electrons strongly against the silicon oxide side of the interface, as 
shown in Fig. 3a). Therefore, the motion along the z direction is strongly 
constrained. On the other hand, by varying the gate voltage, one can control the 
density of electrons at the interface, which makes the MOSFET a field effect 
transistor.   

We study the quantum Hall effect using GaAs - AlGaAs hetero-junctions. 
The two-dimensional electron system is formed at the interface between the GaAs 
and AlGaAs and has a fixed density per unit area, n. The quantum Hall effect is 
observed by changing the magnetic field, rather than changing the density of the 
sample. The electrons prefer the GaAs side of the interface to the AlGaAs side 
because it has a slightly lower Fermi energy (about 300 meV difference). A 
typical GaAs - AlGaAs sandwich is shown in Fig. 3b). Both GaAs and AlGaAs 
are semiconductors, with almost identical lattice constants. Therefore, the 
interface is of high quality, without defects and stresses.  

Silicon impurities are introduced in the AlGaAs layer during the 
deposition procedure. The AlGaAs layer is about 0.5 µm thick, while the 
impurities sit at about 0.1 µm from the interface with GaAs. The silicon impurity 
has one more electron on the outer shell than the gallium atom. This electron will 
move in the crystal and eventually fall in the GaAs. The positive silicon ions pull 
the mobile electrons against the AlGaAs at the GaAs – AlGaAs interface. The 
combined effect of the difference in Fermi energies of the two semiconductors 
and of the electrostatic pull of the silicon ions is to create a triangular-shaped 
quantum-well at the interface. Along the z direction, the electrons are trapped in 
the discrete states of this quantum-well. At low temperatures, only the lowest 
energy level of the quantum-well is occupied, as shown in Fig. 3c). On the other 
hand, the electrons can freely move in the xy plane.  

 
Reading: H. Stormer, The Fractional Quantum Hall Effect, Nobel Lecture, 
December 8, 1998: Introduction, Two-Dimensional Electron Systems, and 
Modulation Doping 

 



 

Figure3  

 
 
 General discussion of the Landau levels in a crystal  
 

We discuss first the 3D motion of the electrons in an applied magnetic 
field and then apply the results for the 2D electron system. 

The vector potential of a uniform magnetic field ẑB  is ˆ = - A Byx
r

 in the 
Landau gauge. The Hamiltonian of the free electron without spin is: 

2 2 2 2 2 = -( 2 )( ) (1 2 )[ ]H m y z m i x ey∂ ∂ + ∂ ∂ + − ∂ ∂ −h h 2B , 
where e is the electronic charge, m is the mass of the electron, and   / 2h π=h  is 
Planck’s constant. 

We look for eigenfunctions of this Hamiltonian satisfying the wave 
equation H EΨ = Ψ . The current flows through the sample in the  direction, 
while the electrons are free to move along the direction of the magnetic field, the 

direction. Therefore, the wave function is chosen of the form: 

x̂

ẑ
= ( ) exp[ ( )]x zy i k x k zψ χ + , 

where kx and kz are the wave-vectors characterizing the motion of electrons along 
the   and   directions.   x̂ ẑ
 By applying the wave equation to this wave function, one obtains the 
following equation for ( )yχ : 

2 2 2 2 2 2 2
0

1

2
( 2 ) [ ( 2 ) ( ) ]z cH m d dy E k m m y yχ ω= + − − −h h 0χ = , 

where c eB mω =  and 0 xy k eB= −h .  



 The above identity can be interpreted as the wave equation of a 1D 
harmonic oscillator with frequency cω  and centered at position y0. The energies 
of this oscillator are quantized: 

2 21

2
2n cn zE k mω+⎛ ⎞= +⎜ ⎟

⎝ ⎠
h h , with n  = 0, 1, 2…. 

The average position of this oscillator (or of the electron) is y0, which depends on 
the applied magnetic field. Therefore, the overall effect of the magnetic field is to 
shift the electronic states in the direction, perpendicular to the direction of the 
current. This electron displacement gives rise to the Hall voltage.  

ŷ

In a 2D electron system, when the motion of electrons along the field 
direction z is negligible, the allowed electronic states are equally spaced, with 

energies given by: 1
-  

2
i iE e⎛ ⎞= ⎜ ⎟

⎝ ⎠
h B m . The counting starts from 1 for 

convenience, i = 1,2,3,…. These are the so-called Landau levels. In a real crystal, 
one has to replace m, the bare mass of electrons, with m*, their effective mass. 

c eB mω ∗=  is the cyclotron frequency of the electrons in the crystal.  
 The situation is more complex, actually. There are two types of states 
available to the 2D electrons, which are graphically represented in Fig. 4:  
localized states and extended states. The localized states are the bound states 
formed around the defects in the crystal. The extended states are the states 
carrying the electric current across the sample. The cyclotron motion of the 
electrons is superimposed on the motion of electrons along the direction of the 
current, characterized by the drift velocity v. The extended states can bend around 
localized states or pass through 3D impurities, without the current carried by these 
states being affected. 
 

 

Figure 4: Motion of the 
electrons in a 2D plane, in 
the presence of 3D 
impurities or defects in the 
crystal. The Hall voltage is 
measured across the 
direction of the current.  

 
 
Qualitative discussion in terms of the Fermi energy of the system 
 
The density of states of an ideal 2D electron system, with no impurities or 

other imperfections creating localized states, in a magnetic field B applied 
perpendicular to the plane of electrons, consists of a series of equidistant δ 



functions when plotted as a function of energy. This is shown in Fig. 5a). If we 
neglect the electron spin, the degeneracy of each magnetic level is d = eB/h. d 
measures the number of electronic orbits that can be packed in each Landau level 
per cm2 of sample.  
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Figure 5: Density of states as 
a function of energy: 

a) of an ideal 2D crystal; 
b) of a 3D crystal or a 2D

crystal at lower fields; 
c) of a 2D crystal under 

higher applied fields.
 
 
The Fermi energy of an ideal 2D electron system at T = 0 K is determined 

y the number of electrons in the sample, when there is no magnetic field 
d. In a magnetic field, in order to satisfy the minimum energy principle, the 
ns will fill the Landau levels starting from the lowest energy level. In most 

 cases, a number of Landau levels will be completely filled, and the highest 
u level will be partially occupied. The Fermi energy is the energy of the last 
u level in which electrons reside. At very low temperatures (4 K) and high 
tic fields (up to 10 T), the thermal excitations between Landau levels are 
ible. If the magnetic field is increased, the capacity of each Landau level 
crease, and electrons from higher levels will drop to lower Landau levels 
hey are filled again. If one continues to increase the magnetic field, the 
t Landau level will be depleted, while all the levels below are exactly filled. 
ermi energy of the system will drop suddenly. We expect this sudden 
e of the Fermi energy to be obvious in the properties of the sample, such as 
ctivity, heat capacity, etc. 

ng: Chapter 9 in Kittel, Experimental Methods in Fermi Surface Studies. 

We can write the condition for an exact number of Landau levels to be 
as n = id, where n is the electron density per cm2 of sample, d = eB/h is the 
eracy of the Landau levels, and i is an integer, i = 1,2,3,…. For a sample of 
density, n, there is a discrete set of magnetic fields, Bi, i = 1,2,3,…, for 
 this condition is satisfied, ( )

i
B nh e i= . The Hall resistance, generally 



defined as HR B ne= , takes a discrete set of values at the magnetic fields Bi, 
2

HR h ie= . These values correspond precisely to the plateaus of the Hall 
resistance determined experimentally. 

The drop of the magnetoresistance of the sample around the magnetic 
fields Bi can be also explained by the complete occupancy of the Landau levels. 
The longitudinal resistance is determined by the amount of energy an electron 
loses by inelastic scattering. In order for scattering to occur, an electron must be 
able to jump to an empty allowed state. The extended states inside of the occupied 
Landau levels are filled by other electrons, while the states in the unoccupied 
Landau levels are inaccessible thermally, the energy associated with the thermal 
motion being much smaller than the separation between the Landau levels. 
Therefore, the scattering between electrons is not permitted, and the resistivity 
drops to negligible values. 

In a 3D crystal the Landau levels have the extended appearance as a 
function of the energy shown in Fig. 5b). This is due to the motion of electrons 
along the direction of the applied magnetic field. Under low applied magnetic 
fields, when the separation between Landau levels is small, the picture is valid 
also for the real 2D systems. 

As in the ideal case above, when the magnetic field is increased, the 
spacing between the Landau levels becomes larger, but also the capacity of each 
Landau level increases. We can picture the density of states at the Fermi level 
oscillating as the Landau levels advance in energy with increasing B field. The 
resistivity of the sample is determined by the derivative of the density of 
electronic states at the Fermi level. The resistivity has therefore an oscillatory 
behavior. This oscillating feature of the magnetoresistance is called the 
Shubnikov de Hass effect and has been observed in all 3D metals and also in the 
2D metals at lower magnetic fields.  

Under large magnetic fields, the energy dependence of the density of 
states becomes similar to Fig. 5c). The Landau levels are narrower in energy, 
resembling the ideal case, while between the Landau levels only localized 
electronic states exist, forming the so-called mobility gap. We can picture this 
situation as the case in which the cyclotron velocity becomes considerably larger 
than the drift velocity of the electrons. The difference from the ideal case is that 
the electrons occupy also the localized states between the Landau levels. When an 
integer number of Landau levels are completely filled, the Fermi level lies inside 
the mobility gap. But because the states at the Fermi level are localized, they do 
not contribute to conductivity. Therefore, the resistivity of the sample along the 
direction of the current drops to zero.  

According to the previous theoretical discussion, the quantum Hall effect 
is produced only at the very special values of the magnetic field, ( )

i
B nh e i= . 

The larger plateau regions in the Hall resistance and the corresponding minima of 
magnetoresistance are readily explained by the presence of the localized states. 
The localized electrons act as reservoirs of carriers: for example, as the magnetic 
field is increased, the electrons from the localized states will complete the filling 
of the Landau levels, maintaining them at full capacity for larger field intervals. 



The magnetoresistance correspondingly drops to negligible values in these 
regions of magnetic field. 
  
Reading:  
 
H. Stormer, The Fractional Quantum Hall Effect, Nobel Lecture, December 8, 
1998: The Hall Effect and The Integral Quantum Hall Effect. 
Chapter 19 in Kittel, Magnetoresistance in a Two-Dimensional Channel 
R.B. Laughlin, Physical Review B 23, 5632 (1981)   
 
 Effects of the electron spin 

 
 

Figure 6: Diagram of the 
states of the 2D electron 
system in an applied 
magnetic field, when the 
spin is also considered 

 
 

 
 
 

 
 
 
 
 
 

 heB m ∗ gsµBB 

εF  for i even 

εF  for i odd 
 
 

The analysis of the quantum Hall effect becomes more complex when one 
takes the spin into consideration. Under the influence of the magnetic field, the 
Landau level split, as shown in Fig. 6. The Zeeman splitting of the levels is given 
by gsµBB. gs is the electron gyromagnetic factor, which is much smaller in the 
solid as compared to the gyromagnetic factor gs of  the free electron. µB is the 
Bohr magneton, e 2mh . Because the small effective mass of the electrons in the 
solid strongly enhances the cyclotron frequency, the energy gap between the 
levels formed by Zeeman splitting is approximately a factor of 70 smaller than the 
energy gap between two successive Landau levels in the absence of the spin. The 
degeneracy of each of the Landau levels stays the same. 

The quantum Hall effect is obtained at the same values of the magnetic 
field Bi, which indicate that an integer number of Landau levels are exactly filled. 
When an odd number of levels are filled, the Fermi level of the system lies in the 
small gap between the Landau levels produced by Zeeman splitting, as shown in 
Fig. 6 for i = 1. It is easy to thermally activate the electrons close to the Fermi 
energy to the next (i = 2, in this case) Landau level. Therefore, the 
magnetoresistance of the sample will show a non-zero component in the case of 
oddly numbered Bi fields. Correspondingly, in the plot of the Hall resistance 
versus magnetic field, the odd numbered plateaus of the Hall resistance will not 
clearly appear. On the other hand, when an even number of levels are filled, the 



Fermi energy lies in the large mobility gap between successive levels. The 
electrons do not have enough thermal energy to jump to the next Landau level, 
and we recover the quantization of the Hall resistance and the drop of the 
magnetoresistance. 

 
 

Note on the Fractional Quantum Hall Effect 
 
 At lower temperatures (less than 2 K), features of the fractional quantum 
Hall effect can be distinguished. The fractional quantum Hall effect is 
characterized by the plateaus of the Hall resistance at values 2

HR  = eh ν , where 
ν takes fractional values. The magnetoresistance drops correspondingly to 
negligible values. 
 
Reading: H. Stormer, The Fractional Quantum Hall Effect, Nobel Lecture, 
December 8, 1998: The Fractional Quantum Hall Effect 
 
 The integral quantum Hall effect can be explained solely by the filling of 
the Landau levels. Each Landau level has a certain capacity to accept electrons, 
which depends on the magnetic field B. By changing the magnetic field, we 
change the ability of each Landau level to accommodate electrons. When there is 
a match between the capacity of the Landau levels and the number of electrons in 
the sample, an integer number of Landau levels are exactly filled, and the integral 
quantum Hall effect is produced. 
 
 In the case of the fractional quantum Hall effect (FQHE), one must 
account also for the correlations between the electrons. The electronic charge will 
be distributed as to create the state with minimal total energy, which is the most 
favorable state. But the situation is more complex, there being a significant 
difference between the odd numbered fractions, such as 1/3, and the even 
numbered fractions, such as 1/2, or 1/4. 
 
 Let's consider only the 1/2 and 1/3 cases, which are the simplest. The 
FQHE is produced in these cases at very large fields. The effect of a strong field 
perpendicular to a 2D mobile charge system is to create vortices (regions in the 
2D system where the density of charge is 0). This is just a way to minimize the 
free energy of the system. There is a fixed amount of magnetic field flux passing 
through each vortex (the magnetic flux quantum, 0 = ehΦ ). If one increases the 
magnetic field, the number of vortices will increase. 
 
 The 1/2 and 1/3 FQHE occur when there are more vortices than electrons: 
twice as many vortices in the case of the 1/2 FQHE, and three times as many 
vortices in the case of the 1/3 FQHE. The essence of the FQHE is that the 
electrons can “pair” with the vortices to find the state with minimal energy. One 
can understand the expression “an electron sits on a vortex” thinking at the 
quantum mechanical average of the electron position. Similar to the case of the 



Hydrogen atom: the ground state is spherically symmetric around the hydrogen 
nucleus, so that the average electron position is the nucleus. But we know that the 
electron is actually moving around the nucleus.  
 

In the case of the 1/2 FQHE, one electron pairs with two vortices to form 
the most energetically favorable state. In the case of the 1/3 FQHE, one electron 
pairs with three vortices. There are symmetries associated with this pairings. An 
electron is a fermion, and the vortices also have fermion like properties - the wave 
function associated with a vortex is antisymmetric when we interchange the 
position of two vortices.  Think of the vortices in the water: they have a rotation 
direction, they are not characterized only by position. The quantum mechanics of 
vortices in the electron sea is also more complicated, because the electrons around 
the vortices created by the magnetic field are not static. 
 
 A composite particle formed by an electron (a fermion) paired with an 
even number of vortices is a fermion (the total wave function is multiplied by -1 
when we interchange two composite particles of this type: we multiply it by -1 to 
account for the electron and also by an even number of -1 to account for the 
vortices). A composite particle formed by an electron paired with an odd number 
of vortices is a boson (the total wave function is unchanged when we interchange 
two composite particles of this type: we multiply the wave function with -1 to 
account for the electron and odd number of -1 to account for the vortices). 
 
 Bosons and fermions obey different statistics: the bosons condense at the 
lowest temperature on the lowest energy level available. On the other hand, two 
fermions cannot occupy the same quantum mechanical level. So they fill 
successive energy levels, starting from the lowest energy level, as to minimize the 
free energy of the system. 
 
 Therefore, at odd numbered fractions such as 1/3, the composite particles 
are bosons, and they form the Bose condensate, characterized by an energy gap. 
The scattering between the composite particles is prohibited, which produces the 
prominent drop in the magnetoresistance. At even numbered fractions such as 1/2, 
1/4, the composite particles are fermions and they do not condense. The filling of 
states is similar to the filling of electronic states up to the Fermi level in the 
absence of the magnetic field, and the ground state does not show an energy gap. 
The FQHE does not appear in the Hall resistance measurements and the drop of 
the magnetoresistance is barely distinguishable. But the composite particles (made 
of an electron and an even number of vortices) exist, and their formation is 
generated by the tendency of the system to occupy the state with minimum energy 
available.  
 
 If the magnetic field is slightly shifted from the magnetic field producing 
the perfect 1/2 or 1/3 state, single vortices, unpaired with electrons, will appear in 
the electron sea. A single vortex moving in the electron sea produces distortions 
of the electron charge. Amazingly, a single vortex appears to be carrying with it 



1/2, 1/3, etc, of the electronic charge.  The new composite particles with 1/2e, 
1/3e charge are vortices moving through the electron sea and carrying with them 
an average charge of 1/2e, 1/3e. These are the fractionally charged quasiparticles 
of the FQHE. A very simplistic comparison is an analogy with the phonons in a 
crystal: an electron moving in a crystal produces lattice distortions, which 
propagate along with the electron. The composite particle is the phonon, which 
has an enhanced mass compared to the electron. 
 
 The quasiparticles of the FQHE carry exactly 1/2 or 1/3 etc of the charge 
because the FQHE is a many particle effect, which occurs at very special ratios 
between the number of vortices created by the magnetic field and the number of 
electrons in the system. The correlations between the components of the many 
body system formed by the 2D electrons in a high magnetic field plays an 
important role in determining what the properties of the fractionally charged 
quasiparticles are. 
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