(Final progress report of the project from November 2012 to 2015)

Project title: Screening and Isolation of Bioactive Compounds from Medicinal plants traditionally used against malaria in Arunachal Pradesh.

Sanction No. and date: DRL/1047/TC Date: 5.07.2012 (DRLT-P1-2012/Task-56)

1. Introduction

Malaria, a mosquito borne infectious disease of humans and other animals is caused by parasitic protozoan of the genus *Plasmodium*. It is estimated to be responsible for ~250 million clinical episodes and nearly 1 million deaths annually worldwide and is most prevalent particularly in poorer tropical and subtropical regions. There are many species of *Plasmodium: Plasmodium falciparum, Plasmodium vivax Plasmodium malariae, Plasmodium bubalis, Plasmodium juxtanucleare, Plasmodium circumflexum, Plasmodium elongatum, Plasmodium coatneyi, <i>Plasmodium cynomolgi and Plasmodium ovale*. Among all the species *P. falciparum* and *P. vivax* is mainly responsible for causing malaria in human. The former causes more than one million deaths each year, mainly young children in synergy with other infections and illnesses. In India, malaria is predominantly a rural disease where agriculture farming especially rice through irrigation method is a common practice by the tribal people, may provide suitable microhabitats for mosquito breeding. Irrigated rice farming, rearing of domestic animals, fishpond, and lack of proper drainage system constitute an additional factor contributing the mosquito breeding and malaria infections¹.

Historically, majority of anti-malarial drugs have been derived from medicinal plants or from structures modeled on plant derived compounds². These include anti-malarial properties of *Cinchona* bark, known for more than 300 years and several semisynthetic derivatives of artemisinin, the active ingredient of the Chinese herb 'Qinghao' (*Artemisia annua*, which was used traditionally for treating fevers) which have been used increasingly over the past two

decades. Within the context of traditional practice, malaria (or malaria symptoms) is commonly treated by decoctions or infusions from bitter plants³⁻⁸. Several classes of bioactive plant metabolites are known to be responsible for anti-plasmodial activity, the most potent and important has been observed in alkaloids, quassinoids, sesquiterpene lactones, coumarins, triterpenoids, limonoids, and quinines⁹.

Malaria is endemic in most north-eastern region of India with preponderance of *Plasmodium falciparum* infection (60–90%) being the main characteristic of the disease pattern in the region. Difficult terrain, hilly forests, inadequate infrastructure coupled with the development of chloroquine resistance in *P. falciparum* in Assam further aggravates the situation. In Assam, most cases of malaria were caused by *P. falciparum* infections while the remaining was by *P. vivax* infections as per the data collected from the Army Hospital units based in Assam. The factors such as drug resistance, low efficacy, safety issues, poor compliance, and high cost, especially in poorer nations has become increasingly common in the recent years. Thus, resistance to currently used anti-malarial drugs such as chloroquine and artemisinin necessitates continuing efforts to develop new drugs, ideally with novel modes of action against both the liver and blood stages of the parasite. Therefore, the present aim of the project is to isolate and characterize the bioactive compounds from selected traditional anti-malarial plants and understanding the mechanism of action would help us to develop strategies to improve anti-malarial therapy and effective management of malaria in the north-eastern region of India including Assam.

However, till date complete characterization of compounds from medicinal plants traditionally used against malaria has not been thoroughly investigated in India. Therefore, further isolation, identification, purification, characterization and understanding the pharmacological efficacy (anti-malarial activity) of plant-derived compounds is needed for effective management of malaria. Purification and characterization of these compounds from plants can be successfully done with the help of various chromatographic, GC-MS and NMR techniques. The pharmacological effects of these compounds can be evaluated using experimental animal models. Thus, this would prove to be a potential therapeutic application in biotechnology and warfare that would offer effective and alternative affordable management of emergence of multi-drug resistant malaria.

2. Objectives

2.1. Field survey, documentation, sample collection and generation of database of traditional anti-malarial plants from Arunachal Pradesh.

2.2. Preliminary screening for in vitro anti-plasmodial and anti-larvicidal activity of crude extracts from selected plants.

2.3. Isolation, characterization and anti-plasmodial activity of bioactive compounds in animal model.

3. Materials and methods

3.1. Survey and plant sample collection

On the basis of ethno-pharmacological knowledge plant samples were collected from different part of Arunachal Pradesh and Assam. It revealed that folk medicine is still widely practiced by the population in the eastern Himalayan province of Arunachal Pradesh, and the use of medicinal plants continues to be a viable healthy alternative for the large underprivileged section of the ethnic population. It also showed that herbal decoctions (single or multiple herbal decoctions) are widely used as prophylactic agent against malaria by the rural people of the state.

3.2. Preparation of plant extract

Collected samples were air dried at room temperature and grounded to powder using mortar and pestle or grinder. Then 20 gram of powdered plant material was dissolved in 200 ml of water, methanol, butanol, and n-hexane and kept for 48 hrs at room temperature. After 48 hrs plant material dissolved in water was heated at 40^o C and filtered. The plant material dissolved in methanol, butanol and n-hexane were filtered after 48 hrs and allowed to evaporate completely at room temperature. Extract was collected and dissolved in 1% DMSO to make the conc. 10mg/ml (stock) and stored at -20°C for various assays.

3.3. Larvicidal activity

A laboratory colony of *Aedes albopictus* was used for the larvicidal activity of fractions collected at the two stages. Twenty late third instar larvae and early fourth instar larvae were kept in 500 ml glass beaker containing aqueous suspension of fraction at dilution from 5ppm to 500ppm. Three replicates were set up for each dilution. The negative control was exposed to water. Larval mortality was assessed after 24 hrs, 48 hrs of exposure by probing the larvae with needle. A dose-dependent mortality and the lethal concentration of fraction needed to kill 50% (LC50) of larvae have been determined.

3.4. Anti-microbial activity

The effect of plant extract on different bacterial strains was determined by the agar-well diffusion method. Bacterial cultures of *S. aureus* (MTCC 3160), *B. subtilis* (MTCC 121), *K. pneumoniae* (MTCC 618), *M. smegmatis* (MTCC) were grown overnight in LB medium. The 100 μ L of the culture was spread uniformly on MHA plates. 100 μ l of 10mg/ml plant extract [methanol extract (ME)] were loaded into the wells formed on plates containing lawn of different bacteria. The plates were then incubated at 37°C for 24 hours. The antibacterial activity was assayed by measuring the diameter of zone of inhibition (mm) around the well after 24 hours (NCCLS,1993). Antibiotic Ampicillin was used as positive control.

3.5. Purification of plant extracts

Preliminary purification of the crude plant extracts for the presence of different classes of natural products was done by performing Thin Layer Chromatography (TLC) (Harborne, 1973). The plant extracts were subjected to TLC to separate the active compounds present. The plates were prepared using a slurry of silica gel G in distilled water. Silica gel G (1g) was added to 3ml of distilled water and a thick slurry was made. All solid particles were blended well, and the uniform silica gel slurry was applied onto the TLC plate at a thickness of 1mm to 1.2 mm. The plate was allowed to dry at room temperature. The dried plate was placed in the oven at 100°C for 30 minutes to activate the silica gel. The plate was taken from the oven and kept at room temperature for 15 minutes.

Using a micro-capillary tube, a small drop of methanolic plant extract was placed on the TLC plate, 1cm above the bottom. This spot was allowed to dry, and the TLC plate was placed into the TLC chamber which was saturated with the solvent mixture carefully to have uniform solvent level. When the solvent reached 2 cm below the top, the plates were taken out of the chamber and detected with the respective spraying reagents. The chromatogram was developed with different solvents namely, Ethyl Acetate: Hexane, Acetone: Diethylether, Acetone: Chloroform, Acetone: Ethyl Acetate in different ratio particularly 10, 8:2, 6:4, 4:6, 2:8.

The Rf values of the TLC spots were calculated by the formula,

Distance travelled by the sample

 $R_{f} =$

Distance travelled by the solvent

4. Results

4.1. Sample Collection

Based on the ethno-pharmacological knowledge 15 plant samples were collected from different parts of Arunachal Pradesh and Assam known to treat malaria. From the survey, we could find out that mostly the roots, bark, stem, leaves were used traditionally to treat malaria by the local people (Table 1).

Table1: Traditional information on anti-malarial plants used by indigenous tribe ofArunachal Pradesh

Scientific name	Family name	e Local Habi		Parts	Herbal formulation		
		name		used			
Thalictrum foliolosum	Ranunculaceae	Yangchura	Herb	Roots	Dried root powder mixed with		
DC.					Thymus linearis in equal		
					proportion is taken regularly.		
Aristolocia saccata	Aristolochiaceae	Nagbol	Shrub	Roots	Tuber extracts are used.		
Wall.							
Solanum khasianum Cl.	Solanaceae	Thityake[N]	Shrub	Roots	Decoction of root for 6 days.		
Cinchona officinalis	Rubiaceae		Tree	Bark	Powdered bark is taken with		
					warm water for 7 days.		
Coptis teeta Wall.	Ranunculaceae	Mishmi	Herb	Roots	1 glass of boiled root is given for		
		teeta [AT]			3 days.		
Zanthoxylum	Rutaceae	Ombe [AG]	Tree	Roots	Decoction of root and bark is		
hamiltonianum Wall.				and	taken for 3 days.		
				Bark			
Begonia ruxburghii	Begnoniaceae	Baya [N]	Herb	Roots,	Root, Leaves and petiole are		
(Miq) DC				Leaves	eaten raw for 5 days.		
				and			
				Petiole			
Dendrocnide sinuata	Urticaceae	Podret [N]	Shrub	Leaves	Leaves are mixed with leaves of		
(<i>Bl.</i>) Chew					Stephania glabra (2:1) and boiled		

					in water. 1-2 teaspoonful of
					solution is administered
					for 6 days.
Dioscorea belophylla	Dioscoreaceae	Yazeng pep	Clim	Tubers	Tubers are crushed and mixed
Voigt ex Haines		[N]	ber		with hot water about 1/2 tea spoon
					given twice day
					for 3 days.
Indofevillea khasiana	Cucurbitaceae	Yazang-	Clim	Roots	About 5 gm powdered root and
Chatterjee.		pipe [N]	ber	and	stem is taken with warm water,
				Stem	twice a day for
					5 days.
Maesa macrophylla	Myrsinaceae	Tak Sangne	Shrub	Fruits	5-6 berries are eaten fresh thrice
Wall.		[N]			a day for 5 days.
Melothria heterophylla	Cucurbitaceae	Yazang pipe	Herbs	Tuber	5-10 gm of pounded tubers is
(Lour) Cogn.		[N]			taken with a glass of warm water
					for 3 days.
Solanum myriacanthum	Solanaceae	Thit byako	Shrub	Roots	1-3 teaspoonfuls of decoction of
Jacq.		[N]			roots are taken twice a day for 7
					days.
Solanum turvum Sw.	Solanaceae	Bako (N)	Shrub	Roots	Decoction of root.
Swertia chirata (Wall.)	Solanaceae	-	Herb	Aerial	A dried herb is soaked in water
C. B. Clarke				parts	for 12 hours (Evening). A glass of
					solution is taken twice a day for 6
					days.

Note: N- Nishi; AT-All tribe; AG- Adi Galo

4.2. Larvicidal Activity

The larvae of *Aedes albopictus* did not show any significant mortality in the presence of plant extract *Thalictrum foliolosum*, and *Aristolochia saccata*. The plant extract used was mostly in the form of crude extract.

4.3. Anti-microbial Activity

The plant extract was allowed to diffuse out into the medium and interact with the bacterial strains. Growth inhibition was determined by measuring zone of inhibition after 24 h. The resulting zone of inhibition formed were uniform circular zones around the well. Preliminary investigation with crude extracts of a few plants (*Thalictrum foliolosum*, *Aristolochia saccata*) showed antibacterial activity against gram-positive bacteria as well as gram- negative bacteria (Fig.1).

Figure 1. Anti-bacterial activity of methanolic extract (ME) of *Thalictrum foliolosum*, *Aristolochia saccata* by agar well diffusion method. 100µl of 10mg/ml ME were loaded into the wells formed on plates containing lawn of *K. pneumoniae* (A), *B. subtilis* (B), *M. smegmatis* (C), *S. aureus* (D). (1)Antibiotic, (2) *Aristolochia saccata* plant extract, (ME), (3) Jor paat plant extract (ME), (4) *Thalictrum foliolosum* plant extract (ME). Antibiotic Ampicillin was used as control for bacterial strain.

4.4. Partial purification by TLC

The Rf values for different spots for different extracts were determined and results have been tabulated in Table 2 along with the photographs in Fig.2. From the above work carried out of the methanolic plant extract indicated the presence of Alkaloids and Phytosterols. This extract was further analyzed by TLC and spots were identified in the solvent systems with the following ratio's i.e. Ethyl Acetate: Hexane, Acetone: Diethylether, Acetone: Chloroform, Acetone: Ethyl Acetate in different ratios 10, 8:2, 6:4, 4:6, 2:8, 10.

In this regard, we can conclude that as compounds are present in the extracts of this plant, further purification has to be carried out to explore *Thalictrum foliolosum* for its further research activity. The main objective of the proposal could not be achieved due to lack of culture facility for malaria parasite at Entomology Division, DRL, Tezpur.

Table 2. TLC protocol and Rf value

COMPOUNDS	MOBILE PHASE	Ratio	Rf value
Phytosterols	Ethylacetate: Hexane	10 Ethylacetate	0.533
		8:2	0
		6:4	0.306
		4:6	0.241
		2:8	0
		10 Hexane	0
	Acetone: Diethylether	10 Acetone	0.75
		8:2	0.721
		6:4	0.667
		4:6	0
		2:8	0
		10 Diethylether	0
Alkaloids	Acetone: Chloroform	10 Acetone	0.769
		8:2	0.667
		6:4	0.892
		4:6	0.8
		2:8	0.796
		10 Chloroform	0.488
Alkaloids	Acetone: Ethylacetate	10 Acetone	0.733
		8:2	0.613,0.8
		6:4	0.562,0.75
		4:6	0.625
		2:8	0.563
		10 Ethylacetate	0.486

Figure 2. Images of TLC plates showing spots depicting the presence of alkaloids and phytosterols when run in different solvent solution.

Study on midgut bacterial fauna in *Aedes* mosquitoes: vector of Dengue and Chikungunya disease

We have also carried out the midgut bacterial association in *Aedes* mosquitoes: vector of Dengue and Chikungunya disease under this project at DRL, Tezpur.

Vectors play an important role in transmission of various diseases such as malaria, dengue fever, Chikunguniya, Leshmaniasis, Encephalitis, Rickettsial diseases, West Nile virus, etc. Dengue is the most rapidly spreading mosquito-borne viral disease throughout tropical and sub-tropical regions of the world, with a 30-fold increase in global incidence over the past 50 years. The four serotypes of Dengue virus (DENV) of family *Flaviviridaie* are transmitted by the *Aedes*

mosquito vectors that is the causative agent of dengue fever. No effective antiviral agents like drugs and vaccines available to treat dengue infection. Thus, there is a need to develop a cheap, safe, and eco-friendly, tool for the control of dengue and without the fear from evolution of resistance. Many studies have been reported about the rich community of midgut microbiota of mosquitoes that play important role in interaction with invading pathogens and its involvement in defense mechanism. Very limited studies are available on Aedes mosquitoes with respect to gut microflora identification and its interaction with the disease transmitting agent. The present study was carried out to understand the midgut bacterial population of Aedes (Stegomyia) albopictus collected from different region of North-east India. Using of midgut bacteria is the new and more effective strategies for mosquito control and protection against the transmission of disease, but little is known about the bacteria flora within the mosquito's midgut and key question regarding composition, stability and acquisition remain largely unanswered. Thus, there is urgent need to initiate a study to identify symbiotic bacteria inhabiting the midgut of mosquitoes, with the purpose of selecting symbionts potentially useful for the development of para-transgenic strategies for disease control. The proposed work is expected to help in appropriate symbiotic bacteria selection for the development of defense mechanism against invading pathogens and in disease transmission prevention.

Objectives:

- To study midgut microbial community structure of *Aedes* mosquito from different regions.
- Isolation of culture dependent bacteria.
- Morphological and biochemical characterization of bacterial isolates.
- Molecular characterization of cultured independent bacteria of mosquito's midgut form different field station.
- Molecular identification and phylogenetic analysis of isolates based on 16S rRNA gene sequence using different bioinformatics tools.
- To study geographical variation and diversity indexes in bacterial community structure form different field station.

• Collection of *Aedes* mosquito from different regions of North-east India:

S. No.	Place of Sample Collection	Mosquito Species (Female)
1.	*Tezpur, Assam	Aedes albopictus
2.	Demoruguri, Nagaon, Assam	Aedes albopictus
3.	Mesamari Army Cantt. (near air base), Assam	Aedes albopictus
4.	Bhalupong City, Arunachal Pradesh	Aedes albopictus
5.	Bhalupong City, Arunachal Pradesh	Aedes aegypti

 Table 3- Sample collection sites:

***Tezpur 4 group of sample collected:** 1-Blood fed female mosquitoes; 2-unblood fed female mosquitoes; 3- Male mosquitoes; 4- Larvae

• Mosquitoes dissection for midgut bacterial flora isolation and morphology study:

- Mosquito's dissection (Collected from different field stations) and midgut separation for aerobic bacteria isolation in sterile condition.
- Culturing and purification of isolated aerobic bacteria.
- Sub culturing and purified bacteria stored in 40% glycerol stock.
- Morphology characteristic (size, shape, colour, opacity, margin, elevation, motility, number of colony) were studied.
- Pool preparation of 100 midguts for study of uncultured bacteria.
- Isolation of DNA from bacterial flora and PCR amplification:
- Isolation of DNA from all bacterial isolates recovered from different field stations.
- PCR amplification of 16S rRNA gene using 16S rRNA universal primers.
- Purification and sequencing of PCR amplicons.
- Sequence analysis and data compilation:
- Sequences of 17 bacterial isolates have been obtained and it is alignment, and analysis the BLASTn of sequence.
- Similar sequence was downloaded from GenBank for phylogenetic analysis.

• Phylogenetic analysis of obtained sequence of 16 samples has been done.

S.No. Isolate Secies		Secies Name	Secies Name Pylum		Order	Family	
	S						
1	B1a1	Klebsiella	lla Proteobacteria Ga		Enterobacteriales	Enterobacteriaceae	
		oxytoca		Proteobacteria			
2	B13a1	Enterobacter	Proteobacteria	Gamma	Enterobacteriales	Enterobacteriaceae	
		asburiae		Proteobacteria			
3	S17b1	Enterobacter	Proteobacteria	Gamma	Enterobacteriales	Enterobacteriaceae	
		asburiae		Proteobacteria			
4	S21b2	Enterobacter	Proteobacteria	Gamma	Gamma Enterobacteriales		
		asburiae		Proteobacteria			
5	BPA10	Enterobacter	Proteobacteria	Gamma	Enterobacteriales	Enterobacteriaceae	
	-4a1	hormaechei		Proteobacteria			
6	S16a2	Leclercia	Proteobacteria	Gamma	Enterobacteriales	Enterobacteriaceae	
		adecarboxylata		Proteobacteria			
7	BPB10	Pseudomonas	Proteobacteria	Gamma	Pseudomonadales	Pseudomonadaceae	
	-4C1	beteli		Proteobacteria			
8	S4b1	Flavimonas	Proteobacteria	Gamma	Pseudomonadales	Pseudomonadaceae	
		oryzihabitans		Proteobacteria			
9	S5a1	Pseudomonas	Proteobacteria	Gamma	Pseudomonadales	Pseudomonadaceae	
		mosselii		Proteobacteria			
10	S19b2	Aeromonas	Proteobacteria	Gamma	Aeromonadales	Aeromonadaceae	
		veronii		Proteobacteria			
11	S17d2	Staphylococcus	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	
		hominis					
12	S21a1	Elizabethkingia	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	
		anophelis					
13	MS1	Bacillus flexus	Firmicutes	Bacilli	Bacillales	Bacillaceae	
14	B11_1	Micrococcus	Actinobacteria	Actinobacteria	Actinomycetales	Micrococcaceae	
		yunnanensis					
15	B11_2	Clostridium	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	
		sporogenes					
16	B11_3	Bacillus	Firmicutes	Bacilli Bacillales Bacilla		Bacillaceae	
		aryabhattai					
17	B11_4	Bacillus	Firmicutes	Bacilli	cilli Bacillales Bacillaceae		
		altitudinis					

Table 4- Identified bacterial isolates of obtained 17 sequences:

5. Research papers published in journals and conferences (This part of work was published by DRL, Tezpur)

5.1. Yadav KK, Datta S, Naglot A, Bora A, Hmuaka V, Bhagyawant S, et al. (2016). Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India. PLoS ONE 11(12): e0167409.

6. Future objectives

- 1. In vitro testing of the anti-plasmodial activity of the selected plants
 - a. Schizont maturation inhibition assay
 - b. Plasmodium falciparum lactate dehydrogenase inhibition assay (PfLDH),
 - c. Plasmepsin II inhibition assay

2. Pharmacological efficacy of partially isolated compounds using various *in vitro* and *in vivo* experimental models

7. References

- Keiser, J., De Castro, M.C., Maltese, M.F., Bos, R., Tanner, M., Singer, B.H., Utzinger, J. (2005). Effect of irrigation and large dams on the burden of malaria on a global and regional scale. American Journal of Tropical Medicine and Hygiene 72, 392–406.
- Klayman, D.L. (1985). Qinghaosu (artemisinin): an anti-malarial from China. Science 31, 1049–1055.
- Nima, D.N., Hui, T., Mandal, M., Das, A.K., Kalita, P. (2009). An ethnobotanical study of traditional anti-inflammatory plants used by the Lohit community of Arunachal Pradesh, India. Journal of Ethnopharmacology 125, 234–245.
- Sosan, M.B., Adewoyin, F.B., Adewunmi, C.O. (2001). Larvicidal properties of three indigenous plant oils on the mosquito Aedes aegypti. Nigerian Journal of Natural Product Medicine 5, 30–33.
- Kirira, P.G., Rukunga, G.M., Wanyonyi, A.W., Muregi, F.M., Ndiege, I.O. (2006). Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi districts of Kenya. Journal of Ethnopharmacology 106, 403–407.
- Rasoanaivo P., Petitjean A., Rats Imamanga-Urverg S., Rakoto, R.A. (1992). Medicinal plants used to treat malaria in Madagascar. J Ethnopharmacol., 37:117-27.
- Tangjang, S., Namsa, N.D., Aran, C., Litin, A. (2011). An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. J Ethnopharmacol. 134, 18-25.
- Tarak, D., Namsa, N.D., Tangjang, S., Arya, S.C., Rajbonshi, B., Samal, P.K., Mandal, M. (2011). An inventory of the ethnobotanicals used as anti-diabetic by a

rural community of Dhemaji district of Assam, Northeast India. J. Ethnopharmacol. 138, 345-50.

- 9. Namsa, N.D., Mandal, M., Tangjang, S. (2011). Anti-malarial herbal remedies of northeast India, Assam: an ethnobotanical survey. J Ethnopharmacol. 133, 565-72.
- 10. WHO, 2005. World Malaria Report, 294 pp.
- 11. Eastman RT, Fidock DA (2009). Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7: 864–874.
- 12. Adeyi O, Atun R (2010). Universal access to malaria medicines: innovation in financing and delivery. Lancet 376: 1869–1871.
- 13. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, et al. (2008) Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med 361: 2619–2620.
- Dondorp, A. M. (2010). Artemisinin resistance: current status and scenarios for containment. Nature Rev. Microbiol.8, 272–280.
- Dev, V., Hira, C.R., Rajkhowa, M.K. (2001). Malaria-attributable morbidity in Assam, north-eastern India. Annual Tropical Medicine Parasitology 95, 789–796.
- Baruah, I., Das, N.G., Kalita, J. (2007). Seasonal prevalence of malaria vectors in Sonit-pur district of Assam, India. Journal of Vector Borne Disease 44, 149–153.
- 17. Saxena, S., Pant, N., Jain, D.C., Bhakuni, R.S. (2003). Anti-malarial agents from plant sources. Current Science 85, 1314–1329.
- Tran Le, Q., Tezuka, Y., Jun-ya, U., Nhan Trung, N., Yukiko, M., Khurshida, B., Hye-Sook, K., Yusuke, W., Qui, K.T., Shigetoshi, K. (2003). *In vitro* anti-plasmodial activity of anti-malarial medicinal plants used in Vietnamese traditional medicine. Journal of Ethnopharmacology 86, 249–252.
- 19. Mario Dell'Agli, Cinzia Sanna, Patrizia Rubiolo et.al. (2012) Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area. Malaria Journal 11: 219.
- Harbone JB: Phytochemical method: A guide to modern techniques of plant analysis. Chapman & Hall, Third Edition 1973.

Appendix-B

Utilization Certificate

(For the financial year ending 31st March 2015)

1. Title of the Project/Scheme: "Screening and isolation of bioactive compounds from medicinal plants traditionally used against malaria in Arunachal Pradesh".

2.	Name of the Organization:	Dept. of Mol. Bio & Biotech, Tezpur University
3.	Principal Investigator:	Dr. Nima D. Namsa
4. 5.	Sanction order No. & date of sanctioning the Amount brought forward from the previous financial year in which the authority to car forward the said amount was given	ry : Rs. (-) 14.590
6.	Amount received from DRDO during the financial year (2014-15)	: Rs. 4,32,000
7.	Total amount that was available for expenditure during the financial year	: Rs. 4,17,410
8.	Actual expenditure (excluding commitment incurred during the financial year	s) : Rs. 3,82,456
9.	Balance amount available at the end of the financial year	: Rs. 55 31

Certified that the amount of Rs. 3,82,456 mentioned against col. 8 has been utilized on the project/scheme for the purpose for which it was sanctioned and that the remaining unspent balance of Rs. 5531 is refunded via demand draft No. 048545 dated 13/07/2017.

Certified that I am myself satisfied that the conditions on which the grants-in-aid was sanctioned have been duly fulfilled/are being fulfilled and that I have exercised the following checks to see that the money was actually utilized for the purpose for which it was sanctioned.

28/07/

(Project Investigator) Assistant Professor Dept. of MBBT (Tezour University

R www (Finance Officer) (Head of the Institute) Finance Officer Registrar Tezpur University Tezpur University For SURAJIT CHAKRABORTY & CO. CHARTERED ACCOUNTANTS 20 .08.2012 CA, SURA IT CHAKRABORTY (Resprietor) Membership No.- 305054

SI	Head	First Year Grant	Second Year Grant	Total amount received	Interest earned, if any, on the	Amount Utilized (Rs.)			Total expenditure incurred	Unspent balance (Rs) VIII
1404		received (Rs.)	received (Rs.)	(Rs) (III)	grants received	2012-13 (IV)	2013-14 (V)	2014-15 (VI)	(Rs) VII (IV+V+VI=VII)	(III-VII=VIII)
1	Staff Salary	2,88,000	2,88,000	5,76,000		1,20,000	1,92,000	2,38,065	5,50,065	25,935
2	Equipment	NII	Nil							
3	Consumable	60,000	24,000	84,000		70,270		13,030	83,300	700
4a	Misc. Expt (Contingency)	5,000	5,000	10,000		5,003		5,000	10,003	-3
4b	Misc. Expt (50% Overhead)	90,000	90,000	1,80,000		35,017	45,000	90,000	1,70,017	9,983
5	Travel	25,000	25,000	50,000		Nil	15,300	36,361	51,661	-1,661
6	Refund of unspent balance									34,954 (Unspent balance of Rs. 3495) was refunded to Director, DRI Tezpur via demand draft No. 137566 dated 23/06/2016.
7	Interest earned for the period 24/09/2012 to 31/03/2015.	-			5531				00	5531
	Total	4,68,000	4,32,000	9,00,000	1.1.1	2,30, 290	2,52,300	3,82,456	8,65,046	5,531
	(Project Inves Assistant Pro B Dapt, of M "Rezour Onio	tigator) Diessor BBT in Marally	7		g (Finan Finan Tezpur	ce Officer Universit	For s	URAJIT CHA CHARTERED A CA, SUFAJIT C Membership I	KRABORTY & DE CCOUNTANTS HAKFABCRAT, 48-19 ielon No 305054 7	ead of the Institute) Registrar Pezpur University

)

0