PREFACE OF THE COURSE FILE DEPARTMENT OF MECHANICAL ENGINEERING TEZPUR UNIVERSITY

Code and Title of the Course	: ME540-Evolutionary Algorithms for Optimum Design
L-T-P Structure of the Course	: 3-0-0
Category of the Course	: Elective
Course offering Department	: Mechanical Engineering
Name of the Programme	: M.Tech. in Mechanical Engineering
	(Specialization: Machine Design)
Academic Year	: 2024 - 2025
Session	: Spring Semester, 2025
Students' Batch	: 2024 - 2026
Semester	: Second
Class Timetable of the Course	$: \frac{\mathrm{Tue/Wed/Thu}}{11.30-12.30}$
Course Coordinator/Instructor	: Prof. Dilip Datta

1 Objectives

- (1) To introduce students with evolutionary algorithms (EAs) for solving such problems for which classical optimization methods are not adequate.
- (2) To introduce EAs covering both single-objective and multi-objective optimization in both continuous and discrete regions, constraint handling, elite preservation, as well as performance metrics and statistical methods for evaluating performances of multi-objective optimizers.

2 Lesson Plan

\mathbf{SN}	Unit	Indented Learning Outcomes (ILOs)	L-T/P	Completion Date Dom		Remarks
		Indented Learning Outcomes (ILOs)		Proposed	Actual	litemarks
	Introduction	 Brief review of classical optimization meth- ods (optimality conditions for unconstrained problems, Kuhn-Tucker conditions for con- strained problems, gradient-based numerical methods, discrete optimization, and limita- tions of classical methods). Definition and importance of nontraditional techniques (mainly evolutionary algorithms). 	7+2			
2	Evolutionary Algorithms (EAs)	 Solution representations for different types of variables (binary-coded, real-coded, integer- coded and permutation representations). Population initialization and evolution (so- lution encoding and decoding, fitness evalu- ation, constraint handling, solution compari- son, elite preservation, termination criteria). Different EAs, and their similarities and dis- similarities. 	5+2			
3	Genetic Algorithm (GA)	 GA operators (selection, crossover and mu- tation operators). Significance and influence of crossover and mutation probabilities. 	3+1			
4	Differential Evolution (DE)	 DE operators (mutation, crossover and selec- tion operators). Significance and influence of perturbance fac- tor and crossover probability. 	3+1			
5	Particle Swarm Optimization (PSO)	 Personal-best of a particle, and local-best and global-best of the swarm. Velocity and position of a particle. Significance and influence of inertia constant, and cognitive and social behavioral factors. 	3+1			
6.	Multi-objective optimization	 Solving multi-objective problems as single- objective problems. Concept of dominance and non-dominated sorting. Diversity of solutions. Pareto front and its visualization. 	4+2			
	Performance measurement of multi-objective optimizers	 Concept of dominance relation among Pareto fronts. Performance metrics and their properties. Statistical methods for comparing perfor- mances of optimizers. 				
	Introduction to many-objective optimization	1. Need, features, challenges	2+0			

3 Course Outcomes (COs)

SN	Course Outcome (CO)	Units
1	To understand the need of EAs over classical optimization methods	1
2	To learn the general working procedure of evolutionary algorithms	2
3	To learn some well-established EAs in detail	3, 4, 5
4	To learn how multi-objective and many-objective EAs work	6,8
5	To evaluate performances of multi-objective EAs	7

4 Textbooks

- 1. Sivanandom, S.N. and Deepa, S.N. Introduction to Genetic Algorithms. Springer, 2010.
- 2. Price, K.V., Storn, R.M., and Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series, Springer, 2005.
- Olsson, A.E. Particle Swarm Optimization: Theory, Techniques and Applications. Nova Science Pub, 2011.
- 4. Deb, K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.

5 References

- 1. Coello Coello, C.A., Lamont G.B., and van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, 2007.
- Tan, K.C., Khor, E.F., and Lee, T.H. Multiobjective Evolutionary Algorithms and Applications. Springer, 2005.
- 3. Chakraborty, U.K. Advances in Differential Evolution. Springer, 2008.
- 4. Clerc, M. Particle Swarm Optimization. John Wiley & Sons, 2010.
- 5. Mann, P.S. Introductory Statistics. John Wiley & Sons, 2004.

How to record your class notes?

- (1) Take a separate notebook for this Course only.
- (2) Make numbering of each class on the top-left corner, along with the date on which it was held.
- (3) Note down the lecture as delivered.
- (4) At the end of each class, summarize what you have learned from this lecture, as shown below:

<u>CN-1</u> 23-01-2025
Introduction to Optimization
i
Summary

Instructor