Objectives:

- i. To introduce the students to basic thermodynamic laws
- ii. Familiarize the students to the idea to be able to heat, work and thermal efficiency and state the different forms of energy.
- iii. To be able to apply the steady-flow energy equation or the First Law of Thermodynamics to a system of thermodynamic components (heaters, coolers, pumps, turbines, pistons, etc.) to estimate required balances of heat, work and energy flow.
- iv. Orient the students towards ability to estimate thermodynamic properties of substances in gas and liquid states.
- v. To be able to apply ideal cycle analysis.

Contents:

Introduction and basic concepts: Basic definitions, thermodynamic systems and control volumes, properties, states, thermodynamic equilibrium, change of state, processes and cycles (3 lectures+ 1 tutorial)

Temperature: Zeroth law, thermometers and thermocouple, international temperature scale Energy transfer: Work transfer, pdV and other types of work transfer, heat transfer, specific heat at constant pressure and volume, latent heat, comparison of heat and work (4 lectures+2 tutorials)

Properties of pure substance: Definition, p-v, T-s and h-s diagram of pure substance (water), properties of steam, use of steam tables and charts (Mollier diagram) (**3 lectures+ 2 tutorials**)

First law of thermodynamics: First law for a closed system undergoing a cycle and change of state , internal energy, enthalpy, PMM-I, limitations of first law, non-flow and flow processes; steady state, steady flow and transient flow processes; application of first law to steady flow process, steady flow energy equation(SFEE) (6 lectures+ 4 tutorials)

Second law of thermodynamics: Kelvin Plank statement, Claussius statement, Irreversibility, Carnot Cycle, Corollaries of Carnot's theorem, Applications of Second Law to closed and open systems, heat engine, heat pump and refrigerator, PMM-II, entropy, Claussius theorem, Claussius inequality, T-ds Relations, entropy principle and its application, entropy generation in closed and open system, absolute entropy and third law of thermodynamics (**7 lectures+ 5 tutorials**)

Availability: Definition, quality concept of energy, Reversible work and irreversibility, Exergy balance in closed and open system, Second law efficiency, Guoy Stodola theorem (**4 lectures+ 3 tutorials**)

Introduction to IC Engines: Introduction to Power Cycle: Carnot, Rankine and Modified Rankine Cycle. (2 lectures+ 2 tutorials)

(Total: 29 lectures + 19 tutorials)

Evaluation Plan:

Test No.	Marks	Duration (minutes)	
Ι	10	30	
II (Major I)	30	90	
III	10	-	
IV (Major II)	50	120	
Total Marks		100	

All the tests will be held as per the schedule notified by the Controller of Examinations, Tezpur University

Course Outcomes:

- CO1: Acquire the knowledge of various thermodynamic laws and apply to various processes and real system.
- CO2: Evaluate energy exchange processes in terms of various forms of energy, heat and work.
- CO3: Apply the steady-flow energy equation to a system of thermodynamic components viz pumps, turbines, compressors etc. to estimate required balance of heat, work and energy flow.
- CO4: Apply the concept of entropy and other thermodynamic properties for various processes
- CO5: Identify the use of properties of pure substances and gas mixtures in real thermodynamic problems
- CO6: Understand the interrelationship between thermodynamics cycles

Textbooks:

1. Cengel, Y. A. and Boles, M. A. *Thermodynamics, an Engineering Approach*, McGraw-Hill Education, 2014, 8th edition.

2. Nag, P.K. Engineering Thermodynamics, Tata McGraw Hill, 2013, 5th edition.

Reference Books:

1. Borgnakke, C. Sonntag, R.E. Fundamentals of Thermodynamics, John Wiley & Sons, 2014, 8th edition.

2. Moran, M.J., Shapiro, H.N., Boettner, D.D. & Bailey, M.B., Principles of Engineering Thermodynamics,

S.I. version, John Wiley & Sons, 2011, 8th edition.