Course-Plan

School : School of Engineering

Department : Mechanical Engineering Dept.

Course Code : ME 582

Course Name : Heat Treatment Technology

Instructor: Dr. Sanjib Banerjee

1. Abstract:

- The course offers the basic details of Heat Treatment Technologies used in manufacturing industries.
- The general topics like principle, process variables, advantages and applications of various heat treatment techniques for industrial and specialized applications are covered.
- Different heat treatment practices separately on various ferrous and non-ferrous materials are discussed in detail.
- The significance of the course lies on the in depth knowledge, to increase interest on contemporary and automated heat treatment techniques, and to correlate processing-structure-property of prospective materials.

2. Objectives:

- To understand the principle, process variables, advantages and applications of various heat treatment techniques.
- To give detailed knowledge in different heat treatment practices for industrial and specialized applications.
- To increase interest on contemporary and automated heat treatment techniques.
- To correlate processing-structure-property of prospective materials.

3. Prerequisites of the course:

Basic knowledge on Material Science is preferable.

4. Course outline:

• Significance of heat treatment in material processing for manufacturing industries: Concepts of processing-structure-property co-relation (5 lectures)

Phase diagrams:

Binary and ternary equilibrium diagrams; Phase rule and Lever rule; Nucleation and growth of phases; Determination of grain size; Fe-C phase diagrams; Decomposition of

austenite: Diffusion controlled and diffusionless transformations; Pearlitic and Bainitic and Martensitic transformations; TTT and CCT curves (10 lectures)

• Heat treatment processes:

Recrystallization annealing: Effect of working on structure and properties of metals and alloys; Microstructural evolution and control; Recovery, Recrystallization and Grain growth; Recrystallization temperature, Critical deformation; Annealing and its classifications: Full annealing, Isothermal annealing, Diffusion annealing, Partial annealing, Subcritical annealing; Normalizing, Hardening, Tempering, Thermo-mechanical treatment; Surface Hardening: Carburizing, Nitriding, Electron Beam Hardening, Laser Hardening Heat Treatment of tool and alloy steels, cast irons; Heat treatment of weldments (15 lectures)

• Heat treatment of non-ferrous metals and alloys:

Cast and heat-treatable alloys; Theory of age-hardening and precipitation; Aging time and precipitation temperature on mechanical properties of alloys (5 lectures)

- Heat Treatment defects and their remedial measures (3 lectures)
- **Heat treating furnace atmosphere:** Automation and computerization of heat treating process & equipments (2 lectures)

 (Total: 40 lectures)

5. (a) Time-Plan

	Content	Contact		
Topic		Hours		
		L	T	
	• Significance of heat treatment in material processing for			
	manufacturing industries: Concepts of processing-structure-	5		
	property co-relation			
	• Phase diagrams:			
	Binary and ternary equilibrium diagrams; Phase rule and Lever	10		
	rule; Nucleation and growth of phases; Determination of grain size;			
	Fe-C phase diagrams; Decomposition of austenite: Diffusion	10		
	controlled and diffusionless transformations; Pearlitic and Bainitic			
	and Martensitic transformations; TTT and CCT curves			
	• Heat treatment processes:			
	Recrystallization annealing: Effect of working on structure and			
	properties of metals and alloys; Microstructural evolution and			
	control; Recovery, Recrystallization and Grain growth;	15		
	Recrystallization temperature, Critical deformation; Annealing and			
	its classifications: Full annealing, Isothermal annealing, Diffusion			
	annealing, Partial annealing, Subcritical annealing; Normalizing,			

Hardening, Tempering, Thermo-mechanical treatment; Surface		
Hardening: Carburizing, Nitriding, Electron Beam Hardening,		
Laser Hardening Heat Treatment of tool and alloy steels, cast irons;		
Heat treatment of weldments		
Heat treatment of non-ferrous metals and alloys:		
Cast and heat-treatable alloys; Theory of age-hardening and precipitation; Aging time and precipitation temperature on mechanical properties of alloys	5	
Heat Treatment defects and their remedial measures	3	
• Heat treating furnace atmosphere: Automation and computerization of heat treating process & equipments	2	
Total contact hours	4	0

Text Books:

- a. W. D. Callister, Material Science and Engineering An Introduction, Wiley, 2002.
- b. Rajan, T.V., Sharma, C.P., and Sharma, A. Heat Treatment Technology. PHI learning Pvt. Ltd. publication, Revised edition, 1997.
- c. Sharma, R.C. Principles of Heat Treatment of Steels. New Age Int. (P) Ltd., 1996.

Reference Books:

- a. Totten, G.E. Steel Heat Treatment: Equipment and Process Design. Taylor & Francis, 1st edition, 2006.
- b. Chandler, H. Heat Treater's Guide: Practice and Procedures of Iron and Steels, ASM International, 2nd edition, 6th Printing, 2010.
- c. Brooks, C.R. Heat Treatment, Structure and Properties of Nonferrous Alloys. ASM, 1982, Reprinted 1984.
- d. Ostwald, P.F. Manufacturing Processes and Systems. John Wiley & Sons. 9th edition, 2008.

5. (b) Evaluation Plan:

Test No.	Marks	Duration (minutes)
I	25	45
II (Mid Term)	40	120
III (Assignment type)	25	-
IV (End Term)	60	180
Total Marks	150	

All the tests will be held as per the schedule and protocol notified by the Controller of Examinations, Tezpur University

6. Pedagogy:

Students should correlate material properties with different heat treating techniques used in the manufacturing industries.

7. Expected outcome:

Towards the end of the course the student would be able to:

- Gain detailed knowledge on different heat treatment practices for industrial and specialized applications.
- Gain interest on contemporary and automated processing systems.
- Identify problem and initiate projects on heat treatment technology.
- Correlate processing-structure-property of prospective materials.
- Correlate material properties with heat treating techniques.