PREFACE OF THE COURSE FILE DEPARTMENT OF MECHANICAL ENGINEERING TEZPUR UNIVERSITY

Academic Year : 2019-2020

Session : Spring Semester 2020

Department for which : Mechanical Engineering

the Course is offered

Name of the Programme : M.Tech. in Mechanical Engineering

(Specialization: Machine Design)

Students' Batch : 2019–2021

Semester : Second

Title of the Course : Evolutionary Algorithms for Optimum Design

Course Code : ME 540

L-T-P Structure of the Course : **3-0-0**

Category of the Course : Open Elective III

Class Timetable of the Course $\hspace{1.5cm} : \hspace{.1cm} \frac{\mathrm{Mon}}{3.30-4.30\,\mathrm{pm}}, \hspace{.1cm} \frac{\mathrm{Tue}}{12.30-1.30\,\mathrm{pm}}, \hspace{.1cm} \frac{\mathrm{Thurs}}{10.30-11.30\,\mathrm{am}}$

Course Coordinator/Instructor : Prof. Dilip Datta

Other Table of the Course Instructor : ME 530 :: $\frac{\text{Mon}}{11.30\,\text{am}-12.30\,\text{pm}},\,\frac{\text{Wed}}{11.30\,\text{am}-12.30\,\text{pm}},$

 $\frac{Thurs \; (Practical)}{2.30 - 4.30 \, pm}, \; \frac{Fri}{3.30 - 4.30 \, pm}$

Instructor

1 Objectives

- (1) To introduce students with evolutionary algorithms (EAs) for solving such problems for which classical optimization methods are not adequate.
- (2) To introduce EAs covering both single-objective and multi-objective optimization in both continuous and discrete regions, constraint handling, elite preservation, as well as performance metrics and statistical methods for evaluating performances of multi-objective optimizers.

2 Lesson Plan

CINT	TT *4	Indonted I combined (II C.)	T TT/P	Completio	on Date	D 1
DIN	Unit	Indented Learning Outcomes (ILOs)	L-T/P	Proposed		Remarks
1	Introduction	1. Brief review of classical optimization meth-	3+0			
		ods (optimality conditions for unconstrained				
		problems, Kuhn-Tucker conditions for con-				
		strained problems, gradient-based numerical				
		methods, discrete optimization, and limita-				
		tions of classical methods).				
		2. Definition and importance of nontraditional				
		techniques (mainly evolutionary algorithms).				
2	Evolutionary	1. Solution representations for different types of	7+4			
	Algorithms	variables (binary-coded, real-coded, integer-				
	(EAs)	coded and permutation representations).				
		2. Population initialization and evolution (so-				
		lution encoding and decoding, fitness evalu-				
		ation, constraint handling, solution compari-				
		son, elite preservation, termination criteria).				
		3. Different EAs, and their similarities and dis-				
-	G .:	similarities.	4 . 1			
3	Genetic	1. GA operators (selection, crossover and mu-	4+1			
	Algorithm	tation operators).				
	(GA)	2. Significance and influence of crossover and				
4	Differential	mutation probabilities. 1. DE operators (mutation, crossover and selec-	4+1			
4	Evolution (DE)	tion operators).	411			
	Evolution (DE)	2. Significance and influence of perturbance fac-				
		tor and crossover probability.				
5	Particle Swarm	1. Personal-best of a particle, and local-best	4+1			
	Optimization	and global-best of the swarm.				
	(PSO)	2. Velocity and position of a particle.				
		3. Significance and influence of inertia constant,				
		and cognitive and social behavioral factors.				
6.	Multi-objective	1. Solving multi-objective problems as single-	6+2			
	optimization	objective problems.				
		1. Concept of dominance and non-dominated				
		sorting.				
		2. Diversity of solutions.				
		3. Pareto front and its visualization.				
7	Performance	1. Concept of dominance relation among Pareto	3+0			
	measurement of	fronts.				
	multi-objective	2. Performance metrics and their properties.				
	optimizers	3. Statistical methods for comparing perfor-				
		mances of optimizers.				
		Total contact hours	31+9			

Instructor

3 Course Outcomes (COs)

SN	Course Outcome (CO)	Units
1	Understand the need of evolutionary algorithms (EAs) over classical optimization	
	methods	
2	Learn the general working procedure of evolutionary algorithms	2
3	Learn some well-established EAs in detail	3, 4, 5
4	Learn how multi-objective EAs work	6
5	Evaluate performances of multi-objective EAs	7

4 Textbooks

- 1. Sivanandom, S.N. and Deepa, S.N. Introduction to Genetic Algorithms. Springer, 2010.
- 2. Price, K.V., Storn, R.M., and Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series, Springer, 2005.
- 3. Olsson, A.E. Particle Swarm Optimization: Theory, Techniques and Applications. Nova Science Pub, 2011.
- 4. Deb, K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.

5 References

- 1. Coello Coello, C.A., Lamont G.B., and van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, 2007.
- 2. Tan, K.C., Khor, E.F., and Lee, T.H. Multiobjective Evolutionary Algorithms and Applications. Springer, 2005.
- 3. Chakraborty, U.K. Advances in Differential Evolution. Springer, 2008.
- 4. Clerc, M. Particle Swarm Optimization. John Wiley & Sons, 2010.
- 5. Mann, P.S. Introductory Statistics. John Wiley & Sons, 2004.

Instructor HOD