PREFACE OF THE COURSE FILE DEPARTMENT OF MECHANICAL ENGINEERING TEZPUR UNIVERSITY

Academic Year : 2019-2020

Session : Spring Semester 2020

Department for which : Mechanical Engineering

the Course is offered

Name of the Programme : M.Tech. in Mechanical Engineering

(Specialization: Thermo-Fluids Engineering)

Students' Batch : 2019–2021

Semester : Second

Title of the Course : Numerical Methods

Course Code : ME 530

L-T-P Structure of the Course : **3-0-1**

Category of the Course : Core

 $\text{Class Timetable of the Course} \qquad \qquad : \ \frac{\text{Mon}}{11.30 \text{am} - 12.30 \text{pm}}, \ \frac{\text{Wed}}{11.30 \text{am} - 12.30 \text{pm}}, \ \frac{\text{Thurs (P)}}{2.30 - 4.30 \text{pm}}, \ \frac{\text{Fri}}{3.30 - 4.30 \text{pm}}$

Course Coordinator/Instructor : Prof. Dilip Datta

Other Table of the Course Instructor : $\mathbf{ME\ 540}:: \frac{\mathbf{Mon}}{\mathbf{3.30-4.30\,pm}}, \frac{\mathbf{Tue}}{\mathbf{12.30-1.30\,pm}}, \frac{\mathbf{Thurs}}{\mathbf{10.30-11.30\,am}}$

Instructor

1 Objectives

- (1) The main objective of the course is to impart knowledge to students on how to solve a mathematical model numerically using the computing power of a computer, which is very tough or even impossible to solve by an exact method.
- (2) To teach students both theory and programming of important numerical methods often required in practical computations.

2 Lesson Plan

\mathbf{SN}	Unit	Indented Learning Outcomes (ILOs)	L+P	Completion Date Proposed Actual		Remarks	
1	T414:*			Proposea	Actual		
	Introduction*	Approximations and error analysis	2+1				
2	Roots of	1. Bracketing methods (bisection and false po-	3+1				
	transcendental	sition methods).					
	equations	2. Open methods (Newton-Raphson, secant,					
3	Roots of	and fixed-point methods).	9 + 1				
3		Polynomial deflation, Müller method and Bairstow's method.	3+1				
	polynomial equations	Dairstow's method.					
4		1. Direct methods (Gauss elimination, Gauss-	6+2				
4	algebraic	Jordan elimination, LU decomposition, and	0+2				
	equations	matrix inversion methods).					
	equations	2. Iterative methods (Jacobian, Gauss-Seidel,					
		and successive relaxation methods).					
5	System of	Fixed point iteration and Newton's methods.	3+1				
	nonlinear	i med point iteration and i towton's incursage.	011				
	algebraic						
	equations						
6	_	Direct power, inverse power, and shifted power	2+1				
	eigenvectors	methods.	,				
7	Numerical	Finite difference methods (for first and second	3+1				
	differentiation	order derivatives).					
8	Numerical	1. Newton-Cotes methods (Trapezoidal rule,	3+1				
	integration	Simpson's rules, Romberg integration).					
		2. Gauss quadrature.					
9	Ordinary	1. Initial value problems (Euler, Runge-Kutta,	6+2				
	differential	and predictor-corrector methods).					
	equations	2. Boundary value problems (Shooting and fi-					
	(ODEs)	nite difference methods).					
		3. Eigenvalue problems.					
10	Partial	1. Classification and characteristics of PDEs.	3+2				
	differential	2. Elliptical, parabolic and hyperbolic equa-					
	equations	tions.					
11	(PDEs)	OD 1 11 11 1 11	0 + 1				
11	Similarity	QR decomposition with Householder	2+1				
	transformation	transformation	00 14				
	Total contact hours 36+14						

Instructor

3 Course Outcome

SN	Course Outcome (CO)	
1	Find roots of single-variable transcendental and polynomial equations	2, 3
3	Solve both linear and nonlinear systems of algebraic equations	4, 5, 6
2	Perform numerical differentiation and integration	7, 8
4	Solve both ordinary and partial differential equations	9, 10
5	Programming various numerical methods and apply them to different relevant	1-11
	real-life problems	

4 Textbooks

- 1. Gerald, C.F. and Wheatley, P.O. Applied Numerical Analysis. 5/e, Addison-Wesley, 1994.
- 2. Conte, S.D. and de Boor, C. *Elementary Numerical Analysis*. 3/e, Tata McGraw-Hill Education, 2005.
- 3. Hildebrand, F.B. Introduction to Numerical Analysis. 2/e (revised), Courier Dover Publications, 1987.

5 References

- 1. Kreyszig, E. Advanced Engineering Mathematics. 10/e, John Wiley and Sons, 2010.
- 2. Burden, R.L. and Faires, J. D. Numerical Analysis. 9/e, Brooks/Cole, 2011.
- 3. Chapra, S.C. and Canade, R.P. Numerical Methods for Engineers. Tata McGraw-Hill, 2006.
- 4. Mathews, J.H. Numerical Methods for Mathematics, Science and Engineering. Prentice-Hall of India, 2000.

Instructor