M.Tech in Mechanical Engineering (Specialization: Applied Mechanics)

Department of Mechanical Engineering

Tezpur University

Curriculum

	Cou	ırse detail							Total
Semester	SN	Code	Title	L	Т	Ρ	СН	Cr	Credits
I	1	ME-501	Advanced Solid Mechanics	3	1	0	4	4	22
	2	ME-541	Advanced Fluid Mechanics	3	1	0	4	4	
	3	ME-561	Experimental Methods for Solids and Fluids	3	0	2	7	5	
	4	xx-xxx	Open Elective I	1				3	
	5	xx-xxx	Programme Elective I					3*	
	6	xx-xxx	Programme Elective II					3*	
11	1	ME-502	Finite Element Methods	3	1	0	4	4	21
	2	ME-572	Advanced Engineering Materials	3	0	0	3	3	
	3	ME-592	Term Paper	0	0	0	0	2	
	4	xx-xxx	Open Elective II					3	
	5	xx-xxx	Programme Elective III					3	
	6	xx-xxx	Programme Elective IV					3*	
	7	xx-xxx	Programme Elective V	1				3*	
	1	ME-615	MTech Thesis Part I					12	12
IV	2	ME-616	MTech Thesis Part II					12	12
Total	14	Minimum	credit to be completed for award of the degree						67

* Minimum credits are shown against the elective courses. The overall credit, however, may vary with the actual credits of opted elective courses (credits of other courses are fixed as shown).

Syllabus

ME-501: Advanced Solid Mechanics

L-T-P-CH-CR: 3-1-0-4-4

Analysis of stress - introduction, Cauchy's formula, principal stresses, stress invariants, three-dimensional Mohr's circle, octahedral stresses, hydrostatic and deviatoric stresses, differential equations of equilibrium in rectangular and polar coordinates, stress boundary conditions, plane stress and plane stress problems;

Analysis of strain - introduction, definitions of normal and shear strains, principal strains, strain invariants, plane strain in rectangular and polar coordinates, compatibility conditions;

Stress-strain relations for linearly elastic bodies - generalized Hooke's law, relations between elastic constants;

Energy methods - introduction, principle of superposition, elastic strain energy and complementary energy, reciprocal relations, Maxwell-Betti theorem, Castigliano's theorem, principle of virtual work, statically indeterminate structures, Kirchoff's theorem;

Bending of beams - bending of symmetrical and unsymmetrical straight beams, shear stresses in beams, shear center and shear flow, curved beam; Torsion - torsion of circular, elliptical and rectangular bars, thin walled sections; Axisymmetric problems - thick and thin walled cylinders, composite tubes, rotating disks; Elastic stability - Euler's buckling load, beam column, eigenvalue problem;

Assignment and mini-project.

Textbooks

- 1. Srinath, L.S. Advanced Mechanics of Solids (Tata McGraw-Hill, New Delhi, 2009)
- 2. Raymond, P. Solid Mechanics in Engineering (Willey, 2001)

References

- 1. Sadd, M.H. Elasticity: Theory, Applications, and Numerics (Academic Press, 2009)
- 2. Budynas, R.G. Advanced Strength and Applied Stress Analysis (McGraw Hill, 1999)
- 3. Boresi, A.P. and Schmidt, R.J. Advanced Mechanics of Materials (John Willey & Sons, 2003)

Department of Mechanical Engineering

Tezpur University

ME-502: Finite Element Methods

L-T-P-CH-CR: 3-1-0-4-4

Introduction, basic concept, comparison with finite difference method; Variational methods - calculus of variation, Rayleigh-Ritz and Galerkin methods;

One-dimensional problems - formulation by different approaches, derivation of elemental equations, assembly, solutions and post-processing, bending of beams, analysis of truss and frame, other problems of solid mechanics, fluid mechanics and heat transfer;

Two-dimensional problems - modeling of single variable problems, triangular and rectangular elements, applications in solid mechanics, fluid mechanics and heat transfer;

Numerical considerations - numerical integration, error analysis, mesh refinement;

Plane stress and plane strain problems; Bending of plates; Eigenvalue and time dependent problems; Discussion about preprocessors, postprocessors;

Application of commercial software

packages; Assignment and mini-project.

Textbooks

- 1. Chandrupatla, T.R. and Belegundu, A.D. Introduction to Finite Elements in Engineering, Vol. 1 (Prentice Hall, 2002)
- 2. Bathe, K.J. Finite Element Procedures in Engineering Analysis (Prentice Hall, 1996)

References

- 1. Reddy, J.N. An introduction to the Finite Element Method (McGraw-Hill, 2006)
- 2. Cook, R.D., Malkus, D.S. and Plesha, M.E. Concepts and Applications of Finite Element Analysis (Wiley, 2007)
- 3. Hughes, T.J.T. *The Finite Element Method* (Dover Publications, 2000)
- 4. Zienkiewicz, C. and Taylor, R.L. The Finite Element Method (McGraw-Hill, 1989)

ME-541: Advanced Fluid Mechanics

L-T-P-CH-CR: 3-1-0-4-4

Preliminary concepts on fluid, body force, surface force, scalar and vector fields, Eulerian and Lagrangian description of flow, motion of fluid element - translation, rotation and deformation;

Vorticity and strain-rate tensors, integral and differential forms of governing equations - mass, momentum and energy conservation equations, stress tensor, principle of local stress equilibrium;

Cauchy's equations of motion, transport theorems, constitutive equations, Stokes law of viscosity, Navier-Stokes equations and their exact solutions, theory of hydrodynamic lubrication, flow between two concentric rotating cylinders;

Stokes first and second problems, Laminar boundary layer, Prandtl's boundary layer theory, similarity solution, momentum integral equation for boundary layer, Karman Pohlhausen approximation;

Hydrodynamic stability - stability in elementary flow fields, introduction to turbulent flow, review of compressible flow - isentropic flow, flow with area change, flow with heat transfer, flow with friction, sonic flow, supersonic flow, shock waves, Prandtl Mayor's equation; Assignment and mini-project.

Textbooks

- 1. Muralidhar, K. and Biswas, G. Advanced Engineering Fluid Mechanics. (Narosa Publishing House, 2005)
- 2. Binder, R.C. Advanced Fluid Dynamics (Prentice Hall, 1958)

References

- 1. Schlichting, H. Boundary Layer Theory (McGraw-Hill, 1979)
- 2. White, F.M. Viscous Fluid Flow (McGraw-Hill, 2011)
- 3. Munson, B.R., Young, D.F. and Okiishi, T.H. Fundamental of Fluid Mechanics (John Wiley & Sons, 2002)
- 4. Panton, R.L. Incompressible Flow (Wiley, 2005)
- 5. Anderson, J.D. Modern Compressible Flow with Historical Perspective (McGraw-Hill, 1990)

M.Tech in Mechanical Engineering (Specialization: Applied Mechanics)

Department of Mechanical Engineering

Tezpur University

ME-561: Experimental Methods for Solids and Fluids

L-T-P-CH-CR: 3-0-2-7-5

Theory and experimentation in engineering - problem solving approaches, types of engineering experiments, computer simulation and physical experimentation;

Generalized measuring system, types of inputs, analog and digital signals, standards, calibration and uncertainty, measurement system - performance characteristics;

Analysis of experimental data – error analysis, uncertainty analysis, data reduction techniques, statistical analysis of data, probability distributions and curve fitting;

Material properties, experimental measurement of force, torque, stress, strain, and displacement in solids and structures, photoelasticity and strain gauges, investigation of the microstructure of materials, digital image correlation technique;

Measurement of pressure, flow measurement and flow visualization, flow velocity measurement, measurement of temperature, optical methods of measurements, hot wire anemometry, hot film anemometry, laser Doppler anemometer, instrumentation in two-phase flows, particle image velocimetry technique;

Textbooks

- 1. Srinath, L.S. and Raghavan, M.R. Experimental Stress Analysis (Tata McGraw-Hill, 1984)
- 2. Wheeler, A.J. and Ganji, A.R. Introduction to Engineering Experimentation (Prentice Hall, 2003)
- 3. Clemens, N.T. and Tropea, C. *Experiments in Fluids* (Springer, 1983)
- 4. Goldstein, R.J. Fluid Mechanics Measurements (Taylor & Francis, 1996)

References

- 1. Dally, J.W. and Riely, W.P. *Experimental Stress Analysis* (McGraw-Hill, 1991)
- 2. Hendry, A.W. Elements of Experimental Stress Analysis (Pergamon Press, 1977)
- 3. Beckwith, T.G., Marangoni, R.D. and Lienhard, J.H. Mechanical Measurements (Prentice Hall, 2006)
- 4. Doeblin, E.O. Measurement Systems Application and Design (McGraw-Hill, 1989)
- 5. Holman, J. Experimental Methods for Engineers (McGraw-Hill, 2000)
- 6. Doeblin, E.O. Engineering Experimentation (McGraw-Hill, 1995)

ME-572: Advanced Engineering Materials

L-T-P-CH-CR: 3-0-0-3-3

Advanced materials for engineering applications, engineering materials - metals, polymers, composites and ceramics; Structure-property correlation - role of crystal structure, substructure and microstructure on material properties;

High performance structural metallic alloys and their applications, surface engineering of materials and their applications; Piezoelectric materials, shape memory alloys, smart materials and composite materials and their applications;

Micro-electro-mechanical systems (MEMS) - characteristics of materials for MEMS applications and manufacturing techniques for MEMS components;

Materials for high temperature applications - various alloys and composites, diffusion bond coating; Powder metallurgy; Selection of materials - materials aspects, cost and manufacturing considerations;

Applications of materials to automobile and transport vehicles, aerospace, power generation, armament, marine environment and ocean structures, materials for other specialized applications; Assignment and mini-project.

Textbooks

- 1. Calister, W.D. Material Science and Engineering An Introduction (John Wiley & sons, 1997)
- 2. Rajput, R.K. Material Science and Engineering (S. K. Kataria & Sons, 2008)

References

- 1. Gandhi, M.V. and Thompson, B.S. Smart Materials and Structures (Chapman and Hall, 1992)
- 2. Otsuka, K. and Wayman, C.M. Shape Memory Materials (Cambridge University Press, 1999)
- 3. Taylor, W. *Pizoelectricity* (Taylor & Francis, 1985)
- 4. Mallick, P.K. Fiber Reinforced Composites Materials, Manufacturing and Design (Marcel Dekker, 1993)

M.Tech in Mechanical Engineering (Specialization: Applied Mechanics)

Department of Mechanical Engineering

Tezpur University

ME-592: Term Paper

L-T-P-CH-CR: 0-0-0-4-2

This is a course of bit different flavor, aiming to help students to learn some research works beyond the normal curriculum. The main features of the course are:

- (a) The course does not have any fixed syllabus, and hence no lecture, tutorial and practical.
- (b) A student on consultation with a faculty member will survey literature on any research area of interest.
- (c) The student will periodically present his/her observation to a board of faculty members.
- (d) Finally the student will submit a report on his/her observation.
- (e) An interested student will have the provision to carry out his/her MTech Thesis on the surveyed area.