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ME301: Dynamics and Vibration of Machinery 

Lecture 3 

Two Degree of Freedom System 

Dr. S. M. Kamal 

In the last lecture, we started the analysis of 2 DOF system. We discussed about the different 

coordinate systems to express the vibratory motion of a system. Then we derived the equations 

of motion for a simple 2 DOF spring-mass system (Refer Fig. 3 of Lecture 2). So, we obtained 

the equations of motion for the spring-mass system in matrix form as 
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One may use either generalized coordinate system or physical coordinate system to 

express the motion of the system. While using these coordinate systems, the mass and stiffness 

matrices may be coupled or uncoupled. When the mass matrix is coupled, the system is said to 

be dynamically coupled. When the system is such that its stiffness matrix is coupled, the system 

is said to be statically coupled. Similarly, when the mass matrix is uncoupled, the system is 

called as the dynamically uncoupled and when the stiffness matrix is uncoupled, the system is 

called as statically uncoupled. To understand the concept of coupling/uncoupling of mass and 

stiffness matrix, let us consider that the motion of a vibratory is represented by the following 

equation: 
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Now, if m12=m21=0, in Eq. (2), the mass matrix is said to be uncoupled. If any one of them is not 

zero, it is called coupled. Similarly, if k12=k21=0 in Eq. (2), in the stiffness matrix is said to be 

uncoupled. If any one of them is nonzero, then the stiffness matrix is said to be coupled. 

Consider that both the mass and stiffness matrix of Eq. (2) is uncoupled. Then, Eq. (2) can be 

written as 
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From Eq. (3), we can write the system equations as 

11 1 11 1 0,m x k x+ =&&            (3a) 

22 2 22 2 0.m x k x+ =&&            (3b) 

You see that both the system equations (Eqs. 3a and 3b) are independent and individually they 

can be solved as that of a single degree of freedom system. The coordinate system for which both 

the mass and stiffness matrix are uncoupled is called as the principal coordinate system.  Using 

the principal coordinate system, you can reduce a two DOF system into two equivalent single 

DOF systems. Thus, in Eq. (3), the coordinates x1 and x2 are the principal coordinates.  

Now, if you go back to Eq. (1), you see that the mass matrix is uncoupled and the 

stiffness matrix is coupled. So, your spring-mass system (Fig. 3 of lecture 2) is dynamically 

uncoupled and statically coupled. At this stage, we consider some other examples of 2 DOF 

system and we will derive the equations of motion for them. 

Example 3: Double pendulum 

 

Fig. 1 Double pendulum 

Let us first draw the free body diagrams for mass m1 and m2. Let, T1 and T2 be the tensions in the 

strings. Here, we are using the physical coordinates x1 and x2 to express the motion of the system. 
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                         (a)                                                                                          (b) 

 Fig. 2 FBDs of mass m1 and m2  

 

 Resolving the forces in the horizontal direction and using D’Alembert’s principle we can 

write the equation of motion for mass m1 as 

1 1 1 1 2 2sin sin 0.m x T Tθ θ+ − =&&              (4) 

From the configuration shown in Fig. 1, 
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Using Eq. (5) in Eq. (4), we get 
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 
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Similarly, for mass m2, we can the write the equation of motion as 

2 2 2 2sin 0,m x T θ+ =&&  
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− + =&&              (7) 

Writing Eqs. (6) and (7), in matrix form we obtain 
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1 2 2
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&&

&&
           (8) 

Eq. (8) suggests that the present system is dynamically uncoupled and statically coupled. 

Example 3: Lathe machine 

Now, we take the example of the lathe machine which can be modeled as a two degree of 

freedom system. The configuration of the lathe machine as a 2 DOF system has already been 

discussed in lecture 2. The machine can be modeled as a rigid bar with its centre of mass not 

coinciding with its geometric centre and supported by two springs k1 and k2. Here, in expressing 

the motion of the lathe machine we consider the angular displacement and its transverse 

displacement from mean position as shown in Fig. 3.  

 

(a)                                                                                               (b) 

      Fig. 3 Lathe machine as a 2 DOF system 

Fig. 3 (b) shows the FBD of the system. The point G is the centre of mass and point C represents 

a point on the bar at which the coordinates of the system is defined. The point C is at a distance 

of l1 from the left end and it is at a distance of l2 from the right end. The distance between the 

points G and C is e.  Let us assume that the linear displacement of point C is x from the mean 

position and θ is the angular displacement about point C. Now, the equation of motion of this 

system can be obtained by using D’Alembert’s principle. The force balance provides 

( ) ( ) ( )1 1 2 2 0,m x e k x l k x lθ θ θ+ + + + − =&&&&   

( ) ( ) ( )1 2 1 1 2 2 0.m x e k k x k l k lθ θ+ + + + − =&&&&            (9)  

Taking moment of all the forces about point C, we get 
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( ) ( ) ( )1 1 1 2 2 2 0.
G

J m x e e k x l l k x l lθ θ θ θ+ + + + − − =&& &&&&         (10) 

Since 2 ,
G C

J me J+ =  Eq. (10) can be rewritten as 

( ) ( )2 2

1 1 2 2 1 1 2 2 0.
C

mex J k l k l x k l k lθ θ+ + − + + =&&&&          (11)  

Eqs. (9) and (11) can be written in matrix form as 
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&&

&&
        (12)  

Eq. (12) suggests that the system is both dynamically and statically coupled. Now, depending on 

the position of point C, the following cases are considered: 

Case 1: The point G and point C coincides, i.e., e=0. In this case, the system equation (Eq. 12) 

reduces to 
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&&

&&
         (13) 

Thus, in this case, the system is statically coupled, but dynamically uncoupled.  

Case 2: If point G and point C coincides and k1l1=k2l2, the system becomes both dynamically and 

statically uncoupled and in that case, we obtain uncoupled x and θ vibrations. For this condition, 

the coordinates x and θ  will be known as the principal coordinates. The equation of motion 

reduces to 
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Case 3: If k1l1=k2l2, the system equation reduces to 
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Thus, in this case, the system is dynamically coupled and statically uncoupled.  

 


