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ME301: Dynamics and Vibration of Machinery 

Lecture 2 

Two Degree of Freedom System 

 

Dr. S. M. Kamal 

 

You have already studied the single degree of freedom (DOF) system. You dealt with 

free and force vibration in single degree of freedom system. In case of free vibration of single 

DOF system, you have studied the system without damping and the system with damping. In 

case of system with damping, you have studied three different cases— underdamped case, 

critical damping case and overdamped case. You also studied the different vibration measuring 

instruments.  

 Today we are going to study two DOF systems. Many machine components cannot be 

modeled as a single DOF system. So, they may be modeled as a two DOF system. In our 

previous class, we discussed that for two DOF system, we need two independent coordinates to 

describe the system dynamics. For example, the oscillatory motion of a double pendulum or two 

masses connected in series by springs are the simplest forms of two DOF systems. Let us 

consider the example of a lathe machine. The lathe machine with its head stock and tail stock can 

be modeled as a two DOF system. The system is shown in Fig. 1.  

 

Fig. 1 Lathe machine as a two DOF system 
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You can express the vibration or oscillatory motion of the lathe machine in different 

ways. You can express the motion of masses m1 and m2 by the transverse displacements x1 and x2 

as shown in Fig. 1. Also, you may express the vibration of the motion in terms of the angular 

displacement θ and its transverse displacement x from the equilibrium position as shown in Fig.1 

(the configuration is shown as dotted lines). 

Coordinate system for expressing the motion of a vibratory system 

For expressing the motion of a vibratory system, you may use different coordinate systems. So, 

understand the different coordinate systems used in the motion of a vibratory system, let us 

consider the example of a double pendulum as shown in Fig. 2. The angular displacement of 

mass m1 is θ1 and the angular displacement of mass m2 is θ2 from their mean positions. These 

coordinates θ1 and θ2 of masses m1 and m2, which are displacements from the mean positions, are 

called as the generalized coordinate system. The generalized coordinate systems are the 

minimum number of coordinates which are needed to express the vibratory motion of the system.  

 

Fig. 2 Representation of motion of a double pendulum with physical and generalized coordinate 

systems 
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 You can also express the motion of the masses in Fig. 2 by fixing fixed reference axes x-

y. In that case, the motion of m1 can be expressed by the coordinate (x1, y1) and the moton of 

mass m2 can be expressed by the coordinate (x2, y2). These coordinate with reference to a fixed 

coordinate axes attached to the system are called as physical coordinate system. So, you can 

express the motion of a vibratory system either by using the generalized coordinate or physical 

coordinate system. Let us now derive the equations of motion for some 2 DOF vibratory 

systems.  

Equations of motion for 2 DOF system 

Example 1:  Consider the following spring-mass system.  

 

 

Fig. 3 Spring-mass system (2 DOF) 

This is a two DOF system. You can write the equations of motion for this system using either 

Newton’s second law of motion or D’Alembert’s principle. Here, in deriving the equations of 

motion, we use the generalized coordinates x1 and x2 for masses m1 and m2, respectively. First 

draw the free body diagram of each mass. 

For mass m1:  

 

Fig. 3a FBD of mass m1 

 

Using D’Alembert’s principle for mass m1, we can write the following equation of motion from 

the free body diagram (FBD) (Fig. 3a)  

( )1 1 1 1 2 1 2 0,m x k x k x x+ + − =&&  
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( )1 1 1 2 1 2 2 0.m x k k x k x+ + − =&&               (1) 

 

Fig. 3b FBD of mass m2 

Similarly, for mass m2, we get (refer to Fig. 3b) 

( )2 2 2 2 1 3 2 0,m x k x x k x+ − + =&&  

( )2 2 2 3 1 2 1 0.m x k k x k x+ + − =&&                                                                                    (2) 

Important points:  

(i) Inertia force acts opposite to the direction of acceleration. In FBDs shown in Figs. 3a 

and 3b, the direction of acceleration is towards right and thus, the direction of inertia 

forces are shown towards left.  

(ii) For spring k2, you can assume either x2>x1 or x1>x2. First assume that x2>x1. The 

spring with stiffness k2 will pull the mass towards right by a force equal to k2(x2-x1) 

and it is extended by (x2-x1) towards right. The force exerted by the spring k2 on mass 

m1 is shown as k2(x1-x2) towards left in Fig. 3a. The spring will exert a force of k2(x2-

x1) on mass m2 towards left as shown in Fig. 3b. Similarly when you assume x1>x2, 

the spring gets compressed by an amount (x2-x1). You can show the spring force 

exerted by spring k2 on the masses in the FBDs. In both the cases, you will find that 

the FBDs remain unchanged.  

Now, let us write the equations of motion (Eqs. 1 and 2) in matrix form. We get 

1 2 21 1 1

2 2 32 2 2

0 0
.

0 0

k k km x x

k k km x x
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In Eq. (3), the matrix, 
1

2

0

0
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m

 
 
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is called as the mass matrix and the matrix, 
1 2 2

2 2 3

k k k

k k k

+ − 
 

− + 
is 

called as the stiffness matrix.   


