TUTORIAL

MS 105: Mathematics II

Unit-3: Complex Integration

Note: All Notations and symbols have their usual meaning.

- (1) Find $\int_C \bar{z} dz$ where C is given by x = 3t, $y = t^2$, $-1 \le t \le 4$.
- (2) Find $\int_C \frac{1}{z^3} dz$ where C is the first quadrant of the circle |z| = 4.
- (3) If a function f is analytic in a simply connected domain D and C is any contour in D, then show that $\int_c f(z)dz$ is independent of the path C.
- (4) Show that $f(z) = \sin z$ is not a bounded function, where z is a complex variable.
- (5) Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_0 = 2i$.
- (6) Evaluate $\oint_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle |z+1| = 1.
- (7) Evaluate $\oint_C \frac{z^2 z + 1}{z 1} dz$, where C is the circle $|z| = \frac{1}{2}$.
- (8) Evaluate $\oint_C \frac{dz}{\sqrt{z^2+2z+2}}$, around the unit circle |z| = 1 starting with z = 1, assuming the integrand to be positive for this value.
- (9) Evaluate

(a)
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$

(b)
$$\oint_C \frac{\exp 2z}{(z+1)^4} dz$$

where C is the circle |z| = 3.

- (10) Evaluate $\frac{1}{2\pi i} \oint_C \frac{e^z}{(z-2)} dz$, if C is: (a) the circle |z| = 3 and (b) the circle |z| = 1.
- (11) Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, where C is the circle $|z| = \frac{1}{2}$.
- (12) Evaluate $\oint_C \frac{3z^2+z}{z^2-1} dz$, where C is the circle |z-1| = 1.
- (13) Evaluate $\frac{1}{2\pi i} \oint_C \frac{\exp zt}{(z^2+1)^2} dz$, if t > 0 and the circle |z| = 3.
- (14) Evaluate $\oint_C \frac{\cos^2 tz}{z^3} dz$, if t > 0 and the circle |z| = 1.
- (15) Show that $\oint_C \frac{dz}{z+1} = 2\pi i$, if the circle |z| = 2.

(16) Find the Laurent series about the indicated singularities for each of the following

functions. Name the singularities in each case.

(a)
$$\frac{e^{2z}}{(z-1)^3}$$
; $z = 1$
(b) $(z-3)\sin\frac{1}{z+2}$; $z = -2$
(c) $\frac{z-\sin z}{z^3}$; $z = 0$
(d) $\frac{z}{(z+1)(z+2)}$; $z = -2, z = -1$
(e) $\frac{1}{z^2(z-3)^2}$; $z = 3, z = 0$

- (17) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for: a) 0 < |z| < 3, b) |z| > 3, c) 0 < |z+1| < 2, d) |z| < 1.
- (18) Expand $f(z) = \frac{1}{(z-3)}$ in a Laurent series valid for: a) |z| < 3, b) |z| > 3.
- (19) Expand $f(z) = \frac{z}{(z-1)(z-3)}$ in a Laurent series valid for: a) |z| < 1, b) 1 < |z| < 2, c) |z| > 2, d) |z - 1| > 1, e) 0 < |z - 2| < 1.
- (20) Expand $f(z) = \frac{1}{z(z-2)}$ in a Laurent series valid for: a) 0|z| < 2, b) |z| > 2.
- (21) Expand $f(z) = \frac{1}{(z-2)^2}$ in a Laurent series valid for: a) 0|z| < 2, b) |z| > 2.
- (22) Expand $f(z) = \frac{z}{(z^2+1)}$ valid for |z-3| > 2.
- (23) Expand each of the following function in a Laurent series about z = 0, naming the type of the singularities in each case. a) $\frac{(1-\cos z)}{z}$, b) $\frac{e^{z^2}}{z^3}$, c) $z^2 e^{-z^4}$.
- (24) Determind and classify all the singularities of the functions: a) $\frac{1}{(2\sin z-1)^2}$, b) $\frac{z}{e^{\frac{1}{z}}-1}$, c) $\cos(z^2 z^{-2})$.
- (25) Find the residues of a) $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ and b) $\frac{e^z}{\sin^2 z}$ at all its poles in the finite plane.
- (26) For each of the following functions, determine the poles and residues at the poles:
 a) ^{2z+1}/_{z²-z-2}, b) (^{z+1}/_{z-1})², c) ^{sin z}/_{z²}, d) cot z.
- (27) Evaluate $\oint_{\sim} e^{-\frac{1}{z}} \sin(\frac{1}{z}) dz$ around the circle C defined by |z| = 1.
- (28) Find $\oint_C e^{\frac{1}{z^k}} dz$, where $k \in \mathbb{Z}$ and C is a simple closed contour enclosing the origin.
- (29) Evaluate $\oint_C \frac{e^z 1}{z(z-1)(z-i)^2} dz$ where C is the circle |z| = 2.