Problem Set I

MS 105/ MS 103: Mathematics II

The fields \mathbb{F} considered in this Problem Set is either \mathbb{R} or \mathbb{C} .

1. Find the Echelon form of the following matrices and hence find the rank of the matrices.

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$$

2. Determine consistency of the following systems of linear equations

(1)
$$5x + 3y + 7z = 4$$
, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$

(2)
$$x_1 + x_2 + 2x_3 + x_4 = 5$$
, $2x_1 + 3x_2 - x_3 - 2x_4 = 2$, $4x_1 + 5x_2 + 3x_3 = 7$

(3)
$$3x_1 + 2x_2 + x_3 = 3$$
, $2x_1 + x_2 + x_3 = 0$, $6x_1 + 2x_2 + 4x_3 = 6$

(4)
$$2x_1 + x_2 + 5x_3 + x_4 = 5$$
, $x_1 + x_2 - 3x_3 - 4x_4 = -1$, $3x_1 + 6x_2 - 2x_3 + x_4 = 8$, $2x_1 + 2x_2 + 2x_3 - 3x_4 = 2$

(5)
$$x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 1$$
, $2x_1 - x_2 + 2x_3 + 2x_4 + 6x_5 = 2$, $3x_1 + 2x_2 - 4x_3 - 3x_4 - 9x_5 = 3$

3. Find the values of a and b for which the system has (i) no solution (ii) unique solution (iii) infinitely many solution for

(a)
$$2x + 3y + 5z = 9$$
, $7x + 3y - 2z = 8$, $2x + 3y + az = b$

(b)
$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + az = b$

4. Determine b such that the system of homogeneous equation 2x + y + 2z = 0, x + y + 3z = 0, x + 3y + bz = 0 has (i) trivial solution (ii) non-trivial solution.

5. Determine the value of b for which the systems of equations have non-trivial solutions.

(a)
$$(b-1)x+(4b-2)y+(b+3)z=0$$
, $(b-1)x+(3b+1)y+2bz=0$, $2x+(3b+1)y+3(b-1)z=0$

(b)
$$2x + 3by + (3b + 4)z = 0$$
, $x + (b + 4)y + (4b + 2)z = 0$, $x + 2(b + 1)y + (3b + 4)z = 0$.

6. Solve the following systems of linear equations by Gaussian elimination method.

(a)
$$2x_1 + 2x_2 + x_3 + 2x_4 = 7$$
, $-x_1 + 2x_2 + x_4 = -2$, $-3x_1 + x_2 + 2x_3 + x_4 = -3$, $-x_1 + 2x_4 = 0$

(b)
$$2x_1 + 5x_2 + 2x_3 - 3x_4 = 3$$
, $3x_1 + 6x_2 + 5x_3 + 2x_4 = 2$, $4x_1 + 5x_2 + 14x_3 + 14x_4 = 11$, $5x_1 + 10x_2 + 8x_3 + 4x_4 = 4$

(c)
$$x_1 + 2x_2 - x_3 = 3$$
, $3x_1 - x_2 + 2x_3 = 1$, $2x_1 - 2x_2 + 3x_3 = 2$, $x_1 - x_2 + x_3 = -1$

(d)
$$2x_1 + x_2 + 3x_3 = 1$$
, $4x_1 + 4x_2 + 7x_3 = 1$, $2x_1 + 5x_2 + 9x_3 = 3$

(e)
$$10x_1 - 7x_2 + 3x_3 + 5x_4 = 6$$
, $-6x_1 + 8x_2 - x_3 - 4x_4 = 5$, $3x_1 + x_2 + 4x_3 + 11x_4 = 2$, $5x_1 - 9x_2 - 2x_3 + 4x_4 = 7$.

- 7. Solve the following systems of linear equations by Gauss-Jordan method
 - (a) $2x_1 + x_2 + 4x_3 = 12$, $8x_1 3x_2 + 2x_3 = 20$, $4x_1 + 11x_2 x_3 = 33$
 - (b) $x_1 + 4x_2 x_3 = -5$, $x_1 + x_2 6x_3 = -12$, $3x_1 x_2 x_3 = 4$
 - (c) $x_1 2x_2 + x_3 + 2x_4 = 1$, $x_1 + x_2 x_3 + x_4 = 2$, $x_1 + 7x_2 5x_3 x_4 = 4$
 - (d) $-x_1 + x_2 + x_3 + x_4 = 1$, $x_1 x_2 + x_3 + x_4 = 0$, $x_1 + x_2 x_3 + x_4 = 0$, $x_1 + x_2 + x_3 x_4 = 0$
 - (e) $x_1+x_2-2x_3+3x_4=0$, $x_1-2x_2+x_3-x_4=0$, $4x_1+x_2-5x_3+8x_4=0$, $5x_1-7x_2+2x_3-x_4=0$
- 8. Solve the following systems of linear equations by LU decomposition method
 - (a) x y + z = 2, 2x + 3y z = 5, x + y z = 0
 - (b) 2x z = 1, 5x + y = 7, y + 3z = 5
 - (c) $x_1 2x_2 + x_3 + 2x_4 = 1$, $x_1 + x_2 x_3 + x_4 = 2$, $x_1 + 7x_2 5x_3 x_4 = 4$

(d)
$$A = \begin{bmatrix} 9 & 3 & 3 & 3 \\ 3 & 10 & -2 & -2 \\ 3 & -2 & 18 & 10 \\ 3 & -2 & 10 & 10 \end{bmatrix}$$
, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, $B = \begin{bmatrix} 24 \\ 17 \\ 45 \\ 29 \end{bmatrix}$

9. Prove that the set of all $m \times n$ matrices with entries from a field \mathbb{F} , denoted by $M_{m \times n}$ with the following operations of matrix addition and scaler multiplication: for $A, B \in M_{m \times n}(\mathbb{F})$ and $c \in \mathbb{F}$,

$$(A+B)_{ij} = (A)_{ij} + (B)_{ij}$$
 and $(cA)_{ij} = c(A)_{ij}$.

is a vector space.

10. Let S be any non-empty set and \mathbb{F} be any field. Prove that the set of all functions from S to \mathbb{F} , denoted by $\mathcal{F}(S,\mathbb{F})$ is a vector space with the following operations of addition and scalar multiplication defined for $f, g \in \mathcal{F}(S,\mathbb{F})$ and $c \in \mathbb{F}$ by

$$(f+g)(s) = f(s) + g(s) \text{ and } (cf)(s) = cf(s)$$

for each $s \in S$.

11. Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of V coordinatewise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (a_1, 0).$$

Is V a vector space over \mathbb{F} with these operations? Justify your answer.

12. Let V and W be vector spaces over a field \mathbb{F} . Let

$$Z = \{(v, w) : v \in V \text{ and } w \in W\}.$$

Prove that Z is a vector space over \mathbb{F} with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

- 13. For each of the following list of vectors, determine whether the first vector can be expressed as a linear combination of the other two:
 - (a) (-2,0,3), (1,3,0), (2,4,-1) in \mathbb{R}^3
 - (b) (3,4,1), (1,-2,1), (-2,-1,1) in \mathbb{R}^3
 - (c) (5, 1, -5), (1, -2, -3), (-2, 3, -4) in \mathbb{R}^3
 - (d) $x^3 3x + 5, x^3 + 2x^2 x + 1, x^3 + 3x^2 1$ in $P_3(\mathbb{R})$
 - (e) $6x^3 3x^2 + x + 2$, $x^3 x^2 + 2x + 3$, $2x^3 3x + 1$ in $P_3(\mathbb{R})$

14. Determine whether the given vectors is in the span of S:

(a)
$$(-1, 1, 1, 2)$$
, $S = \{(1, 0, 1, -1), (0, 1, 1, 1)\}$

(b)
$$-x^3 + 2x^2 + 3x + 3$$
, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$

(a)
$$(1,1,1,2)$$
, $S = \{(1,3,1,1), (3,1,1,1)\}$
(b) $-x^3 + 2x^2 + 3x + 3$, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$
(c) $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$, $S = \{\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\}$

$$(d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, S = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

- 15. Show that if $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.
- 16. Show that the matrices $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ generate $M_{2\times 2}(\mathbb{F}).$
- 17. Show that the polynomials $x^2 + 3x 2$, $2x^2 + 5x 3$ and $-x^2 4x + 4$ generate $P_2(\mathbb{R})$.
- 18. Show that in $M_{2\times 3}(\mathbb{R})$, the set $\left\{ \begin{bmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{bmatrix}, \begin{bmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{bmatrix} \right\}$ is linearly dependent.
- 19. Prove that the set $\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(0,0,0,1)\}$ is linearly independent.
- 20. Determine whether the following sets are linearly dependent or linearly independent

(a)
$$\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$$
 in $P_3(\mathbb{R})$

(b)
$$\{(1,-1,2),(1,-2,1),(1,1,4)\}$$
 in \mathbb{R}^3

(c)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ -4 & 4 \end{bmatrix} \right\}$$
 in $M_{2\times 2}(\mathbb{R})$

(b)
$$\{(1,-1,2), (1,-2,1), (1,1,4)\}$$
 in \mathbb{R}^3
(c) $\left\{\begin{bmatrix}1 & 0\\ -2 & 1\end{bmatrix}, \begin{bmatrix}0 & -1\\ 1 & 1\end{bmatrix}, \begin{bmatrix}-1 & 2\\ 1 & 0,\end{bmatrix}, \begin{bmatrix}2 & 1\\ -4 & 4\end{bmatrix}\right\}$ in $M_{2\times 2}(\mathbb{R})$
(d) $\{x^4 - x^3 + 5x^2 - 8x + 6, -x^4 + x^3 - 5x^2 + 5x - 3, x^4 + 3x^2 - 3x + 5, 2x^4 + x^3 + 4x^2 + 8x\}$ in $P_4(\mathbb{R})$

- 21. Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent then prove that S_2 is also linearly dependent.
- 22. Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent then prove that S_1 is also linearly independent.
- 23. In $M_{m\times n}(\mathbb{F})$, let E_{ij} denote the matrix whose only non-zero entry is a 1 in the *i*-th row and *j*-th column. Then prove that $\{E_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis for $M_{m \times n}(\mathbb{F})$.
- 24. Prove that $\{x^2 + 3x 2, 2x^2 + 5x 3, -x^2 4x + 4\}$ is a basis for $P_2(\mathbb{R})$.
- 25. Determine whether the following sets are basis for the given vector spaces, justify your answer.

(a)
$$\{(1,2,-1),(1,0,2),(2,1,1)\}$$
 in $\mathbb{R}^3(\mathbb{R})$

(b)
$$\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$$
 in $\mathbb{R}^3(\mathbb{R})$

(c)
$$\{1 + 2x - x^2, 4 - 2x + x^2, -1 + 18x - 9x^2\}$$
 in $P_2(\mathbb{R})$

(d)
$$\{1 - 2x - 2x^2, -2 + 3x - x^2, 1 - x + 6x^2\}$$
 in $P_2(\mathbb{R})$

- 26. Prove that the followings are linear transformations.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (a_1, -a_2, 2a_3)$
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 a_2)$
 - (c) $T: M_{2\times 3}(\mathbb{F}) \to M_{2\times 2}(\mathbb{F})$ defined by

$$T \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \to \begin{bmatrix} 2a_{11} - a_{12} & a_{13} + 2a_{12} \\ 0 & 0 \end{bmatrix}$$

- (d) $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ defined by T(f(x)) = xf(x) + f'(x)
- (e) $T: M_{n \times n}(\mathbb{F}) \to \mathbb{F}$ defined by T(A) = trace(A)
- 27. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a function. For each of the following parts, state why T is not linear transformation.
 - (a) $T(a_1, a_2) = (1, a_2)$
 - (b) $T(a_1, a_2) = (a_1, a_2^2)$
 - (c) $T(a_1, a_2) = (sina_1, 0)$
 - (d) $T(a_1, a_2) = (|a_1|, a_2)$
 - (e) $T(a_1, a_2) = (a_1 + 1, a_2)$
- 28. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear. If T(1,0) = (1,4) and T(1,1) = (2,5) then what is T(2,3)?
- 29. Let $V = C(\mathbb{R})$, the vector space of continuous real-valued functions on \mathbb{R} . Let $a, b \in \mathbb{R}$, $a \leq b$. Define $T: V \to R$ by $T(f) = \int_a^b f(t)dt$ for all $f \in V$. Then prove that T is a linear transformation.
- 30. Find the range and kernel of the linear transformations in Question 26.

Hints to some problems

- 4. The system Ax = b has
 - (1) No solution if $Rank(A) \neq Rank((A|b))$
 - (2) Unique solution if Rank(A) = Rank((A|b)) = number of unknowns
 - (3) Infinite solutions if Rank(A) = Rank((A|b)) < number of unknowns

The reduced echelon form of the augmented matrix is

$$\begin{bmatrix} 1 & \frac{3}{2} & \frac{5}{2} & \frac{9}{2} \\ 0 & -\frac{15}{2} & -\frac{39}{2} & -\frac{47}{2} \\ 0 & 0 & a - \frac{15}{2} & b - \frac{27}{2} \end{bmatrix}$$

Hence the system has

- (1) No solution if $a = \frac{15}{2}$, $b \neq \frac{27}{2}$
- (2) Unique solution if $a \neq \frac{15}{2}$
- (3) Infinite solutions if $a = \frac{15}{2}$, $b = \frac{27}{2}$ s
- 28. (1,0) and (1,1) are linearly independent (check). Now (2,3) = -(1,0) + 3(1,1). Since T is linear, we have T(2,3) = -T((1,0)) + 3T((1,1)) = (5,11).
