Course Code: MS424/MI310 Course title: Computer Lab

Numerical Solution of System of Linear Equations:

A. Gauss Elimination Method

The system of linear equations be like

Then *Gauss Elimination Method* may be explain as follows:

- 1. Declare the variables and read the order of the matrix n.
- 2. Take the coefficients of the linear equation as:

Do for k=1 to n

Do for j=1 to n+1

Read a[k][j]

End for j and k

3. Do for k=1 to n-1

Do for i=k+1 to n

Do for j=k+1 to n+1

a[i][j] = a[i][j] - a[i][k] / a[k][k] * a[k][j]

End for j, i and k

- 4. Compute x[n] = a[n][n+1]/a[n][n]
- 5. Do for k=n-1 to 1

sum = 0

Do for j=k+1 to n

sum = sum + a[k][j] * x[j]

End for j

x[k] = 1/a[k][k] * (a[k][n+1] - sum)

End for k

- 6. Display the result x[k]
- 7. Stop

B. Iterative Methods (Gauss Seidel & Jacobi methods)

Let a system linear equations with of 3 variable is

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3.$$

Then the above two methods may be explain as follows:

Students are advised to study above and make C code to execute properly. Write the details in laboratory copy and submit in the very next day of the classes resume.

Gauss-Seidel Method Flowchart:

Gauss-Jacobi Method Flowchart:

