MS 103 MATHEMATICS II

HOME ASSIGNMENT: ROOT FINDING, NUMERICAL INTEGRATION, INTEGRAL TRANSFORM

- 1. Perform three iterations of the bisection method to obtain the smallest positive root of the equation $x^3 5x + 1 = 0$.
- 2. A root of the equation $xe^x 1 = 0$ lies in the interval (0.5, 0.1). Determine this root correct to three decimal places using (i) secant method, (ii) regula-falsi method.
- 3. Using Newton-Raphson method, derive formula to find (i) 1/N, (ii) $N^{1/q}$, N > 0, q integer. Hence find 1/18, $18^{1/3}$ to four decimal places.
- 4. Find an interval of unit length which contains the smallest positive root of the equation $x^3 5x 1 = 0$. Hence determine the number of iterations required by the bisection method so that $|error| < 10^{-3}$. Also find the root.
- 5. Find an interval of unit length which contains the smallest positive root of the equation $e^x 2x^2 = 0$. Use (i) secant method and (ii) regula-falsi method to find the root. Also by taking the mid-point of this interval as initial approximation, perform two iterations of the Newton-Raphson methods. Compare convergence in each case.
- 6. An iteration method is defined by $x_{n+1} = \frac{x_n}{2a}(3a x_n^2)$, a > 0, n = 0, 1, ... Find the quantity to which the method converges. Carry out three iterations by using a suitably chosen initial approximation.
- 7. Evaluate the integral $\int_0^{\pi/2} e^{-x} \cos x dx$, using trapezoidal rule with $h = \pi/2$ and $h = \pi/4$.
- 8. Find the minimum number of intervals required to evaluate $\int_0^1 \ln(1+x)dx$ using Simpson's rule with an accuracy of 10^{-6} .
- 9. Find λ such that the quadrature formula

$$\int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx \doteq Af(0) + Bf(\lambda) + Cf(1)$$

may be exact for polynomials of degree 3.

10. Using the following data.

x	1	2	3	4
f(x)	0.3679	0.1353	0.0498	0.0183

and Trapezoidal rule with n=1 and n=3, determine an approximate value of $\int_1^4 f(x)dx$.

- 11. Find Laplace transform of the following functions.
 - (a) $t^2 e^t$.
 - (b) $(\cos t + \sin t)^2$.
 - (c) $\sinh 2t + \cosh 2t$.
 - (d) $e^t \sin t$.
 - (e) $f(t) = t^{5/2}$.

$$(\mathrm{f}) \ f(t) = \begin{cases} \cos t, & 0 \le t < \pi \\ 0, & t \ge \pi \end{cases} .$$

- 12. Find inverse Laplace transform of the following functions.
 - (a) $\frac{s}{s^2-4}$.
 - (b) $\frac{s^2+2s+5}{(s-1)(s-2)(s-3)}$.
 - (c) $\frac{s+3}{(s-1)(s+2)}$.

- 13. Solve following initial value problems by using Laplace transform
 - (a) y'' + 2y' 3y = 3, y(0) = 4, y'(0) = -7.
 - (b) $y'' 5y' + 4y = e^{2t}$, y(0) = 19/12, y'(0) = 8/3.
- 14. Find the Fourier transform of the following
 - (a) $f(t) = \begin{cases} \cos t, & -l \le t \le l \\ 0, & |t| > 1 \end{cases}$.
 - (b) $f(t) = \begin{cases} -e^{\alpha t}, & t < 0 \\ e^{\alpha t}, & t > 0 \end{cases}$, $\alpha > 0$.
 - (c) $f(t) = u_0(t-3)e^{-4t}$.
 - (d) $f(t) = 1/(1+t^2)$.
- 15. Find inverse Fourier transform of the following
 - (a) $\frac{e^{-i\omega}}{2(1+i\omega)}$.
 - (b) $\frac{e^{-2i\omega}}{2+3i\omega}$.
 - (c) $\frac{1}{a^4 + \omega^4}$, a > 0.
- 16. Solve following differential equations by using Fourier transform
 - (a) $y' 4y = u_0(t)e^{-4t}, -\infty < t < \infty.$
 - (b) $y'' + 5y' + 4y = \delta(t 2)$.
- 17. Determine Z transform of $\{f_n\}$.
 - (a) $\{f_n\} = e^{-3n}$.
 - (b) $\{f_n\} = \begin{cases} 2, & n = 0, 2, 4, \dots \\ 1, & n = 1, 3, 5, \dots \end{cases}$
- 18. Find inverse Z transform of F(Z) =
 - (a) $\frac{z}{z+2}$.
 - (b) $e^{-2/z}$.

--×--