DR. ASHIM JYOTI THAKUR

E-mail: ashim@tezu.ernet.in or ajthax@yahoo.com
Home-page: http://www.tezu.ernet.in/dcs/Faculty/Ashim/ashim1.htm
Phone: +91 (03712) 267008 extn 5059 (Office)
+91 9435181464 (mob)
Fax: +91 (03712) 2676005/6

(PUBLISHED AND ACCEPTED ONLY) IN JOURNALS

Total : 65 (National : 03 and International: 62)

1. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction.
 Dewan, A.; Thakur, A. J. & Bora, U.
 Tetrahedron Letters, 2016, 57 (33), 3760-3763.
 DOI: 10.1016/j.tetlet.2016.07.021

2. Suzuki-Miyaura Cross-Coupling in Aqueous Medium Using Recyclable Palladium/Amide-Silica Catalyst
 Catalysis Letters, 2016 (Accepted)

3. An improved Suzuki-Miyaura cross-coupling reaction with the aid of in-situ generated Pd NPs: Evidence
 for enhancing effect with biphasic system
 Mahanta, A.; Thakur, A. J. & Bora, U.
 Tetrahedron Letters, 2016, 57(8), 3091-3095.
 DOI:org/10.1016/j.tetlet.2016.05.098

4. Analysis of water extract of waste papaya bark ash and its implications as in situ base in ligandless
 recyclable Suzuki-Miyaura coupling reaction
 Sarma, M.; Dewan, A.; Mondal, M.; Bora, U. & Thakur, A. J.
 RSC Advances, 2016, 6(34), 28981-28985.
 DOI:10.1039/C6RA00454G

5. Starch assisted Palladium(0) nanoparticles as in situ generated catalysts for room temperature Suzuki-
 Miyaura reaction in pure water
 Dewan, A.; Bharali, P.; Bora, U. & Thakur, A. J.
 RSC Advances, 2016, 6, 11758-11762.
 DOI:10.1039/c5ra22349k

6. Sulfonated carbon as a new, reusable heterogeneous catalyst for one-pot synthesis of acetone soluble
 cellulose acetate
 Konwar, L. J.; Mäki-Arvela, P.; Thakur, A. J.; Kumar, N. & Mikkola, J. P.
 RSC Advances, 2016, 6 (11), 8829-8837.
 DOI:10.1039/C5RA25716F

7. Urea as mild and efficient additive for palladium catalyzed Sonogashira cross coupling reaction
 Sarmah, M.; Dewan, A.; Thakur, A. J. & Bora, U.
 Tetrahedron Letters, 2016, 57(8), 914-916.
 DOI: 10.1016/j.tetlet.2016.01.046

8. A one pot, two-step synthesis of 5- ary/pyrrolo[2,3-d]pyrimidines and screening of their preliminary
 antibacterial properties
Saikia, L.; Roudragouda, P. & Thakur, A. J.
Bioorganic and Medicinal Chemistry Letters, 2016, 16, 992-998.
DOI: 10.1016/j.bmcl.2015.12.047

9. A convenient ‘NOSE’ approach for the synthesis of 6-Amino-1,3-dimethyl-5-indolyl-1H-pyrimidine-2,4-
dione derivatives catalyzed by nano-Ag
Das, V. K.; Bharali, P.; Konwar, B. K.; Mikkola, J-P.; Shchukarev, A. & Thakur, A. J.
DOI: 10.1039/C5NJ02013

10. In water homocoupling of arylboronic acid using nano-rod shaped and reusable copper oxide(II) catalyst at room temperature
Raul, P. K.; Mahanta, A.; Bora, U., Thakur, A. J. & Veer, V.
DOI: dx.doi.org/10.1016/j.tetlet.2015.11.004

RSC Advances, 2015, 5, 72453 – 72457.
DOI: 10.1039/C5RA12657F

12. Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-Zeolite and sulfonated mesoporous carbons
Konwar, L. J.; Mäki-Arvela, P.; Begum, P.; Kumar, N.; Thakur, A. J.; Mikkola, J-P.; Deka, R. C. & Deka, D.
DOI: 10.1016/j.jcat.2015.05.021

13. Towards carbon efficient biorefining: Biomass conversion using multifunctional mesoporous solid acids obtained from biodiesel wastes
Konwar, L. J.; Das, R.; Thakur, A. J.; Salimen, E.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J-P. & Deka, D.
Applied Catalysis B: Environmental, 2015, 176, 20-35.
DOI: dx.doi.org/10.1016/j.apcatb.2015.03.005

14. Biosilica as an efficient heterogeneous catalyst for ipso-hydroxylation of arylboronic acids
Mahanta, A.; Adhikari, P.; Bora, U. & Thakur, A. J.
DOI:10.1016/j.tetlet.2015.02.039

15. Copper nanoparticles decorated Organically Modified Montmorillonite (OMMT): An efficient catalyst for the N-arylation of indoles and similar heterocycles
DOI:10.1016/j.catcom.2014.10.030

(Downloaded or viewed 712 times measured through 18th Dec 2015, 217 times through 18th March 2015, 416 times through 2nd June, 2015 and 595 times through 25th August, 2015 since publication, i.e. 10th Jan 2015)

16. CuO Nanorods: A potential and efficient adsorbent in water purification
RSC Advances, 2014, 4, 40580-40587.
DOI: 10.1039/C4RA04619F

17. Antioxidative, hemocompatible, fluorescent carbonnanodots from an ‘End-of-Pipe’ agricultural waste: Exploring its new horizon in food packaging domain
Purkayastha, M. D.; Manhar, A. K.; Das, V. K.; Borah, A.; Mandal, M.; Thakur, A. J. & Mahanta, C. L.
DOI: 10.1021/jf500138f

18. Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogeneous catalyst for
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 19. | A convenient synthesis of novel 5-aryl-pyrido[2,3-d]pyrimidines and screening of their preliminary antibacterial properties
Saikia, L.; Das, B.; Bharali, P. & Thakur, A. J.
DOI: dx.doi.org/10.1016/j.tetlet.2014.01.128 (Downloaded or viewed 498 times measured through 1st Dec 2014, 428 times measured through 10th Sept 2014 and 314 times measured through 30th April, 2014 since publication, i.e. 5th March 2014) |
| 20. | Greener oxidation of aldehydes over bio-silica supported Fe$_2$O$_3$ nanoparticles: A convenient ‘NOSE’ approach
Das, V. K. & Thakur, A. J.
DOI: 10.1016/j.apcata.2013.10.039 (Downloaded or viewed 231 times since publication measured through 31 March 2014) |
| 21. | Removal of iron and arsenic (III) from drinking water using iron oxide coated sand and limestone
DOI: 10.1007/s13201-013-0139-5 |
| 22. | Iron oxide hydroxide nanoflower assisted removal of arsenic from water
| 23. | KI-VO(acac)$_2$-H$_2$O$_2$-AcOH as a new iodinating system, selective iodination at C-5 position of activated Pyrimidinediones: A combined experimental and density functional study
DOI: 10.1002/jhet |
| 24. | Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste
Konwar, L. J.; Das, R.; Mäki-Arvela, P.; Thakur, A. J.; Kumar, N.; Mikkola, J-P. & Deka, D.
DOI: dx.doi.org/doi:10.1016/j.molcata.2013.09.031 |
| 25. | Organic reactions in ‘Green surfactant’: An avenue to Bisuracil derivative
ACS Sustainable Chemistry & Engineering, 2013, 1(12), 1530-1536.
DOI:dx.doi.org/10.1021/sc4002774 |
| 26. | Highly active nano-MgO catalyzed mild and efficient synthesis of amidines via the electrophilic activation of amides
Das, V. K. & Thakur, A. J.
DOI:dx.doi.org/10.1016/j.tetlet.2013.05.096 (Downloaded or viewed 634 times measured through 31st May 2014, 541 times measured through 31st January 2014 and 418 times measured through 30 November, 2013 since publication, i.e. 7th August 2013) |
| 27. | VO(acac)$_2$: An efficient catalyst for the oxidation of aldehydes to the corresponding acids in presence of |
aqueous H$_2$O$_2$
Talukdar, D.; Sharma, K.; Bharadwaj, S. K. & Thakur, A. J.
Synlett. 2013, 24, 0963-0966.
(Within 500 recently published abstracts – the #3 of the most visited ones as on 17-12-2015)
Featured in social media streams
www.linkedin.com/company/organic-chemistry-portal

Das, V. K.; Borah, M. & Thakur, A. J.
DOI: 10.1021/jo302682k

29. Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: A convenient and greener 'NOSE' approach
Das, V. K.; Devi, R. R. & Thakur, A. J.
Applied Catalysis A: General, 2013, 456, 118-125.
DOI: 10.1016/j.apcata.2013.02.016
(Listed in most downloaded articles)

30. An X-ray crystallographic study of C-5 and C-6 substituted 1,3-dimethyl-6-aminouracil architectures
Saikia, B. K.; Das, S.; Sridhar, B. & Thakur, A. J.
DOI: 10.1007/s10870-012-0305-x

31. Effects of L-ascorbic acid addition on micro-filtered coconut water: Preliminary quality prediction study using 1H-NMR, FT-IR and GC-MS
DOI:10.1016/j.ifset.2011.11.004

32. Nano rod shaped and reusable basic Al$_2$O$_3$ catalyst for N-formylation of amines under solvent free condition: A novel, practical and convenient 'NOSE' approach
Das, V. K.; Devi, R. R.; Raul, P. K. & Thakur, A. J.
DOI: 10.1039/c2gc16020j

33. A review on solid oxide derived from waste shells as catalyst for biodiesel production
Boro, J.; Deka, D. & Thakur, A. J.
DOI:10.1016/j.rser.2011.09.011

34. A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry
Saikia, L.; Baruah, J. M. & Thakur, A. J.
Organic and Medicinal Chemistry Letters, 2011, 1(10), 12-17.
DOI:10.1186/2191-2858-1-12
(Top 20 Articles, since its Publication)

35. Solid oxide derived from waste shells of *Turbonilla striatula* as a renewable catalyst for biodiesel production
Boro, J.; Thakur, A. J. & Deka, D.
DOI:10.1016/j.fuproc.2011.06.008
(Nominated for ENI award, 2012)

36. Zirconyl Chloride: An efficient, water-tolerant and reusable catalyst for the synthesis of N-methylamides
37. Crude biosurfactant from thermophilic Alcaligenes faecalis: Feasibility in petro-spill bioremediation
Bharali, P.; Das, S.; Konwar, B. K. & Thakur, A. J.

38. A clean, highly efficient and one-pot green synthesis of Aryl/Alkyl/Heteroaryl bis(6-amino-1,3-dimethyluracil-5-yl)methanes in water
Das, S. & Thakur, A. J.
DOI: 10.1002/ejoc.201001581.

39. Replay of amide type resonance in 6-[(Dimethylamino)methylene]1,3-dimethylaminouracil: A dynamic NMR and Density Functional Theory study
Thakur, A. J.; Das, S. & Phukan, A. K.
Journal of Molecular Structure, 2009, 929(1-3), 134-140.

40. Molecular Iodine in protection and deprotection chemistry
Das, S.; Borah, R.; Devi, R. R. & Thakur, A. J.
Synlett. 2008, 18, 2741-2762.
DOI: 10.1002/slt.200800225.

41. Modification of rubber wood with styrene in combination with diethyl allyl phosphate as the flame retardant
Devi, R.; Saikia, C. N.; Thakur, A. J. & Maji, T. K.
DOI: 10.1002/app.

42. Regiospecific one-pot synthesis of Pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations
Prajapati, D.; Gohain, M. & Thakur, A. J.
Bioorganic and Medicinal Chemistry Letters, 2006, 16(13), 3537-3540.
DOI: 10.1016/j.bmcl.2006.03.088.
(Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)

Thakur, A. J. & Prajapati, D.
(Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)

44. A novel decyanogenative coupling of α-cyanoimines mediated by Samarium. A facile route to α-diketimines
Thakur, A. J.; Prajapati, D. & Sandhu, J. S.
(Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)

45. Potassium Triiodide a new and efficient catalyst for carbon-carbon bond formation in aqueous media
Thakur, A. J.; Gogoi, B. J.; Prajapati, D. & Sandhu, J. S.
(Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)

46. Tris(trifluoromethanesulphonato)indium
Thakur, A. J.
47. Studies on 6-[(Dimethylamino)methylene]aminouracils. A facile one-pot synthesis of novel Pyrimido-[4,5-d]pyrimidines and pyrido[2,3-d]pyrimidines
 Thakur, A. J.; Saikia, P.; Prajapati, D. & Sandhu, J. S.
 Synlett 2001, 1299-1301.

48. InCl₃-Zn. A novel reduction system for the deoxygenative coupling of carbonyl compounds to olefins
 Barman, D. C.; Thakur, A. J.; Prajapati, D. & Sandhu, J. S.
 Synlett 2001, 515-516.
 (Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)

49. Indium mediated facile dehydration and Beckmann rearrangement of oximes
 Barman, D. C.; Thakur, A. J.; Prajapati, D. & Sandhu, J. S.
 Chemistry Letters, 2000, 29(10), 1196-1197.
 (Abstract in Methods in Organic Synthesis published by Royal Society of Chemistry)