Question 6.1

I had the definition char a[6] in one source file, and in another I declared extern char *a. Why didn't it work?

The declaration extern char *a simply does not match the actual definition. The type pointer-to-type-T is not the same as array-of-type-T. Use extern char a[].

References: ANSI Sec. 3.5.4.2
ISO Sec. 6.5.4.2
CT&P Sec. 3.3 pp. 33-4, Sec. 4.5 pp. 64-5

Question 6.2

But I heard that char a[] was identical to char *a.

Not at all. (What you heard has to do with formal parameters to functions; see question 6.4.) Arrays are not pointers. The array declaration char a[6] requests that space for six characters be set aside, to be known by the name ``a.'' That is, there is a location named ``a'' at which six characters can sit. The pointer declaration char *p, on the other hand, requests a place which holds a pointer, to be known by the name ``p.'' This pointer can point almost anywhere: to any char, or to any contiguous array of chars, or nowhere (see also questions 5.1 and 1.30).

As usual, a picture is worth a thousand words. The declarations

char a[] = "hello";

char *p = "world";

would initialize data structures which could be represented like this:

 +---+---+---+---+---+---+

a: | h | e | l | l | o |\0 |

 +---+---+---+---+---+---+

 +-----+ +---+---+---+---+---+---+

p: | *======> | w | o | r | l | d |\0 |

 +-----+ +---+---+---+---+---+---+

It is important to realize that a reference like x[3] generates different code depending on whether x is an array or a pointer. Given the declarations above, when the compiler sees the expression a[3], it emits code to start at the location ``a,'' move three past it, and fetch the character there. When it sees the expression p[3], it emits code to start at the location ``p,'' fetch the pointer value there, add three to the pointer, and finally fetch the character pointed to. In other words, a[3] is three places past (the start of) the object named a, while p[3] is three places past the object pointed to by p. In the example above, both a[3] and p[3] happen to be the character 'l', but the compiler gets there differently.

References: K&R2 Sec. 5.5 p. 104
CT&P Sec. 4.5 pp. 64-5

Question 6.3

So what is meant by the ``equivalence of pointers and arrays'' in C?

Much of the confusion surrounding arrays and pointers in C can be traced to a misunderstanding of this statement. Saying that arrays and pointers are ``equivalent'' means neither that they are identical nor even interchangeable.

``Equivalence'' refers to the following key definition:

An lvalue of type array-of-T which appears in an expression decays (with three exceptions) into a pointer to its first element; the type of the resultant pointer is pointer-to-T.

(The exceptions are when the array is the operand of a sizeof or & operator, or is a string literal initializer for a character array.)

As a consequence of this definition, the compiler doesn't apply the array subscripting operator [] that differently to arrays and pointers, after all. In an expression of the form a[i], the array decays into a pointer, following the rule above, and is then subscripted just as would be a pointer variable in the expression p[i] (although the eventual memory accesses will be different, as explained in question 6.2). If you were to assign the array's address to the pointer:

p = a;

then p[3] and a[3] would access the same element.

See also question 6.8.

References: K&R1 Sec. 5.3 pp. 93-6
K&R2 Sec. 5.3 p. 99
ANSI Sec. 3.2.2.1, Sec. 3.3.2.1, Sec. 3.3.6
ISO Sec. 6.2.2.1, Sec. 6.3.2.1, Sec. 6.3.6
H&S Sec. 5.4.1 p. 124

Question 6.4

Then why are array and pointer declarations interchangeable as function formal parameters?

It's supposed to be a convenience.

Since arrays decay immediately into pointers, an array is never actually passed to a function. Allowing pointer parameters to be declared as arrays is a simply a way of making it look as though the array was being passed--a programmer may wish to emphasize that a parameter is traditionally treated as if it were an array, or that an array (strictly speaking, the address) is traditionally passed. As a convenience, therefore, any parameter declarations which ``look like'' arrays, e.g.

f(a)

char a[];

{ ... }

are treated by the compiler as if they were pointers, since that is what the function will receive if an array is passed:

f(a)

char *a;

{ ... }

This conversion holds only within function formal parameter declarations, nowhere else. If the conversion bothers you, avoid it; many people have concluded that the confusion it causes outweighs the small advantage of having the declaration ``look like'' the call or the uses within the function.

See also question 6.21.

References: K&R1 Sec. 5.3 p. 95, Sec. A10.1 p. 205
K&R2 Sec. 5.3 p. 100, Sec. A8.6.3 p. 218, Sec. A10.1 p. 226
ANSI Sec. 3.5.4.3, Sec. 3.7.1, Sec. 3.9.6
ISO Sec. 6.5.4.3, Sec. 6.7.1, Sec. 6.9.6
H&S Sec. 9.3 p. 271
CT&P Sec. 3.3 pp. 33-4

Question 6.7

How can an array be an lvalue, if you can't assign to it?

The ANSI C Standard defines a ``modifiable lvalue,'' which an array is not.

References: ANSI Sec. 3.2.2.1
ISO Sec. 6.2.2.1
Rationale Sec. 3.2.2.1
H&S Sec. 7.1 p. 179

Question 6.8

Practically speaking, what is the difference between arrays and pointers?

Arrays automatically allocate space, but can't be relocated or resized. Pointers must be explicitly assigned to point to allocated space (perhaps using malloc), but can be reassigned (i.e. pointed at different objects) at will, and have many other uses besides serving as the base of blocks of memory.

Due to the so-called equivalence of arrays and pointers (see question 6.3), arrays and pointers often seem interchangeable, and in particular a pointer to a block of memory assigned by malloc is frequently treated (and can be referenced using []) exactly as if it were a true array. See questions 6.14 and 6.16. (Be careful with sizeof, though.)

See also questions 1.32 and 20.14.

Question 6.9

Someone explained to me that arrays were really just constant pointers.

This is a bit of an oversimplification. An array name is ``constant'' in that it cannot be assigned to, but an array is not a pointer, as the discussion and pictures in question 6.2 should make clear. See also questions 6.3 and 6.8.

Question 6.11

I came across some ``joke'' code containing the ``expression'' 5["abcdef"] . How can this be legal C?

Yes, Virginia, array subscripting is commutative in C. This curious fact follows from the pointer definition of array subscripting, namely that a[e] is identical to *((a)+(e)), for any two expressions a and e, as long as one of them is a pointer expression and one is integral. This unsuspected commutativity is often mentioned in C texts as if it were something to be proud of, but it finds no useful application outside of the Obfuscated C Contest (see question 20.36).

References: Rationale Sec. 3.3.2.1
H&S Sec. 5.4.1 p. 124, Sec. 7.4.1 pp. 186-7

Question 6.12

Since array references decay into pointers, if arr is an array, what's the difference between arr and &arr?

The type.

In Standard C, &arr yields a pointer, of type pointer-to-array-of-T, to the entire array. (In pre-ANSI C, the & in &arr generally elicited a warning, and was generally ignored.) Under all C compilers, a simple reference (without an explicit &) to an array yields a pointer, of type pointer-to-T, to the array's first element. (See also questions 6.3, 6.13, and 6.18.)

References: ANSI Sec. 3.2.2.1, Sec. 3.3.3.2
ISO Sec. 6.2.2.1, Sec. 6.3.3.2
Rationale Sec. 3.3.3.2
H&S Sec. 7.5.6 p. 198

Question 6.13

How do I declare a pointer to an array?

Usually, you don't want to. When people speak casually of a pointer to an array, they usually mean a pointer to its first element.

Instead of a pointer to an array, consider using a pointer to one of the array's elements. Arrays of type T decay into pointers to type T (see question 6.3), which is convenient; subscripting or incrementing the resultant pointer will access the individual members of the array. True pointers to arrays, when subscripted or incremented, step over entire arrays, and are generally useful only when operating on arrays of arrays, if at all. (See question 6.18.)

If you really need to declare a pointer to an entire array, use something like ``int (*ap)[N];'' where N is the size of the array. (See also question 1.21.) If the size of the array is unknown, N can in principle be omitted, but the resulting type, ``pointer to array of unknown size,'' is useless.

See also question 6.12.

References: ANSI Sec. 3.2.2.1
ISO Sec. 6.2.2.1

Question 6.14

How can I set an array's size at run time?
How can I avoid fixed-sized arrays?

The equivalence between arrays and pointers (see question 6.3) allows a pointer to malloc'ed memory to simulate an array quite effectively. After executing

#include <stdlib.h>

int *dynarray = (int *)malloc(10 * sizeof(int));

(and if the call to malloc succeeds), you can reference dynarray[i] (for i from 0 to 9) just as if dynarray were a conventional, statically-allocated array (int a[10]). See also question 6.16.

Question 6.15

How can I declare local arrays of a size matching a passed-in array?

You can't, in C. Array dimensions must be compile-time constants. (gcc provides parameterized arrays as an extension.) You'll have to use malloc, and remember to call free before the function returns. See also questions 6.14, 6.16, 6.19, 7.22, and maybe 7.32.

References: ANSI Sec. 3.4, Sec. 3.5.4.2
ISO Sec. 6.4, Sec. 6.5.4.2

Question 6.16

How can I dynamically allocate a multidimensional array?

It is usually best to allocate an array of pointers, and then initialize each pointer to a dynamically-allocated ``row.'' Here is a two-dimensional example:

#include <stdlib.h>

int **array1 = (int **)malloc(nrows * sizeof(int *));

for(i = 0; i < nrows; i++)

array1[i] = (int *)malloc(ncolumns * sizeof(int));

(In real code, of course, all of malloc's return values would be checked.)

You can keep the array's contents contiguous, while making later reallocation of individual rows difficult, with a bit of explicit pointer arithmetic:

int **array2 = (int **)malloc(nrows * sizeof(int *));

array2[0] = (int *)malloc(nrows * ncolumns * sizeof(int));

for(i = 1; i < nrows; i++)

array2[i] = array2[0] + i * ncolumns;

In either case, the elements of the dynamic array can be accessed with normal-looking array subscripts: arrayx[i][j] (for 0 <= i < NROWS and 0 <= j < NCOLUMNS).

If the double indirection implied by the above schemes is for some reason unacceptable, you can simulate a two-dimensional array with a single, dynamically-allocated one-dimensional array:

int *array3 = (int *)malloc(nrows * ncolumns * sizeof(int));

However, you must now perform subscript calculations manually, accessing the i,jth element with array3[i * ncolumns + j]. (A macro could hide the explicit calculation, but invoking it would require parentheses and commas which wouldn't look exactly like multidimensional array syntax, and the macro would need access to at least one of the dimensions, as well. See also question 6.19.)

Finally, you could use pointers to arrays:

int (*array4)[NCOLUMNS] =

(int (*)[NCOLUMNS])malloc(nrows * sizeof(*array4));

but the syntax starts getting horrific and at most one dimension may be specified at run time.

With all of these techniques, you may of course need to remember to free the arrays (which may take several steps; see question 7.23) when they are no longer needed, and you cannot necessarily intermix dynamically-allocated arrays with conventional, statically-allocated ones (see question 6.20, and also question 6.18).

All of these techniques can also be extended to three or more dimensions.

Question 6.17

Here's a neat trick: if I write

int realarray[10];

int *array = &realarray[-1];

I can treat array as if it were a 1-based array.

Although this technique is attractive (and was used in old editions of the book Numerical Recipes in C), it does not conform to the C standards. Pointer arithmetic is defined only as long as the pointer points within the same allocated block of memory, or to the imaginary ``terminating'' element one past it; otherwise, the behavior is undefined, even if the pointer is not dereferenced. The code above could fail if, while subtracting the offset, an illegal address were generated (perhaps because the address tried to ``wrap around'' past the beginning of some memory segment).

References: K&R2 Sec. 5.3 p. 100, Sec. 5.4 pp. 102-3, Sec. A7.7 pp. 205-6
ANSI Sec. 3.3.6
ISO Sec. 6.3.6
Rationale Sec. 3.2.2.3

Question 6.18

My compiler complained when I passed a two-dimensional array to a function expecting a pointer to a pointer.

The rule (see question 6.3) by which arrays decay into pointers is not applied recursively. An array of arrays (i.e. a two-dimensional array in C) decays into a pointer to an array, not a pointer to a pointer. Pointers to arrays can be confusing, and must be treated carefully; see also question 6.13. (The confusion is heightened by the existence of incorrect compilers, including some old versions of pcc and pcc-derived lints, which improperly accept assignments of multi-dimensional arrays to multi-level pointers.)

If you are passing a two-dimensional array to a function:

int array[NROWS][NCOLUMNS];

f(array);

the function's declaration must match:

f(int a[][NCOLUMNS])

{ ... }

or

f(int (*ap)[NCOLUMNS])
/* ap is a pointer to an array */

{ ... }

In the first declaration, the compiler performs the usual implicit parameter rewriting of ``array of array'' to ``pointer to array'' (see questions 6.3 and 6.4); in the second form the pointer declaration is explicit. Since the called function does not allocate space for the array, it does not need to know the overall size, so the number of rows, NROWS, can be omitted. The ``shape'' of the array is still important, so the column dimension NCOLUMNS (and, for three- or more dimensional arrays, the intervening ones) must be retained.

If a function is already declared as accepting a pointer to a pointer, it is probably meaningless to pass a two-dimensional array directly to it.

See also questions 6.12 and 6.15.

References: K&R1 Sec. 5.10 p. 110
K&R2 Sec. 5.9 p. 113
H&S Sec. 5.4.3 p. 126

Question 6.19

How do I write functions which accept two-dimensional arrays when the ``width'' is not known at compile time?

It's not easy. One way is to pass in a pointer to the [0][0] element, along with the two dimensions, and simulate array subscripting ``by hand:''

f2(aryp, nrows, ncolumns)

int *aryp;

int nrows, ncolumns;

{ ... array[i][j] is accessed as aryp[i * ncolumns + j] ... }

This function could be called with the array from question 6.18 as

f2(&array[0][0], NROWS, NCOLUMNS);

It must be noted, however, that a program which performs multidimensional array subscripting ``by hand'' in this way is not in strict conformance with the ANSI C Standard; according to an official interpretation, the behavior of accessing (&array[0][0])[x] is not defined for x >= NCOLUMNS.

gcc allows local arrays to be declared having sizes which are specified by a function's arguments, but this is a nonstandard extension.

When you want to be able to use a function on multidimensional arrays of various sizes, one solution is to simulate all the arrays dynamically, as in question 6.16.

See also questions 6.18, 6.20, and 6.15.

References: ANSI Sec. 3.3.6
ISO Sec. 6.3.6

Question 6.20

How can I use statically- and dynamically-allocated multidimensional arrays interchangeably when passing them to functions?

There is no single perfect method. Given the declarations

int array[NROWS][NCOLUMNS];

int **array1;

/* ragged */

int **array2;

/* contiguous */

int *array3;

/* "flattened" */

int (*array4)[NCOLUMNS];

with the pointers initialized as in the code fragments in question 6.16, and functions declared as

f1(int a[][NCOLUMNS], int nrows, int ncolumns);

f2(int *aryp, int nrows, int ncolumns);

f3(int **pp, int nrows, int ncolumns);

where f1 accepts a conventional two-dimensional array, f2 accepts a ``flattened'' two-dimensional array, and f3 accepts a pointer-to-pointer, simulated array (see also questions 6.18 and 6.19), the following calls should work as expected:

f1(array, NROWS, NCOLUMNS);

f1(array4, nrows, NCOLUMNS);

f2(&array[0][0], NROWS, NCOLUMNS);

f2(*array, NROWS, NCOLUMNS);

f2(*array2, nrows, ncolumns);

f2(array3, nrows, ncolumns);

f2(*array4, nrows, NCOLUMNS);

f3(array1, nrows, ncolumns);

f3(array2, nrows, ncolumns);

The following two calls would probably work on most systems, but involve questionable casts, and work only if the dynamic ncolumns matches the static NCOLUMNS:

f1((int (*)[NCOLUMNS])(*array2), nrows, ncolumns);

f1((int (*)[NCOLUMNS])array3, nrows, ncolumns);

It must again be noted that passing &array[0][0] (or, equivalently, *array) to f2 is not strictly conforming; see question 6.19.

If you can understand why all of the above calls work and are written as they are, and if you understand why the combinations that are not listed would not work, then you have a very good understanding of arrays and pointers in C.

Rather than worrying about all of this, one approach to using multidimensional arrays of various sizes is to make them all dynamic, as in question 6.16. If there are no static multidimensional arrays--if all arrays are allocated like array1 or array2 in question 6.16--then all functions can be written like f3.

Question 6.21

Why doesn't sizeof properly report the size of an array when the array is a parameter to a function?

The compiler pretends that the array parameter was declared as a pointer (see question 6.4), and sizeof reports the size of the pointer.

References: H&S Sec. 7.5.2 p. 195

Question 7.1

Why doesn't this fragment work?

char *answer;

printf("Type something:\n");

gets(answer);

printf("You typed \"%s\"\n", answer);

The pointer variable answer, which is handed to gets() as the location into which the response should be stored, has not been set to point to any valid storage. That is, we cannot say where the pointer answer points. (Since local variables are not initialized, and typically contain garbage, it is not even guaranteed that answer starts out as a null pointer. See questions 1.30 and 5.1.)

The simplest way to correct the question-asking program is to use a local array, instead of a pointer, and let the compiler worry about allocation:

#include <stdio.h>

#include <string.h>

char answer[100], *p;

printf("Type something:\n");

fgets(answer, sizeof answer, stdin);

if((p = strchr(answer, '\n')) != NULL)

*p = '\0';

printf("You typed \"%s\"\n", answer);

This example also uses fgets() instead of gets(), so that the end of the array cannot be overwritten. (See question 12.23. Unfortunately for this example, fgets() does not automatically delete the trailing \n, gets() would.) It would also be possible to use malloc() to allocate the answer buffer.

Question 7.2

I can't get strcat to work. I tried

char *s1 = "Hello, ";

char *s2 = "world!";

char *s3 = strcat(s1, s2);

but I got strange results.

As in question 7.1, the main problem here is that space for the concatenated result is not properly allocated. C does not provide an automatically-managed string type. C compilers only allocate memory for objects explicitly mentioned in the source code (in the case of ``strings,'' this includes character arrays and string literals). The programmer must arrange for sufficient space for the results of run-time operations such as string concatenation, typically by declaring arrays, or by calling malloc.

strcat performs no allocation; the second string is appended to the first one, in place. Therefore, one fix would be to declare the first string as an array:

char s1[20] = "Hello, ";

Since strcat returns the value of its first argument (s1, in this case), the variable s3 is superfluous.

The original call to strcat in the question actually has two problems: the string literal pointed to by s1, besides not being big enough for any concatenated text, is not necessarily writable at all. See question 1.32.

References: CT&P Sec. 3.2 p. 32

Question 7.3

But the man page for strcat says that it takes two char *'s as arguments. How am I supposed to know to allocate things?

In general, when using pointers you always have to consider memory allocation, if only to make sure that the compiler is doing it for you. If a library function's documentation does not explicitly mention allocation, it is usually the caller's problem.

The Synopsis section at the top of a Unix-style man page or in the ANSI C standard can be misleading. The code fragments presented there are closer to the function definitions used by an implementor than the invocations used by the caller. In particular, many functions which accept pointers (e.g. to structures or strings) are usually called with the address of some object (a structure, or an array--see questions 6.3 and 6.4). Other common examples are time (see question 13.12) and stat.

Question 7.5

I have a function that is supposed to return a string, but when it returns to its caller, the returned string is garbage.

Make sure that the pointed-to memory is properly allocated. The returned pointer should be to a statically-allocated buffer, or to a buffer passed in by the caller, or to memory obtained with malloc, but not to a local (automatic) array. In other words, never do something like

char *itoa(int n)

{

char retbuf[20];

/* WRONG */

sprintf(retbuf, "%d", n);

return retbuf;

/* WRONG */

}

One fix (which is imperfect, especially if the function in question is called recursively, or if several of its return values are needed simultaneously) would be to declare the return buffer as

static char retbuf[20];

See also questions 12.21 and 20.1.

References: ANSI Sec. 3.1.2.4
ISO Sec. 6.1.2.4

Question 7.6

Why am I getting ``warning: assignment of pointer from integer lacks a cast'' for calls to malloc?

Have you #included <stdlib.h>, or otherwise arranged for malloc to be declared properly?

References: H&S Sec. 4.7 p. 101

Question 7.7

Why does some code carefully cast the values returned by malloc to the pointer type being allocated?

Before ANSI/ISO Standard C introduced the void * generic pointer type, these casts were typically required to silence warnings (and perhaps induce conversions) when assigning between incompatible pointer types. (Under ANSI/ISO Standard C, these casts are no longer necessary.)

References: H&S Sec. 16.1 pp. 386-7

Question 7.8

I see code like

char *p = malloc(strlen(s) + 1);

strcpy(p, s);

Shouldn't that be malloc((strlen(s) + 1) * sizeof(char))?

It's never necessary to multiply by sizeof(char), since sizeof(char) is, by definition, exactly 1. (On the other hand, multiplying by sizeof(char) doesn't hurt, and may help by introducing a size_t into the expression.) See also question 8.9.

References: ANSI Sec. 3.3.3.4
ISO Sec. 6.3.3.4
H&S Sec. 7.5.2 p. 195

Question 7.14

I've heard that some operating systems don't actually allocate malloc'ed memory until the program tries to use it. Is this legal?

It's hard to say. The Standard doesn't say that systems can act this way, but it doesn't explicitly say that they can't, either.

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3

Question 7.16

I'm allocating a large array for some numeric work, using the line

double *array = malloc(256 * 256 * sizeof(double));

malloc isn't returning null, but the program is acting strangely, as if it's overwriting memory, or malloc isn't allocating as much as I asked for, or something.

Notice that 256 x 256 is 65,536, which will not fit in a 16-bit int, even before you multiply it by sizeof(double). If you need to allocate this much memory, you'll have to be careful. If size_t (the type accepted by malloc) is a 32-bit type on your machine, but int is 16 bits, you might be able to get away with writing 256 * (256 * sizeof(double)) (see question 3.14). Otherwise, you'll have to break your data structure up into smaller chunks, or use a 32-bit machine, or use some nonstandard memory allocation routines. See also question 19.23.

Question 7.17

I've got 8 meg of memory in my PC. Why can I only seem to malloc 640K or so?

Under the segmented architecture of PC compatibles, it can be difficult to use more than 640K with any degree of transparency. See also question 19.23.

Question 7.19

My program is crashing, apparently somewhere down inside malloc, but I can't see anything wrong with it.

It is unfortunately very easy to corrupt malloc's internal data structures, and the resulting problems can be stubborn. The most common source of problems is writing more to a malloc'ed region than it was allocated to hold; a particularly common bug is to malloc(strlen(s)) instead of strlen(s) + 1. Other problems may involve using pointers to freed storage, freeing pointers twice, freeing pointers not obtained from malloc, or trying to realloc a null pointer (see question 7.30).

See also questions 7.26, 16.8, and 18.2.

Question 7.20

You can't use dynamically-allocated memory after you free it, can you?

No. Some early documentation for malloc stated that the contents of freed memory were ``left undisturbed,'' but this ill-advised guarantee was never universal and is not required by the C Standard.

Few programmers would use the contents of freed memory deliberately, but it is easy to do so accidentally. Consider the following (correct) code for freeing a singly-linked list:

struct list *listp, *nextp;

for(listp = base; listp != NULL; listp = nextp) {

nextp = listp->next;

free((void *)listp);

}

and notice what would happen if the more-obvious loop iteration expression listp = listp->next were used, without the temporary nextp pointer.

References: K&R2 Sec. 7.8.5 p. 167
ANSI Sec. 4.10.3
ISO Sec. 7.10.3
Rationale Sec. 4.10.3.2
H&S Sec. 16.2 p. 387
CT&P Sec. 7.10 p. 95

Question 7.21

Why isn't a pointer null after calling free?
How unsafe is it to use (assign, compare) a pointer value after it's been freed?

When you call free, the memory pointed to by the passed pointer is freed, but the value of the pointer in the caller remains unchanged, because C's pass-by-value semantics mean that called functions never permanently change the values of their arguments. (See also question 4.8.)

A pointer value which has been freed is, strictly speaking, invalid, and any use of it, even if is not dereferenced can theoretically lead to trouble, though as a quality of implementation issue, most implementations will probably not go out of their way to generate exceptions for innocuous uses of invalid pointers.

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3
Rationale Sec. 3.2.2.3

Question 7.22

When I call malloc to allocate memory for a local pointer, do I have to explicitly free it?

Yes. Remember that a pointer is different from what it points to. Local variables are deallocated when the function returns, but in the case of a pointer variable, this means that the pointer is deallocated, not what it points to. Memory allocated with malloc always persists until you explicitly free it. In general, for every call to malloc, there should be a corresponding call to free.

Question 7.23

I'm allocating structures which contain pointers to other dynamically-allocated objects. When I free a structure, do I have to free each subsidiary pointer first?

Yes. In general, you must arrange that each pointer returned from malloc be individually passed to free, exactly once (if it is freed at all).

A good rule of thumb is that for each call to malloc in a program, you should be able to point at the call to free which frees the memory allocated by that malloc call.

See also question 7.24.

Question 7.24

Must I free allocated memory before the program exits?

You shouldn't have to. A real operating system definitively reclaims all memory when a program exits. Nevertheless, some personal computers are said not to reliably recover memory, and all that can be inferred from the ANSI/ISO C Standard is that this is a ``quality of implementation issue.''

References: ANSI Sec. 4.10.3.2
ISO Sec. 7.10.3.2

Question 7.25

I have a program which mallocs and later frees a lot of memory, but memory usage (as reported by ps) doesn't seem to go back down.

Most implementations of malloc/free do not return freed memory to the operating system (if there is one), but merely make it available for future malloc calls within the same program.

Question 7.26

How does free know how many bytes to free?

The malloc/free implementation remembers the size of each block allocated and returned, so it is not necessary to remind it of the size when freeing.

Question 7.27

So can I query the malloc package to find out how big an allocated block is?

Not portably.

Question 7.30

Is it legal to pass a null pointer as the first argument to realloc? Why would you want to?

ANSI C sanctions this usage (and the related realloc(..., 0), which frees), although several earlier implementations do not support it, so it may not be fully portable. Passing an initially-null pointer to realloc can make it easier to write a self-starting incremental allocation algorithm.

References: ANSI Sec. 4.10.3.4
ISO Sec. 7.10.3.4
H&S Sec. 16.3 p. 388

Question 7.31

What's the difference between calloc and malloc? Is it safe to take advantage of calloc's zero-filling? Does free work on memory allocated with calloc, or do you need a cfree?

calloc(m, n) is essentially equivalent to

p = malloc(m * n);

memset(p, 0, m * n);

The zero fill is all-bits-zero, and does not therefore guarantee useful null pointer values (see section 5 of this list) or floating-point zero values. free is properly used to free the memory allocated by calloc.

References: ANSI Sec. 4.10.3 to 4.10.3.2
ISO Sec. 7.10.3 to 7.10.3.2
H&S Sec. 16.1 p. 386, Sec. 16.2 p. 386
PCS Sec. 11 pp. 141,142

Question 7.32

What is alloca and why is its use discouraged?

alloca allocates memory which is automatically freed when the function which called alloca returns. That is, memory allocated with alloca is local to a particular function's ``stack frame'' or context.

alloca cannot be written portably, and is difficult to implement on machines without a conventional stack. Its use is problematical (and the obvious implementation on a stack-based machine fails) when its return value is passed directly to another function, as in fgets(alloca(100), 100, stdin).

For these reasons, alloca is not Standard and cannot be used in programs which must be widely portable, no matter how useful it might be.

See also question 7.22.

References: Rationale Sec. 4.10.3

Question 8.1

Why doesn't

strcat(string, '!');

work?

There is a very real difference between characters and strings, and strcat concatenates strings.

Characters in C are represented by small integers corresponding to their character set values (see also question 8.6). Strings are represented by arrays of characters; you usually manipulate a pointer to the first character of the array. It is never correct to use one when the other is expected. To append a ! to a string, use

strcat(string, "!");

See also questions 1.32, 7.2, and 16.6.

References: CT&P Sec. 1.5 pp. 9-10

Question 8.2

I'm checking a string to see if it matches a particular value. Why isn't this code working?

char *string;

...

if(string == "value") {

/* string matches "value" */

...

}

Strings in C are represented as arrays of characters, and C never manipulates (assigns, compares, etc.) arrays as a whole. The == operator in the code fragment above compares two pointers--the value of the pointer variable string and a pointer to the string literal "value"--to see if they are equal, that is, if they point to the same place. They probably don't, so the comparison never succeeds.

To compare two strings, you generally use the library function strcmp:

if(strcmp(string, "value") == 0) {

/* string matches "value" */

...

}

Question 8.3

If I can say

char a[] = "Hello, world!";

why can't I say

char a[14];

a = "Hello, world!";

Strings are arrays, and you can't assign arrays directly. Use strcpy instead:

strcpy(a, "Hello, world!");

See also questions 1.32, 4.2, and 7.2.

Question 8.6

How can I get the numeric (character set) value corresponding to a character, or vice versa?

In C, characters are represented by small integers corresponding to their values (in the machine's character set), so you don't need a conversion routine: if you have the character, you have its value.

Question 8.9

I think something's wrong with my compiler: I just noticed that sizeof('a') is 2, not 1 (i.e. not sizeof(char)).

Perhaps surprisingly, character constants in C are of type int, so sizeof('a') is sizeof(int) (though it's different in C++). See also question 7.8.

References: ANSI Sec. 3.1.3.4
ISO Sec. 6.1.3.4
H&S Sec. 2.7.3 p. 29

Question 9.1

What is the right type to use for Boolean values in C? Why isn't it a standard type? Should I use #defines or enums for the true and false values?

C does not provide a standard Boolean type, in part because picking one involves a space/time tradeoff which can best be decided by the programmer. (Using an int may be faster, while using char may save data space. Smaller types may make the generated code bigger or slower, though, if they require lots of conversions to and from int.)

The choice between #defines and enumeration constants for the true/false values is arbitrary and not terribly interesting (see also questions 2.22 and 17.10). Use any of

#define TRUE 1
#define YES 1

#define FALSE 0
#define NO 0

enum bool {false, true};
enum bool {no, yes};

or use raw 1 and 0, as long as you are consistent within one program or project. (An enumeration may be preferable if your debugger shows the names of enumeration constants when examining variables.)

Some people prefer variants like

#define TRUE (1==1)

#define FALSE (!TRUE)

or define ``helper'' macros such as

#define Istrue(e) ((e) != 0)

These don't buy anything (see question 9.2; see also questions 5.12 and 10.2).

Question 9.2

Isn't #defining TRUE to be 1 dangerous, since any nonzero value is considered ``true'' in C? What if a built-in logical or relational operator ``returns'' something other than 1?

It is true (sic) that any nonzero value is considered true in C, but this applies only ``on input'', i.e. where a Boolean value is expected. When a Boolean value is generated by a built-in operator, it is guaranteed to be 1 or 0. Therefore, the test

if((a == b) == TRUE)

would work as expected (as long as TRUE is 1), but it is obviously silly. In general, explicit tests against TRUE and FALSE are inappropriate, because some library functions (notably isupper, isalpha, etc.) return, on success, a nonzero value which is not necessarily 1. (Besides, if you believe that ``if((a == b) == TRUE)'' is an improvement over ``if(a == b)'', why stop there? Why not use ``if(((a == b) == TRUE) == TRUE)''?) A good rule of thumb is to use TRUE and FALSE (or the like) only for assignment to a Boolean variable or function parameter, or as the return value from a Boolean function, but never in a comparison.

The preprocessor macros TRUE and FALSE (and, of course, NULL) are used for code readability, not because the underlying values might ever change. (See also questions 5.3 and 5.10.)

On the other hand, Boolean values and definitions can evidently be confusing, and some programmers feel that TRUE and FALSE macros only compound the confusion. (See also question 5.9.)

References: K&R1 Sec. 2.6 p. 39, Sec. 2.7 p. 41
K&R2 Sec. 2.6 p. 42, Sec. 2.7 p. 44, Sec. A7.4.7 p. 204, Sec. A7.9 p. 206
ANSI Sec. 3.3.3.3, Sec. 3.3.8, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec. 3.6.5
ISO Sec. 6.3.3.3, Sec. 6.3.8, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec. 6.6.5
H&S Sec. 7.5.4 pp. 196-7, Sec. 7.6.4 pp. 207-8, Sec. 7.6.5 pp. 208-9, Sec. 7.7 pp. 217-8, Sec. 7.8 pp. 218-9, Sec. 8.5 pp. 238-9, Sec. 8.6 pp. 241-4
``What the Tortoise Said to Achilles''

Question 9.3

Is if(p), where p is a pointer, a valid conditional?

Yes. See question 5.3.

