Question 3.1

Why doesn't this code:

a[i] = i++;

work?

The subexpression i++ causes a side effect--it modifies i's value--which leads to undefined behavior since i is also referenced elsewhere in the same expression. (Note that although the language in K&R suggests that the behavior of this expression is unspecified, the C Standard makes the stronger statement that it is undefined--see question 11.33.)

References: K&R1 Sec. 2.12
K&R2 Sec. 2.12
ANSI Sec. 3.3
ISO Sec. 6.3

Question 3.2

Under my compiler, the code

int i = 7;

printf("%d\n", i++ * i++);

prints 49. Regardless of the order of evaluation, shouldn't it print 56?

Although the postincrement and postdecrement operators ++ and -- perform their operations after yielding the former value, the implication of ``after'' is often misunderstood. It is not guaranteed that an increment or decrement is performed immediately after giving up the previous value and before any other part of the expression is evaluated. It is merely guaranteed that the update will be performed sometime before the expression is considered ``finished'' (before the next ``sequence point,'' in ANSI C's terminology; see question 3.8). In the example, the compiler chose to multiply the previous value by itself and to perform both increments afterwards.

The behavior of code which contains multiple, ambiguous side effects has always been undefined. (Loosely speaking, by ``multiple, ambiguous side effects'' we mean any combination of ++, --, =, +=, -=, etc. in a single expression which causes the same object either to be modified twice or modified and then inspected. This is a rough definition; see question 3.8 for a precise one, and question 11.33 for the meaning of ``undefined.'') Don't even try to find out how your compiler implements such things (contrary to the ill-advised exercises in many C textbooks); as K&R wisely point out, ``if you don't know how they are done on various machines, that innocence may help to protect you.''

References: K&R1 Sec. 2.12 p. 50
K&R2 Sec. 2.12 p. 54
ANSI Sec. 3.3
ISO Sec. 6.3
CT&P Sec. 3.7 p. 47
PCS Sec. 9.5 pp. 120-1

Question 3.3

I've experimented with the code

int i = 3;

i = i++;

on several compilers. Some gave i the value 3, some gave 4, but one gave 7. I know the behavior is undefined, but how could it give 7?

Undefined behavior means anything can happen. See questions 3.9 and 11.33. (Also, note that neither i++ nor ++i is the same as i+1. If you want to increment i, use i=i+1 or i++ or ++i, not some combination. See also question 3.12.)

Question 3.4

Can I use explicit parentheses to force the order of evaluation I want? Even if I don't, doesn't precedence dictate it?

Not in general.

Operator precedence and explicit parentheses impose only a partial ordering on the evaluation of an expression. In the expression

f() + g() * h()

although we know that the multiplication will happen before the addition, there is no telling which of the three functions will be called first.

When you need to ensure the order of subexpression evaluation, you may need to use explicit temporary variables and separate statements.

References: K&R1 Sec. 2.12 p. 49, Sec. A.7 p. 185
K&R2 Sec. 2.12 pp. 52-3, Sec. A.7 p. 200

Question 3.5

But what about the && and || operators?
I see code like ``while((c = getchar()) != EOF && c != '\n')'' ...

There is a special exception for those operators (as well as the ?: operator): left-to-right evaluation is guaranteed (as is an intermediate sequence point, see question 3.8). Any book on C should make this clear.

References: K&R1 Sec. 2.6 p. 38, Secs. A7.11-12 pp. 190-1
K&R2 Sec. 2.6 p. 41, Secs. A7.14-15 pp. 207-8
ANSI Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15
ISO Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15
H&S Sec. 7.7 pp. 217-8, Sec. 7.8 pp. 218-20, Sec. 7.12.1 p. 229
CT&P Sec. 3.7 pp. 46-7

Question 3.8

How can I understand these complex expressions? What's a ``sequence point''?

A sequence point is the point (at the end of a full expression, or at the ||, &&, ?:, or comma operators, or just before a function call) at which the dust has settled and all side effects are guaranteed to be complete. The ANSI/ISO C Standard states that

Between the previous and next sequence point an object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.

The second sentence can be difficult to understand. It says that if an object is written to within a full expression, any and all accesses to it within the same expression must be for the purposes of computing the value to be written. This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.

See also question 3.9.

References: ANSI Sec. 2.1.2.3, Sec. 3.3, Appendix B
ISO Sec. 5.1.2.3, Sec. 6.3, Annex C
Rationale Sec. 2.1.2.3
H&S Sec. 7.12.1 pp. 228-9

Question 3.9

So given

a[i] = i++;

we don't know which cell of a[] gets written to, but i does get incremented by one.

No. Once an expression or program becomes undefined, all aspects of it become undefined. See questions 3.2, 3.3, 11.33, and 11.35.

Question 3.12

If I'm not using the value of the expression, should I use i++ or ++i to increment a variable?

Since the two forms differ only in the value yielded, they are entirely equivalent when only their side effect is needed.

See also question 3.3.

References: K&R1 Sec. 2.8 p. 43
K&R2 Sec. 2.8 p. 47
ANSI Sec. 3.3.2.4, Sec. 3.3.3.1
ISO Sec. 6.3.2.4, Sec. 6.3.3.1
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5.8 pp. 199-200

Question 3.14

Why doesn't the code

int a = 1000, b = 1000;

long int c = a * b;

work?

Under C's integral promotion rules, the multiplication is carried out using int arithmetic, and the result may overflow or be truncated before being promoted and assigned to the long int left-hand side. Use an explicit cast to force long arithmetic:

long int c = (long int)a * b;

Note that (long int)(a * b) would not have the desired effect.

A similar problem can arise when two integers are divided, with the result assigned to a floating-point variable.

References: K&R1 Sec. 2.7 p. 41
K&R2 Sec. 2.7 p. 44
ANSI Sec. 3.2.1.5
ISO Sec. 6.2.1.5
H&S Sec. 6.3.4 p. 176
CT&P Sec. 3.9 pp. 49-50

Question 3.16

I have a complicated expression which I have to assign to one of two variables, depending on a condition. Can I use code like this?

((condition) ? a : b) = complicated_expression;

No. The ?: operator, like most operators, yields a value, and you can't assign to a value. (In other words, ?: does not yield an lvalue.) If you really want to, you can try something like

*((condition) ? &a : &b) = complicated_expression;

although this is admittedly not as pretty.

References: ANSI Sec. 3.3.15 esp. footnote 50
ISO Sec. 6.3.15
H&S Sec. 7.1 pp. 179-180

Question 4.2

I'm trying to declare a pointer and allocate some space for it, but it's not working. What's wrong with this code?

char *p;

*p = malloc(10);

The pointer you declared is p, not *p. To make a pointer point somewhere, you just use the name of the pointer:

p = malloc(10);

It's when you're manipulating the pointed-to memory that you use * as an indirection operator:

*p = 'H';

See also questions 1.21, 7.1, and 8.3.

References: CT&P Sec. 3.1 p. 28

Question 4.3

Does *p++ increment p, or what it points to?

Unary operators like *, ++, and -- all associate (group) from right to left. Therefore, *p++ increments p (and returns the value pointed to by p before the increment). To increment the value pointed to by p, use (*p)++ (or perhaps ++*p, if the order of the side effect doesn't matter).

References: K&R1 Sec. 5.1 p. 91
K&R2 Sec. 5.1 p. 95
ANSI Sec. 3.3.2, Sec. 3.3.3
ISO Sec. 6.3.2, Sec. 6.3.3
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5 p. 193, Secs. 7.5.7,7.5.8 pp. 199-200

Question 4.5

I have a char * pointer that happens to point to some ints, and I want to step it over them. Why doesn't

((int *)p)++;

work?

In C, a cast operator does not mean ``pretend these bits have a different type, and treat them accordingly''; it is a conversion operator, and by definition it yields an rvalue, which cannot be assigned to, or incremented with ++. (It is an anomaly in pcc-derived compilers, and an extension in gcc, that expressions such as the above are ever accepted.) Say what you mean: use

p = (char *)((int *)p + 1);

or (since p is a char *) simply

p += sizeof(int);

Whenever possible, you should choose appropriate pointer types in the first place, instead of trying to treat one type as another.

References: K&R2 Sec. A7.5 p. 205
ANSI Sec. 3.3.4 (esp. footnote 14)
ISO Sec. 6.3.4
Rationale Sec. 3.3.2.4
H&S Sec. 7.1 pp. 179-80

Question 4.8

I have a function which accepts, and is supposed to initialize, a pointer:

void f(ip)

int *ip;

{

static int dummy = 5;

ip = &dummy;

}

But when I call it like this:

int *ip;

f(ip);

the pointer in the caller remains unchanged.

Are you sure the function initialized what you thought it did? Remember that arguments in C are passed by value. The called function altered only the passed copy of the pointer. You'll either want to pass the address of the pointer (the function will end up accepting a pointer-to-a-pointer), or have the function return the pointer.

See also questions 4.9 and 4.11.

Question 4.9

Can I use a void ** pointer to pass a generic pointer to a function by reference?

Not portably. There is no generic pointer-to-pointer type in C. void * acts as a generic pointer only because conversions are applied automatically when other pointer types are assigned to and from void *'s; these conversions cannot be performed (the correct underlying pointer type is not known) if an attempt is made to indirect upon a void ** value which points at something other than a void *.

Question 4.10

I have a function

extern int f(int *);

which accepts a pointer to an int. How can I pass a constant by reference? A call like

f(&5);

doesn't seem to work.

You can't do this directly. You will have to declare a temporary variable, and then pass its address to the function:

int five = 5;

f(&five);

See also questions 2.10, 4.8, and 20.1.

Question 4.11

Does C even have ``pass by reference''?

Not really. Strictly speaking, C always uses pass by value. You can simulate pass by reference yourself, by defining functions which accept pointers and then using the & operator when calling, and the compiler will essentially simulate it for you when you pass an array to a function (by passing a pointer instead, see question 6.4 et al.), but C has nothing truly equivalent to formal pass by reference or C++ reference parameters. (However, function-like preprocessor macros do provide a form of ``call by name''.)

See also questions 4.8 and 20.1.

References: K&R1 Sec. 1.8 pp. 24-5, Sec. 5.2 pp. 91-3
K&R2 Sec. 1.8 pp. 27-8, Sec. 5.2 pp. 91-3
ANSI Sec. 3.3.2.2, esp. footnote 39
ISO Sec. 6.3.2.2
H&S Sec. 9.5 pp. 273-4

Question 4.12

I've seen different methods used for calling functions via pointers. What's the story?

Originally, a pointer to a function had to be ``turned into'' a ``real'' function, with the * operator (and an extra pair of parentheses, to keep the precedence straight), before calling:

int r, func(), (*fp)() = func;

r = (*fp)();

It can also be argued that functions are always called via pointers, and that ``real'' function names always decay implicitly into pointers (in expressions, as they do in initializations; see question 1.34). This reasoning, made widespread through pcc and adopted in the ANSI standard, means that

r = fp();

is legal and works correctly, whether fp is the name of a function or a pointer to one. (The usage has always been unambiguous; there is nothing you ever could have done with a function pointer followed by an argument list except call the function pointed to.) An explicit * is still allowed (and recommended, if portability to older compilers is important).

See also question 1.34.

References: K&R1 Sec. 5.12 p. 116
K&R2 Sec. 5.11 p. 120
ANSI Sec. 3.3.2.2
ISO Sec. 6.3.2.2
Rationale Sec. 3.3.2.2
H&S Sec. 5.8 p. 147, Sec. 7.4.3 p. 190

Question 5.1

What is this infamous null pointer, anyway?

The language definition states that for each pointer type, there is a special value--the ``null pointer''--which is distinguishable from all other pointer values and which is ``guaranteed to compare unequal to a pointer to any object or function.'' That is, the address-of operator & will never yield a null pointer, nor will a successful call to malloc. (malloc does return a null pointer when it fails, and this is a typical use of null pointers: as a ``special'' pointer value with some other meaning, usually ``not allocated'' or ``not pointing anywhere yet.'')

A null pointer is conceptually different from an uninitialized pointer. A null pointer is known not to point to any object or function; an uninitialized pointer might point anywhere. See also questions 1.30, 7.1, and 7.31.

As mentioned above, there is a null pointer for each pointer type, and the internal values of null pointers for different types may be different. Although programmers need not know the internal values, the compiler must always be informed which type of null pointer is required, so that it can make the distinction if necessary (see questions 5.2, 5.5, and 5.6).

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102
ANSI Sec. 3.2.2.3
ISO Sec. 6.2.2.3
Rationale Sec. 3.2.2.3
H&S Sec. 5.3.2 pp. 121-3

Question 5.2

How do I get a null pointer in my programs?

According to the language definition, a constant 0 in a pointer context is converted into a null pointer at compile time. That is, in an initialization, assignment, or comparison when one side is a variable or expression of pointer type, the compiler can tell that a constant 0 on the other side requests a null pointer, and generate the correctly-typed null pointer value. Therefore, the following fragments are perfectly legal:

char *p = 0;

if(p != 0)

(See also question 5.3.)

However, an argument being passed to a function is not necessarily recognizable as a pointer context, and the compiler may not be able to tell that an unadorned 0 ``means'' a null pointer. To generate a null pointer in a function call context, an explicit cast may be required, to force the 0 to be recognized as a pointer. For example, the Unix system call execl takes a variable-length, null-pointer-terminated list of character pointer arguments, and is correctly called like this:

execl("/bin/sh", "sh", "-c", "date", (char *)0);

If the (char *) cast on the last argument were omitted, the compiler would not know to pass a null pointer, and would pass an integer 0 instead. (Note that many Unix manuals get this example wrong .)

When function prototypes are in scope, argument passing becomes an ``assignment context,'' and most casts may safely be omitted, since the prototype tells the compiler that a pointer is required, and of which type, enabling it to correctly convert an unadorned 0. Function prototypes cannot provide the types for variable arguments in variable-length argument lists however, so explicit casts are still required for those arguments. (See also question 15.3.) It is safest to properly cast all null pointer constants in function calls: to guard against varargs functions or those without prototypes, to allow interim use of non-ANSI compilers, and to demonstrate that you know what you are doing. (Incidentally, it's also a simpler rule to remember.)

Summary:

Unadorned 0 okay:
Explicit cast required:

initialization

function call,

no prototype in scope

assignment

variable argument in

comparison

varargs function call

function call,

prototype in scope,

fixed argument

References: K&R1 Sec. A7.7 p. 190, Sec. A7.14 p. 192
K&R2 Sec. A7.10 p. 207, Sec. A7.17 p. 209
ANSI Sec. 3.2.2.3

Question 5.3

Is the abbreviated pointer comparison ``if(p)'' to test for non-null pointers valid? What if the internal representation for null pointers is nonzero?

When C requires the Boolean value of an expression (in the if, while, for, and do statements, and with the &&, ||, !, and ?: operators), a false value is inferred when the expression compares equal to zero, and a true value otherwise. That is, whenever one writes

if(expr)

where ``expr'' is any expression at all, the compiler essentially acts as if it had been written as

if((expr) != 0)

Substituting the trivial pointer expression ``p'' for ``expr,'' we have

if(p)
is equivalent to
if(p != 0)

and this is a comparison context, so the compiler can tell that the (implicit) 0 is actually a null pointer constant, and use the correct null pointer value. There is no trickery involved here; compilers do work this way, and generate identical code for both constructs. The internal representation of a null pointer does not matter.

The boolean negation operator, !, can be described as follows:

!expr
is essentially equivalent to
(expr)?0:1

or to
((expr) == 0)

which leads to the conclusion that

if(!p)
is equivalent to
if(p == 0)

``Abbreviations'' such as if(p), though perfectly legal, are considered by some to be bad style (and by others to be good style; see question 17.10).

See also question 9.2.

References: K&R2 Sec. A7.4.7 p. 204
ANSI Sec. 3.3.3.3, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec. 3.6.5
ISO Sec. 6.3.3.3, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec. 6.6.5
H&S Sec. 5.3.2 p. 122

Question 5.4

What is NULL and how is it #defined?

As a matter of style, many programmers prefer not to have unadorned 0's scattered through their programs. Therefore, the preprocessor macro NULL is #defined (by <stdio.h> or <stddef.h>) with the value 0, possibly cast to (void *) (see also question 5.6). A programmer who wishes to make explicit the distinction between 0 the integer and 0 the null pointer constant can then use NULL whenever a null pointer is required.

Using NULL is a stylistic convention only; the preprocessor turns NULL back into 0 which is then recognized by the compiler, in pointer contexts, as before. In particular, a cast may still be necessary before NULL (as before 0) in a function call argument. The table under question 5.2 above applies for NULL as well as 0 (an unadorned NULL is equivalent to an unadorned 0).

NULL should only be used for pointers; see question 5.9.

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102
ANSI Sec. 4.1.5, Sec. 3.2.2.3
ISO Sec. 7.1.6, Sec. 6.2.2.3
Rationale Sec. 4.1.5
H&S Sec. 5.3.2 p. 122, Sec. 11.1 p. 292

Question 5.5

How should NULL be defined on a machine which uses a nonzero bit pattern as the internal representation of a null pointer?

The same as on any other machine: as 0 (or ((void *)0)).

Whenever a programmer requests a null pointer, either by writing ``0'' or ``NULL,'' it is the compiler's responsibility to generate whatever bit pattern the machine uses for that null pointer. Therefore, #defining NULL as 0 on a machine for which internal null pointers are nonzero is as valid as on any other: the compiler must always be able to generate the machine's correct null pointers in response to unadorned 0's seen in pointer contexts. See also questions 5.2, 5.10, and 5.17.

References: ANSI Sec. 4.1.5
ISO Sec. 7.1.6
Rationale Sec. 4.1.5

Question 5.6

If NULL were defined as follows:

#define NULL ((char *)0)

wouldn't that make function calls which pass an uncast NULL work?

Not in general. The problem is that there are machines which use different internal representations for pointers to different types of data. The suggested definition would make uncast NULL arguments to functions expecting pointers to characters work correctly, but pointer arguments of other types would still be problematical, and legal constructions such as

FILE *fp = NULL;

could fail.

Nevertheless, ANSI C allows the alternate definition

#define NULL ((void *)0)

for NULL. Besides potentially helping incorrect programs to work (but only on machines with homogeneous pointers, thus questionably valid assistance), this definition may catch programs which use NULL incorrectly (e.g. when the ASCII NUL character was really intended; see question 5.9).

References: Rationale Sec. 4.1.5

Question 5.9

If NULL and 0 are equivalent as null pointer constants, which should I use?

Many programmers believe that NULL should be used in all pointer contexts, as a reminder that the value is to be thought of as a pointer. Others feel that the confusion surrounding NULL and 0 is only compounded by hiding 0 behind a macro, and prefer to use unadorned 0 instead. There is no one right answer. (See also questions 9.2 and 17.10.) C programmers must understand that NULL and 0 are interchangeable in pointer contexts, and that an uncast 0 is perfectly acceptable. Any usage of NULL (as opposed to 0) should be considered a gentle reminder that a pointer is involved; programmers should not depend on it (either for their own understanding or the compiler's) for distinguishing pointer 0's from integer 0's.

NULL should not be used when another kind of 0 is required, even though it might work, because doing so sends the wrong stylistic message. (Furthermore, ANSI allows the definition of NULL to be ((void *)0), which will not work at all in non-pointer contexts.) In particular, do not use NULL when the ASCII null character (NUL) is desired. Provide your own definition

#define NUL '\0'

if you must.

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102

Question 5.10

But wouldn't it be better to use NULL (rather than 0), in case the value of NULL changes, perhaps on a machine with nonzero internal null pointers?

No. (Using NULL may be preferable, but not for this reason.) Although symbolic constants are often used in place of numbers because the numbers might change, this is not the reason that NULL is used in place of 0. Once again, the language guarantees that source-code 0's (in pointer contexts) generate null pointers. NULL is used only as a stylistic convention. See questions 5.5 and 9.2.

Question 5.12

I use the preprocessor macro

#define Nullptr(type) (type *)0

to help me build null pointers of the correct type.

This trick, though popular and superficially attractive, does not buy much. It is not needed in assignments and comparisons; see question 5.2. It does not even save keystrokes. Its use may suggest to the reader that the program's author is shaky on the subject of null pointers, requiring that the #definition of the macro, its invocations, and all other pointer usages be checked. See also questions 9.1 and 10.2.

Question 5.13

This is strange. NULL is guaranteed to be 0, but the null pointer is not?

When the term ``null'' or ``NULL'' is casually used, one of several things may be meant:

1. 1. The conceptual null pointer, the abstract language concept defined in question 5.1. It is implemented with...

2. 2. The internal (or run-time) representation of a null pointer, which may or may not be all-bits-0 and which may be different for different pointer types. The actual values should be of concern only to compiler writers. Authors of C programs never see them, since they use...

3. 3. The null pointer constant, which is a constant integer 0 (see question 5.2). It is often hidden behind...

4. 4. The NULL macro, which is #defined to be 0 or ((void *)0) (see question 5.4). Finally, as red herrings, we have...

5. 5. The ASCII null character (NUL), which does have all bits zero, but has no necessary relation to the null pointer except in name; and...

6. 6. The ``null string,'' which is another name for the empty string (""). Using the term ``null string'' can be confusing in C, because an empty string involves a null ('\0') character, but not a null pointer, which brings us full circle...

This article uses the phrase ``null pointer'' (in lower case) for sense 1, the character ``0'' or the phrase ``null pointer constant'' for sense 3, and the capitalized word ``NULL'' for sense 4.

Question 5.14

Why is there so much confusion surrounding null pointers? Why do these questions come up so often?

C programmers traditionally like to know more than they need to about the underlying machine implementation. The fact that null pointers are represented both in source code, and internally to most machines, as zero invites unwarranted assumptions. The use of a preprocessor macro (NULL) may seem to suggest that the value could change some day, or on some weird machine. The construct ``if(p == 0)'' is easily misread as calling for conversion of p to an integral type, rather than 0 to a pointer type, before the comparison. Finally, the distinction between the several uses of the term ``null'' (listed in question 5.13) is often overlooked.

One good way to wade out of the confusion is to imagine that C used a keyword (perhaps nil, like Pascal) as a null pointer constant. The compiler could either turn nil into the correct type of null pointer when it could determine the type from the source code, or complain when it could not. Now in fact, in C the keyword for a null pointer constant is not nil but 0, which works almost as well, except that an uncast 0 in a non-pointer context generates an integer zero instead of an error message, and if that uncast 0 was supposed to be a null pointer constant, the code may not work.

Question 5.15

I'm confused. I just can't understand all this null pointer stuff.

Follow these two simple rules:

7. When you want a null pointer constant in source code, use ``0'' or ``NULL''.

8. If the usage of ``0'' or ``NULL'' is an argument in a function call, cast it to the pointer type expected by the function being called.

The rest of the discussion has to do with other people's misunderstandings, with the internal representation of null pointers (which you shouldn't need to know), and with ANSI C refinements. Understand questions 5.1, 5.2, and 5.4, and consider 5.3, 5.9, 5.13, and 5.14, and you'll do fine.

Question 5.16

Given all the confusion surrounding null pointers, wouldn't it be easier simply to require them to be represented internally by zeroes?

If for no other reason, doing so would be ill-advised because it would unnecessarily constrain implementations which would otherwise naturally represent null pointers by special, nonzero bit patterns, particularly when those values would trigger automatic hardware traps for invalid accesses.

Besides, what would such a requirement really accomplish? Proper understanding of null pointers does not require knowledge of the internal representation, whether zero or nonzero. Assuming that null pointers are internally zero does not make any code easier to write (except for a certain ill-advised usage of calloc; see question 7.31). Known-zero internal pointers would not obviate casts in function calls, because the size of the pointer might still be different from that of an int. (If ``nil'' were used to request null pointers, as mentioned in question 5.14, the urge to assume an internal zero representation would not even arise.)

Question 5.17

Seriously, have any actual machines really used nonzero null pointers, or different representations for pointers to different types?

The Prime 50 series used segment 07777, offset 0 for the null pointer, at least for PL/I. Later models used segment 0, offset 0 for null pointers in C, necessitating new instructions such as TCNP (Test C Null Pointer), evidently as a sop to all the extant poorly-written C code which made incorrect assumptions. Older, word-addressed Prime machines were also notorious for requiring larger byte pointers (char *'s) than word pointers (int *'s).

The Eclipse MV series from Data General has three architecturally supported pointer formats (word, byte, and bit pointers), two of which are used by C compilers: byte pointers for char * and void *, and word pointers for everything else.

Some Honeywell-Bull mainframes use the bit pattern 06000 for (internal) null pointers.

The CDC Cyber 180 Series has 48-bit pointers consisting of a ring, segment, and offset. Most users (in ring 11) have null pointers of 0xB00000000000. It was common on old CDC ones-complement machines to use an all-one-bits word as a special flag for all kinds of data, including invalid addresses.

The old HP 3000 series uses a different addressing scheme for byte addresses than for word addresses; like several of the machines above it therefore uses different representations for char * and void * pointers than for other pointers.

The Symbolics Lisp Machine, a tagged architecture, does not even have conventional numeric pointers; it uses the pair <NIL, 0> (basically a nonexistent <object, offset> handle) as a C null pointer.

Depending on the ``memory model'' in use, 8086-family processors (PC compatibles) may use 16-bit data pointers and 32-bit function pointers, or vice versa.

Some 64-bit Cray machines represent int * in the lower 48 bits of a word; char * additionally uses the upper 16 bits to indicate a byte address within a word.

References: K&R1 Sec. A14.4 p. 211

Question 5.20

What does a run-time ``null pointer assignment'' error mean? How do I track it down?

This message, which typically occurs with MS-DOS compilers (see, therefore, section 19) means that you've written, via a null (perhaps because uninitialized) pointer, to location 0. (See also question 16.8.)

A debugger may let you set a data breakpoint or watchpoint or something on location 0. Alternatively, you could write a bit of code to stash away a copy of 20 or so bytes from location 0, and periodically check that the memory at location 0 hasn't changed.

