Question 10.2

Here are some cute preprocessor macros:

#define begin
{

#define end
}

What do y'all think?

Bleah. See also section 17.

Question 10.3

How can I write a generic macro to swap two values?

There is no good answer to this question. If the values are integers, a well-known trick using exclusive-OR could perhaps be used, but it will not work for floating-point values or pointers, or if the two values are the same variable (and the ``obvious'' supercompressed implementation for integral types a^=b^=a^=b is illegal due to multiple side-effects; see question 3.2). If the macro is intended to be used on values of arbitrary type (the usual goal), it cannot use a temporary, since it does not know what type of temporary it needs (and would have a hard time naming it if it did), and standard C does not provide a typeof operator.

The best all-around solution is probably to forget about using a macro, unless you're willing to pass in the type as a third argument.

Question 10.4

What's the best way to write a multi-statement macro?

The usual goal is to write a macro that can be invoked as if it were a statement consisting of a single function call. This means that the ``caller'' will be supplying the final semicolon, so the macro body should not. The macro body cannot therefore be a simple brace-enclosed compound statement, because syntax errors would result if it were invoked (apparently as a single statement, but with a resultant extra semicolon) as the if branch of an if/else statement with an explicit else clause.

The traditional solution, therefore, is to use

#define MACRO(arg1, arg2) do {
\

/* declarations */
\

stmt1;

\

stmt2;

\

/* ... */

\

} while(0)
/* (no trailing ;) */

When the caller appends a semicolon, this expansion becomes a single statement regardless of context. (An optimizing compiler will remove any ``dead'' tests or branches on the constant condition 0, although lint may complain.)

If all of the statements in the intended macro are simple expressions, with no declarations or loops, another technique is to write a single, parenthesized expression using one or more comma operators. (For an example, see the first DEBUG() macro in question 10.26.) This technique also allows a value to be ``returned.''

References: H&S Sec. 3.3.2 p. 45
CT&P Sec. 6.3 pp. 82-3

Question 10.6

I'm splitting up a program into multiple source files for the first time, and I'm wondering what to put in .c files and what to put in .h files. (What does ``.h'' mean, anyway?)

As a general rule, you should put these things in header (.h) files:

macro definitions (preprocessor #defines)

structure, union, and enumeration declarations

typedef declarations

external function declarations (see also question 1.11)

global variable declarations

It's especially important to put a declaration or definition in a header file when it will be shared between several other files. (In particular, never put external function prototypes in .c files. See also question 1.7.)

On the other hand, when a definition or declaration should remain private to one source file, it's fine to leave it there.

See also questions 1.7 and 10.7.

References: K&R2 Sec. 4.5 pp. 81-2
H&S Sec. 9.2.3 p. 267
CT&P Sec. 4.6 pp. 66-7

Question 10.7

Is it acceptable for one header file to #include another?

It's a question of style, and thus receives considerable debate. Many people believe that ``nested #include files'' are to be avoided: the prestigious Indian Hill Style Guide (see question 17.9) disparages them; they can make it harder to find relevant definitions; they can lead to multiple-definition errors if a file is #included twice; and they make manual Makefile maintenance very difficult. On the other hand, they make it possible to use header files in a modular way (a header file can #include what it needs itself, rather than requiring each #includer to do so); a tool like grep (or a tags file) makes it easy to find definitions no matter where they are; a popular trick along the lines of:

#ifndef HFILENAME_USED

#define HFILENAME_USED

...header file contents...

#endif

(where a different bracketing macro name is used for each header file) makes a header file ``idempotent'' so that it can safely be #included multiple times; and automated Makefile maintenance tools (which are a virtual necessity in large projects anyway; see question 18.1) handle dependency generation in the face of nested #include files easily. See also question 17.10.

References: Rationale Sec. 4.1.2

Question 10.8

Where are header (``#include'') files searched for?

The exact behavior is implementation-defined (which means that it is supposed to be documented; see question 11.33). Typically, headers named with <> syntax are searched for in one or more standard places. Header files named with "" syntax are first searched for in the ``current directory,'' then (if not found) in the same standard places.

Traditionally (especially under Unix compilers), the current directory is taken to be the directory containing the file containing the #include directive. Under other compilers, however, the current directory (if any) is the directory in which the compiler was initially invoked. Check your compiler documentation.

References: K&R2 Sec. A12.4 p. 231
ANSI Sec. 3.8.2
ISO Sec. 6.8.2
H&S Sec. 3.4 p. 55

Question 10.9

I'm getting strange syntax errors on the very first declaration in a file, but it looks fine.

Perhaps there's a missing semicolon at the end of the last declaration in the last header file you're #including. See also questions 2.18 and 11.29.

Question 10.11

I seem to be missing the system header file <sgtty.h>. Can someone send me a copy?

Standard headers exist in part so that definitions appropriate to your compiler, operating system, and processor can be supplied. You cannot just pick up a copy of someone else's header file and expect it to work, unless that person is using exactly the same environment. Ask your compiler vendor why the file was not provided (or to send a replacement copy).

Question 10.12

How can I construct preprocessor #if expressions which compare strings?

You can't do it directly; preprocessor #if arithmetic uses only integers. You can #define several manifest constants, however, and implement conditionals on those.

See also question 20.17.

References: K&R2 Sec. 4.11.3 p. 91
ANSI Sec. 3.8.1
ISO Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Question 10.13

Does the sizeof operator work in preprocessor #if directives?

No. Preprocessing happens during an earlier phase of compilation, before type names have been parsed. Instead of sizeof, consider using the predefined constants in ANSI's <limits.h>, if applicable, or perhaps a ``configure'' script. (Better yet, try to write code which is inherently insensitive to type sizes.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83
ISO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Question 10.14

Can I use an #ifdef in a #define line, to define something two different ways?

No. You can't ``run the preprocessor on itself,'' so to speak. What you can do is use one of two completely separate #define lines, depending on the #ifdef setting.

References: ANSI Sec. 3.8.3, Sec. 3.8.3.4
ISO Sec. 6.8.3, Sec. 6.8.3.4
H&S Sec. 3.2 pp. 40-1

Question 10.15

Is there anything like an #ifdef for typedefs?

Unfortunately, no. (See also question 10.13.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83
ISO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Question 10.16

How can I use a preprocessor #if expression to tell if a machine is big-endian or little-endian?

You probably can't. (Preprocessor arithmetic uses only long integers, and there is no concept of addressing.) Are you sure you need to know the machine's endianness explicitly? Usually it's better to write code which doesn't care). See also question 20.9.

References: ANSI Sec. 3.8.1
ISO Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Question 10.18

I inherited some code which contains far too many #ifdef's for my taste. How can I preprocess the code to leave only one conditional compilation set, without running it through the preprocessor and expanding all of the #include's and #define's as well?

There are programs floating around called unifdef, rmifdef, and scpp (``selective C preprocessor'') which do exactly this. See question 18.16.

Question 10.19

How can I list all of the pre#defined identifiers?

There's no standard way, although it is a common need. If the compiler documentation is unhelpful, the most expedient way is probably to extract printable strings from the compiler or preprocessor executable with something like the Unix strings utility. Beware that many traditional system-specific pre#defined identifiers (e.g. ``unix'') are non-Standard (because they clash with the user's namespace) and are being removed or renamed.

Question 10.20

I have some old code that tries to construct identifiers with a macro like

#define Paste(a, b) a/**/b

but it doesn't work any more.

It was an undocumented feature of some early preprocessor implementations (notably John Reiser's) that comments disappeared entirely and could therefore be used for token pasting. ANSI affirms (as did K&R1) that comments are replaced with white space. However, since the need for pasting tokens was demonstrated and real, ANSI introduced a well-defined token-pasting operator, ##, which can be used like this:

#define Paste(a, b) a##b

See also question 11.17.

References: ANSI Sec. 3.8.3.3
ISO Sec. 6.8.3.3
Rationale Sec. 3.8.3.3
H&S Sec. 3.3.9 p. 52

Question 10.22

Why is the macro

#define TRACE(n) printf("TRACE: %d\n", n)

giving me the warning ``macro replacement within a string literal''? It seems to be expanding

TRACE(count);

as

printf("TRACE: %d\count", count);

Question 10.23

How can I use a macro argument inside a string literal in the macro expansion?

See question 11.18.

Question 10.25

I've got this tricky preprocessing I want to do and I can't figure out a way to do it.

C's preprocessor is not intended as a general-purpose tool. (Note also that it is not guaranteed to be available as a separate program.) Rather than forcing it to do something inappropriate, consider writing your own little special-purpose preprocessing tool, instead. You can easily get a utility like make(1) to run it for you automatically.

If you are trying to preprocess something other than C, consider using a general-purpose preprocessor. (One older one available on most Unix systems is m4.)

Question 10.26

How can I write a macro which takes a variable number of arguments?

One popular trick is to define and invoke the macro with a single, parenthesized ``argument'' which in the macro expansion becomes the entire argument list, parentheses and all, for a function such as printf:

#define DEBUG(args) (printf("DEBUG: "), printf args)

if(n != 0) DEBUG(("n is %d\n", n));

The obvious disadvantage is that the caller must always remember to use the extra parentheses.

gcc has an extension which allows a function-like macro to accept a variable number of arguments, but it's not standard. Other possible solutions are to use different macros (DEBUG1, DEBUG2, etc.) depending on the number of arguments, to play games with commas:

#define DEBUG(args) (printf("DEBUG: "), printf(args))

#define _ ,

DEBUG("i = %d" _ i)

It is often better to use a bona-fide function, which can take a variable number of arguments in a well-defined way. See questions 15.4 and 15.5.

Question 11.1

What is the ``ANSI C Standard?''

In 1983, the American National Standards Institute (ANSI) commissioned a committee, X3J11, to standardize the C language. After a long, arduous process, including several widespread public reviews, the committee's work was finally ratified as ANS X3.159-1989 on December 14, 1989, and published in the spring of 1990. For the most part, ANSI C standardizes existing practice, with a few additions from C++ (most notably function prototypes) and support for multinational character sets (including the controversial trigraph sequences). The ANSI C standard also formalizes the C run-time library support routines.

More recently, the Standard has been adopted as an international standard, ISO/IEC 9899:1990, and this ISO Standard replaces the earlier X3.159 even within the United States. Its sections are numbered differently (briefly, ISO sections 5 through 7 correspond roughly to the old ANSI sections 2 through 4). As an ISO Standard, it is subject to ongoing revision through the release of Technical Corrigenda and Normative Addenda.

In 1994, Technical Corrigendum 1 amended the Standard in about 40 places, most of them minor corrections or clarifications. More recently, Normative Addendum 1 added about 50 pages of new material, mostly specifying new library functions for internationalization. The production of Technical Corrigenda is an ongoing process, and a second one is expected in late 1995. In addition, both ANSI and ISO require periodic review of their standards. This process is beginning in 1995, and will likely result in a completely revised standard (nicknamed ``C9X'' on the assumption of completion by 1999).

The original ANSI Standard included a ``Rationale,'' explaining many of its decisions, and discussing a number of subtle points, including several of those covered here. (The Rationale was ``not part of ANSI Standard X3.159-1989, but... included for information only,'' and is not included with the ISO Standard.)

Question 11.2

How can I get a copy of the Standard?

[Late-breaking news: I've been told that copies of the new C99 can be obtained directly from www.ansi.org; the price for an electronic document is only US $18.00.]

Copies are available in the United States from

American National Standards Institute

11 W. 42nd St., 13th floor

New York, NY 10036 USA

(+1) 212 642 4900

and

Global Engineering Documents

15 Inverness Way E

Englewood, CO 80112 USA

(+1) 303 397 2715

(800) 854 7179 (U.S. & Canada)

In other countries, contact the appropriate national standards body, or ISO in Geneva at:

ISO Sales

Case Postale 56

CH-1211 Geneve 20

Switzerland

(or see URL http://www.iso.ch or check the comp.std.internat FAQ list, Standards.Faq).

At the time of this writing, the cost is $130.00 from ANSI or $410.00 from Global. Copies of the original X3.159 (including the Rationale) may still be available at $205.00 from ANSI or $162.50 from Global. Note that ANSI derives revenues to support its operations from the sale of printed standards, so electronic copies are not available.

In the U.S., it may be possible to get a copy of the original ANSI X3.159 (including the Rationale) as ``FIPS PUB 160'' from

National Technical Information Service (NTIS)

U.S. Department of Commerce

Springfield, VA 22161

703 487 4650

The mistitled Annotated ANSI C Standard, with annotations by Herbert Schildt, contains most of the text of ISO 9899; it is published by Osborne/McGraw-Hill, ISBN 0-07-881952-0, and sells in the U.S. for approximately $40. It has been suggested that the price differential between this work and the official standard reflects the value of the annotations: they are plagued by numerous errors and omissions, and a few pages of the Standard itself are missing. Many people on the net recommend ignoring the annotations entirely. A review of the annotations (``annotated annotations'') by Clive Feather can be found on the web at http://www.lysator.liu.se/c/schildt.html .

The text of the Rationale (not the full Standard) can be obtained by anonymous ftp from ftp.uu.net (see question 18.16) in directory doc/standards/ansi/X3.159-1989, and is also available on the web at http://www.lysator.liu.se/c/rat/title.html . The Rationale has also been printed by Silicon Press, ISBN 0-929306-07-4.

Question 11.3

My ANSI compiler complains about a mismatch when it sees

extern int func(float);

int func(x)

float x;

{ ...

You have mixed the new-style prototype declaration ``extern int func(float);'' with the old-style definition ``int func(x) float x;''. It is usually safe to mix the two styles (see question 11.4), but not in this case.

Old C (and ANSI C, in the absence of prototypes, and in variable-length argument lists; see question 15.2) ``widens'' certain arguments when they are passed to functions. floats are promoted to double, and characters and short integers are promoted to int. (For old-style function definitions, the values are automatically converted back to the corresponding narrower types within the body of the called function, if they are declared that way there.)

This problem can be fixed either by using new-style syntax consistently in the definition:

int func(float x) { ... }

or by changing the new-style prototype declaration to match the old-style definition:

extern int func(double);

(In this case, it would be clearest to change the old-style definition to use double as well, as long as the address of that parameter is not taken.)

It may also be safer to avoid ``narrow'' (char, short int, and float) function arguments and return types altogether.

See also question 1.25.

References: K&R1 Sec. A7.1 p. 186
K&R2 Sec. A7.3.2 p. 202
ANSI Sec. 3.3.2.2, Sec. 3.5.4.3
ISO Sec. 6.3.2.2, Sec. 6.5.4.3
Rationale Sec. 3.3.2.2, Sec. 3.5.4.3
H&S Sec. 9.2 pp. 265-7, Sec. 9.4 pp. 272-3

Question 11.4

Can you mix old-style and new-style function syntax?

Doing so is perfectly legal, as long as you're careful (see especially question 11.3). Note however that old-style syntax is marked as obsolescent, so official support for it may be removed some day.

References: ANSI Sec. 3.7.1, Sec. 3.9.5
ISO Sec. 6.7.1, Sec. 6.9.5
H&S Sec. 9.2.2 pp. 265-7, Sec. 9.2.5 pp. 269-70

Question 11.5

Why does the declaration

extern f(struct x *p);

give me an obscure warning message about ``struct x introduced in prototype scope''?

In a quirk of C's normal block scoping rules, a structure declared (or even mentioned) for the first time within a prototype cannot be compatible with other structures declared in the same source file (it goes out of scope at the end of the prototype).

To resolve the problem, precede the prototype with the vacuous-looking declaration

struct x;

which places an (incomplete) declaration of struct x at file scope, so that all following declarations involving struct x can at least be sure they're referring to the same struct x.

References: ANSI Sec. 3.1.2.1, Sec. 3.1.2.6, Sec. 3.5.2.3
ISO Sec. 6.1.2.1, Sec. 6.1.2.6, Sec. 6.5.2.3

Question 11.8

I don't understand why I can't use const values in initializers and array dimensions, as in

const int n = 5;

int a[n];

The const qualifier really means ``read-only;'' an object so qualified is a run-time object which cannot (normally) be assigned to. The value of a const-qualified object is therefore not a constant expression in the full sense of the term. (C is unlike C++ in this regard.) When you need a true compile-time constant, use a preprocessor #define.

References: ANSI Sec. 3.4
ISO Sec. 6.4
H&S Secs. 7.11.2,7.11.3 pp. 226-7

Question 11.9

What's the difference between const char *p and char * const p?

const char *p declares a pointer to a constant character (you can't change the character); char * const p declares a constant pointer to a (variable) character (i.e. you can't change the pointer).

Read these ``inside out'' to understand them; see also question 1.21.

References: ANSI Sec. 3.5.4.1 examples
ISO Sec. 6.5.4.1
Rationale Sec. 3.5.4.1
H&S Sec. 4.4.4 p. 81

Question 11.10

Why can't I pass a char ** to a function which expects a const char **?

You can use a pointer-to-T (for any type T) where a pointer-to-const-T is expected. However, the rule (an explicit exception) which permits slight mismatches in qualified pointer types is not applied recursively, but only at the top level.

You must use explicit casts (e.g. (const char **) in this case) when assigning (or passing) pointers which have qualifier mismatches at other than the first level of indirection.

References: ANSI Sec. 3.1.2.6, Sec. 3.3.16.1, Sec. 3.5.3
ISO Sec. 6.1.2.6, Sec. 6.3.16.1, Sec. 6.5.3
H&S Sec. 7.9.1 pp. 221-2

Question 11.12

Can I declare main as void, to shut off these annoying ``main returns no value'' messages?

No. main must be declared as returning an int, and as taking either zero or two arguments, of the appropriate types. If you're calling exit() but still getting warnings, you may have to insert a redundant return statement (or use some kind of ``not reached'' directive, if available).

Declaring a function as void does not merely shut off or rearrange warnings: it may also result in a different function call/return sequence, incompatible with what the caller (in main's case, the C run-time startup code) expects.

(Note that this discussion of main pertains only to ``hosted'' implementations; none of it applies to ``freestanding'' implementations, which may not even have main. However, freestanding implementations are comparatively rare, and if you're using one, you probably know it. If you've never heard of the distinction, you're probably using a hosted implementation, and the above rules apply.)

References: ANSI Sec. 2.1.2.2.1, Sec. F.5.1
ISO Sec. 5.1.2.2.1, Sec. G.5.1
H&S Sec. 20.1 p. 416
CT&P Sec. 3.10 pp. 50-51

Question 11.13

But what about main's third argument, envp?

It's a non-standard (though common) extension. If you really need to access the environment in ways beyind what the standard getenv function provides, though, the global variable environ is probably a better avenue (though it's equally non-standard).

References: ANSI Sec. F.5.1
ISO Sec. G.5.1
H&S Sec. 20.1 pp. 416-7

Question 11.14

I believe that declaring void main() can't fail, since I'm calling exit instead of returning, and anyway my operating system ignores a program's exit/return status.

It doesn't matter whether main returns or not, or whether anyone looks at the status; the problem is that when main is misdeclared, its caller (the runtime startup code) may not even be able to call it correctly (due to the potential clash of calling conventions; see question 11.12). Your operating system may ignore the exit status, and void main() may work for you, but it is not portable and not correct.

Question 11.15

The book I've been using, C Programing for the Compleat Idiot, always uses void main().

Perhaps its author counts himself among the target audience. Many books unaccountably use void main() in examples. They're wrong.

Question 11.16

Is exit(status) truly equivalent to returning the same status from main?

Yes and no. The Standard says that they are equivalent. However, a few older, nonconforming systems may have problems with one or the other form. Also, a return from main cannot be expected to work if data local to main might be needed during cleanup; see also question 16.4. (Finally, the two forms are obviously not equivalent in a recursive call to main.)

References: K&R2 Sec. 7.6 pp. 163-4
ANSI Sec. 2.1.2.2.3
ISO Sec. 5.1.2.2.3

Question 11.17

I'm trying to use the ANSI ``stringizing'' preprocessing operator `#' to insert the value of a symbolic constant into a message, but it keeps stringizing the macro's name rather than its value.

You can use something like the following two-step procedure to force a macro to be expanded as well as stringized:

#define Str(x) #x

#define Xstr(x) Str(x)

#define OP plus

char *opname = Xstr(OP);

This code sets opname to "plus" rather than "OP".

An equivalent circumlocution is necessary with the token-pasting operator ## when the values (rather than the names) of two macros are to be concatenated.

References: ANSI Sec. 3.8.3.2, Sec. 3.8.3.5 example
ISO Sec. 6.8.3.2, Sec. 6.8.3.5

Question 11.18

What does the message ``warning: macro replacement within a string literal'' mean?

Some pre-ANSI compilers/preprocessors interpreted macro definitions like

#define TRACE(var, fmt) printf("TRACE: var = fmt\n", var)

such that invocations like

TRACE(i, %d);

were expanded as

printf("TRACE: i = %d\n", i);

In other words, macro parameters were expanded even inside string literals and character constants.

Macro expansion is not defined in this way by K&R or by Standard C. When you do want to turn macro arguments into strings, you can use the new # preprocessing operator, along with string literal concatenation (another new ANSI feature):

#define TRACE(var, fmt) \

printf("TRACE: " #var " = " #fmt "\n", var)

See also question 11.17.

References: H&S Sec. 3.3.8 p. 51

Question 11.19

I'm getting strange syntax errors inside lines I've #ifdeffed out.

Under ANSI C, the text inside a ``turned off'' #if, #ifdef, or #ifndef must still consist of ``valid preprocessing tokens.'' This means that there must be no newlines inside quotes, and no unterminated comments or quotes (note particularly that an apostrophe within a contracted word looks like the beginning of a character constant). Therefore, natural-language comments and pseudocode should always be written between the ``official'' comment delimiters /* and */. (But see question 20.20, and also 10.25.)

References: ANSI Sec. 2.1.1.2, Sec. 3.1
ISO Sec. 5.1.1.2, Sec. 6.1
H&S Sec. 3.2 p. 40

Question 11.20

What are #pragmas and what are they good for?

The #pragma directive provides a single, well-defined ``escape hatch'' which can be used for all sorts of implementation-specific controls and extensions: source listing control, structure packing, warning suppression (like lint's old /* NOTREACHED */ comments), etc.

References: ANSI Sec. 3.8.6
ISO Sec. 6.8.6
H&S Sec. 3.7 p. 61

Question 11.21

What does ``#pragma once'' mean? I found it in some header files.

It is an extension implemented by some preprocessors to help make header files idempotent; it is essentially equivalent to the #ifndef trick mentioned in question 10.7.

Question 11.22

Is char a[3] = "abc"; legal? What does it mean?

It is legal in ANSI C (and perhaps in a few pre-ANSI systems), though useful only in rare circumstances. It declares an array of size three, initialized with the three characters 'a', 'b', and 'c', without the usual terminating '\0' character. The array is therefore not a true C string and cannot be used with strcpy, printf %s, etc.

Most of the time, you should let the compiler count the initializers when initializing arrays (in the case of the initializer "abc", of course, the computed size will be 4).

References: ANSI Sec. 3.5.7
ISO Sec. 6.5.7
H&S Sec. 4.6.4 p. 98

Question 11.24

Why can't I perform arithmetic on a void * pointer?

The compiler doesn't know the size of the pointed-to objects. Before performing arithmetic, convert the pointer either to char * or to the pointer type you're trying to manipulate (but see also question 4.5).

References: ANSI Sec. 3.1.2.5, Sec. 3.3.6
ISO Sec. 6.1.2.5, Sec. 6.3.6
H&S Sec. 7.6.2 p. 204

Question 11.25

What's the difference between memcpy and memmove?

memmove offers guaranteed behavior if the source and destination arguments overlap. memcpy makes no such guarantee, and may therefore be more efficiently implementable. When in doubt, it's safer to use memmove.

References: K&R2 Sec. B3 p. 250
ANSI Sec. 4.11.2.1, Sec. 4.11.2.2
ISO Sec. 7.11.2.1, Sec. 7.11.2.2
Rationale Sec. 4.11.2
H&S Sec. 14.3 pp. 341-2
PCS Sec. 11 pp. 165-6

Question 11.26

What should malloc(0) do? Return a null pointer or a pointer to 0 bytes?

The ANSI/ISO Standard says that it may do either; the behavior is implementation-defined (see question 11.33).

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3
PCS Sec. 16.1 p. 386

Question 11.27

Why does the ANSI Standard not guarantee more than six case-insensitive characters of external identifier significance?

The problem is older linkers which are under the control of neither the ANSI/ISO Standard nor the C compiler developers on the systems which have them. The limitation is only that identifiers be significant in the first six characters, not that they be restricted to six characters in length. This limitation is annoying, but certainly not unbearable, and is marked in the Standard as ``obsolescent,'' i.e. a future revision will likely relax it.

This concession to current, restrictive linkers really had to be made, no matter how vehemently some people oppose it. (The Rationale notes that its retention was ``most painful.'') If you disagree, or have thought of a trick by which a compiler burdened with a restrictive linker could present the C programmer with the appearance of more significance in external identifiers, read the excellently-worded section 3.1.2 in the X3.159 Rationale (see question 11.1), which discusses several such schemes and explains why they could not be mandated.

References: ANSI Sec. 3.1.2, Sec. 3.9.1
ISO Sec. 6.1.2, Sec. 6.9.1
Rationale Sec. 3.1.2
H&S Sec. 2.5 pp. 22-3

Question 11.29

My compiler is rejecting the simplest possible test programs, with all kinds of syntax errors.

Perhaps it is a pre-ANSI compiler, unable to accept function prototypes and the like.

See also questions 1.31, 10.9, and 11.30.

Question 11.30

Why are some ANSI/ISO Standard library routines showing up as undefined, even though I've got an ANSI compiler?

It's possible to have a compiler available which accepts ANSI syntax, but not to have ANSI-compatible header files or run-time libraries installed. (In fact, this situation is rather common when using a non-vendor-supplied compiler such as gcc.) See also questions 11.29, 13.25, and 13.26.

Question 11.31

Does anyone have a tool for converting old-style C programs to ANSI C, or vice versa, or for automatically generating prototypes?

Two programs, protoize and unprotoize, convert back and forth between prototyped and ``old style'' function definitions and declarations. (These programs do not handle full-blown translation between ``Classic'' C and ANSI C.) These programs are part of the FSF's GNU C compiler distribution; see question 18.3.

The unproto program (/pub/unix/unproto5.shar.Z on ftp.win.tue.nl) is a filter which sits between the preprocessor and the next compiler pass, converting most of ANSI C to traditional C on-the-fly.

The GNU GhostScript package comes with a little program called ansi2knr.

Before converting ANSI C back to old-style, beware that such a conversion cannot always be made both safely and automatically. ANSI C introduces new features and complexities not found in K&R C. You'll especially need to be careful of prototyped function calls; you'll probably need to insert explicit casts. See also questions 11.3 and 11.29.

Several prototype generators exist, many as modifications to lint. A program called CPROTO was posted to comp.sources.misc in March, 1992. There is another program called ``cextract.'' Many vendors supply simple utilities like these with their compilers. See also question 18.16. (But be careful when generating prototypes for old functions with ``narrow'' parameters; see question 11.3.)

Finally, are you sure you really need to convert lots of old code to ANSI C? The old-style function syntax is still acceptable, and a hasty conversion can easily introduce bugs. (See question 11.3.)

Question 11.32

Why won't the Frobozz Magic C Compiler, which claims to be ANSI compliant, accept this code? I know that the code is ANSI, because gcc accepts it.

Many compilers support a few non-Standard extensions, gcc more so than most. Are you sure that the code being rejected doesn't rely on such an extension? It is usually a bad idea to perform experiments with a particular compiler to determine properties of a language; the applicable standard may permit variations, or the compiler may be wrong. See also question 11.35.

Question 11.33

People seem to make a point of distinguishing between implementation-defined, unspecified, and undefined behavior. What's the difference?

Briefly: implementation-defined means that an implementation must choose some behavior and document it. Unspecified means that an implementation should choose some behavior, but need not document it. Undefined means that absolutely anything might happen. In no case does the Standard impose requirements; in the first two cases it occasionally suggests (and may require a choice from among) a small set of likely behaviors.

Note that since the Standard imposes no requirements on the behavior of a compiler faced with an instance of undefined behavior, the compiler can do absolutely anything. In particular, there is no guarantee that the rest of the program will perform normally. It's perilous to think that you can tolerate undefined behavior in a program; see question 3.2 for a relatively simple example.

If you're interested in writing portable code, you can ignore the distinctions, as you'll want to avoid code that depends on any of the three behaviors.

See also questions 3.9, and 11.34.

References: ANSI Sec. 1.6
ISO Sec. 3.10, Sec. 3.16, Sec. 3.17
Rationale Sec. 1.6

Question 11.34

I'm appalled that the ANSI Standard leaves so many issues undefined. Isn't a Standard's whole job to standardize these things?

It has always been a characteristic of C that certain constructs behaved in whatever way a particular compiler or a particular piece of hardware chose to implement them. This deliberate imprecision often allows compilers to generate more efficient code for common cases, without having to burden all programs with extra code to assure well-defined behavior of cases deemed to be less reasonable. Therefore, the Standard is simply codifying existing practice.

A programming language standard can be thought of as a treaty between the language user and the compiler implementor. Parts of that treaty consist of features which the compiler implementor agrees to provide, and which the user may assume will be available. Other parts, however, consist of rules which the user agrees to follow and which the implementor may assume will be followed. As long as both sides uphold their guarantees, programs have a fighting chance of working correctly. If either side reneges on any of its commitments, nothing is guaranteed to work.

See also question 11.35.

References: Rationale Sec. 1.1

Question 11.35

People keep saying that the behavior of i = i++ is undefined, but I just tried it on an ANSI-conforming compiler, and got the results I expected.

A compiler may do anything it likes when faced with undefined behavior (and, within limits, with implementation-defined and unspecified behavior), including doing what you expect. It's unwise to depend on it, though. See also questions 11.32, 11.33, and 11.34.

Question 12.1

What's wrong with this code?

char c;

while((c = getchar()) != EOF) ...

For one thing, the variable to hold getchar's return value must be an int. getchar can return all possible character values, as well as EOF. By passing getchar's return value through a char, either a normal character might be misinterpreted as EOF, or the EOF might be altered (particularly if type char is unsigned) and so never seen.

References: K&R1 Sec. 1.5 p. 14
K&R2 Sec. 1.5.1 p. 16
ANSI Sec. 3.1.2.5, Sec. 4.9.1, Sec. 4.9.7.5
ISO Sec. 6.1.2.5, Sec. 7.9.1, Sec. 7.9.7.5
H&S Sec. 5.1.3 p. 116, Sec. 15.1, Sec. 15.6
CT&P Sec. 5.1 p. 70
PCS Sec. 11 p. 157

Question 12.2

Why does the code while(!feof(infp)) { fgets(buf, MAXLINE, infp); fputs(buf, outfp); } copy the last line twice?

In C, EOF is only indicated after an input routine has tried to read, and has reached end-of-file. (In other words, C's I/O is not like Pascal's.) Usually, you should just check the return value of the input routine (fgets in this case); often, you don't need to use feof at all.

References: K&R2 Sec. 7.6 p. 164
ANSI Sec. 4.9.3, Sec. 4.9.7.1, Sec. 4.9.10.2
ISO Sec. 7.9.3, Sec. 7.9.7.1, Sec. 7.9.10.2
H&S Sec. 15.14 p. 382

Question 12.4

My program's prompts and intermediate output don't always show up on the screen, especially when I pipe the output through another program.

It's best to use an explicit fflush(stdout) whenever output should definitely be visible. Several mechanisms attempt to perform the fflush for you, at the ``right time,'' but they tend to apply only when stdout is an interactive terminal. (See also question 12.24.)

References: ANSI Sec. 4.9.5.2
ISO Sec. 7.9.5.2

Question 12.5

How can I read one character at a time, without waiting for the RETURN key?

See question 19.1.

Question 12.6

How can I print a '%' character in a printf format string? I tried \%, but it didn't work.

Simply double the percent sign: %% .

\% can't work, because the backslash \ is the compiler's escape character, while here our problem is that the % is printf's escape character.

See also question 19.17.

References: K&R1 Sec. 7.3 p. 147
K&R2 Sec. 7.2 p. 154
ANSI Sec. 4.9.6.1
ISO Sec. 7.9.6.1

Question 12.9

Someone told me it was wrong to use %lf with printf. How can printf use %f for type double, if scanf requires %lf?

It's true that printf's %f specifier works with both float and double arguments. Due to the ``default argument promotions'' (which apply in variable-length argument lists such as printf's, whether or not prototypes are in scope), values of type float are promoted to double, and printf therefore sees only doubles. See also questions 12.13 and 15.2.

References: K&R1 Sec. 7.3 pp. 145-47, Sec. 7.4 pp. 147-50
K&R2 Sec. 7.2 pp. 153-44, Sec. 7.4 pp. 157-59
ANSI Sec. 4.9.6.1, Sec. 4.9.6.2
ISO Sec. 7.9.6.1, Sec. 7.9.6.2
H&S Sec. 15.8 pp. 357-64, Sec. 15.11 pp. 366-78
CT&P Sec. A.1 pp. 121-33

Question 12.10

How can I implement a variable field width with printf? That is, instead of %8d, I want the width to be specified at run time.

printf("%*d", width, n) will do just what you want. See also question 12.15.

References: K&R1 Sec. 7.3
K&R2 Sec. 7.2
ANSI Sec. 4.9.6.1
ISO Sec. 7.9.6.1
H&S Sec. 15.11.6
CT&P Sec. A.1

