
Threaded Programming
Methodology

Rama Malladi
Application Engineer

Software & Services Group

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

2

Objectives

After completion of this module you will

• Learn how to use Intel Software Development Products for

multi-core programming and optimizations

• Be able to rapidly prototype and estimate the effort required

to thread time consuming regions

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

3

Agenda

A Generic Development Cycle

Case Study: Prime Number Generation

Common Performance Issues

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

4

What is Parallelism?

Two or more processes or threads execute at the same time

Parallelism for threading architectures

• Multiple processes
• Communication through Inter-Process Communication (IPC)

• Single process, multiple threads
• Communication through shared memory

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

5

n = number of processors

Tparallel = {(1-P) + P/n} Tserial

Speedup = Tserial / Tparallel

Amdahl’s Law

Describes the upper bound of parallel execution speedup

Serial code limits speedup

(1
-P

)
P

T se
ria

l

(1
-P

)

P/2

0.5 + 0.5 + 0.250.25

1.0/0.75 = 1.0/0.75 = 1.331.33

n = 2n = 2n = n = ∞∞

P/∞∞
…

0.5 + 0.5 + 0.00.0

1.0/0.5 = 1.0/0.5 = 2.02.0

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

6

Processes and Threads

Modern operating systems load
programs as processes

• Resource holder
• Execution

A process starts executing at its entry
point as a thread

Threads can create other threads within
the process
• Each thread gets its own stack

All threads within a process share code
& data segments

Code segment

Data segment

thread
main()

…thread thread

Stack Stack

Stack

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

7

Threads – Benefits & Risks

Benefits

• Increased performance and better resource utilization
• Even on single processor systems - for hiding latency and increasing

throughput

• IPC through shared memory is more efficient

Risks

• Increases complexity of the application

• Difficult to debug (data races, deadlocks, etc.)

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

8

Commonly Encountered Questions with
Threading Applications

Where to thread?

How long would it take to thread?

How much re-design/effort is required?

Is it worth threading a selected region?

What should the expected speedup be?

Will the performance meet expectations?

Will it scale as more threads/data are added?

Which threading model to use?

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

9

Prime Number Generation

bool TestForPrime(int val)
{ // let’s start checking from 2

int limit, factor = 2;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

int range = end - start + 1;
for(int i = start; i <= end; i += 2)
{

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}

i factor

3 2
5 2
7 2 3
9 2 3

11 2 3
13 2 3 4
15 2 3
17 2 3 4
19 2 3 4

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

10

Development Methodology

Analysis

• Find computationally intense code

Design (Introduce Threads)

• Determine how to implement threading solution

Debug for correctness

• Detect any problems resulting from using threads

Tune for performance

• Achieve best parallel performance

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

11

Development Cycle

AnalysisAnalysis
––VTune™ Performance AnalyzerVTune™ Performance Analyzer

Design (Introduce Threads)Design (Introduce Threads)
––Intel® Performance libraries: IPP and MKLIntel® Performance libraries: IPP and MKL
––OpenMP* (Intel® Compiler)OpenMP* (Intel® Compiler)
––Explicit threading (Pthreads*, Explicit threading (Pthreads*, Win32*Win32*))

Debug for correctnessDebug for correctness
––Intel® Thread CheckerIntel® Thread Checker
––Intel DebuggerIntel Debugger

Tune for performanceTune for performance
––Thread ProfilerThread Profiler
––VTune™ Performance AnalyzerVTune™ Performance Analyzer

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

12

Let’s use the project PrimeSingle for analysis
• PrimeSingle <start> <end>

Usage: ./PrimeSingle 1 1000000

Analysis - Sampling

Use VTune Sampling to find hotspots in application

bool TestForPrime(int val)
{ // let’s start checking from 3

int limit, factor = 3;
limit = (long)(sqrtf((float)val)+0.5f);
while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);
}

void FindPrimes(int start, int end)
{

// start is always odd
int range = end - start + 1;
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

}Identifies the time consuming regionsIdentifies the time consuming regions
Optimizing Performance of Parallel Programs on Emerging

Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

13

Analysis - Call Graph

This is the level in
the call tree where
we need to thread

Used to find proper level in Used to find proper level in
the callthe call--tree to threadtree to thread

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

14

Analysis

Where to thread?

• FindPrimes()

Is it worth threading a selected region?

• Appears to have minimal dependencies

• Appears to be data-parallel

• Consumes over 95% of the run time Baseline
measurement

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

15

Foster’s Design Methodology

From Designing and Building Parallel Programs by Ian Foster

Four Steps:

•• PartitioningPartitioning
• Dividing computation and data

•• CommunicationCommunication
• Sharing data between computations

•• AgglomerationAgglomeration
• Grouping tasks to improve performance

•• MappingMapping
• Assigning tasks to processors/threads

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

16

Designing Threaded Programs

PartitionPartition
• Divide problem into tasks

CommunicateCommunicate
• Determine amount and pattern

of communication

AgglomerateAgglomerate
• Combine tasks

MapMap
• Assign agglomerated tasks to

created threads

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program
Optimizing Performance of Parallel Programs on Emerging

Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

17

Parallel Programming Models

Functional Decomposition

• Task parallelism

• Divide the computation, then associate the data

• Independent tasks of the same problem

Data Decomposition

• Same operation performed on different data

• Divide data into pieces, then associate computation

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

18

Decomposition Methods

Functional Decomposition

• Focusing on computations can
reveal structure in a problem

Grid reprinted with permission of Dr. Phu V. Luong, Coastal and Hydraulics Laboratory, ERDC

Domain Decomposition

• Focus on largest or most frequently
accessed data structure

• Data Parallelism
• Same operation applied to all data

Atmosphere Model

Ocean
Model

Land Surface
Model

Hydrology
Model

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

19

Pipelined Decomposition

Computation done in independent stages

Functional decomposition

• Threads are assigned stage to compute

• Automobile assembly line

Data decomposition

• Thread processes all stages of single instance

• One worker builds an entire car

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

20

LAME Encoder Example

LAME MP3 encoder

• Open source project

• Educational tool used for learning

The goal of project is

• To improve the psychoacoustics quality

• To improve the speed of MP3 encoding

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

21

LAME Pipeline Strategy

Frame N
Frame N + 1

Time

Other N

Prelude N

Acoustics N

Encoding N

T 2

T 1

Acoustics N+1

Prelude N+1

Other N+1

Encoding N+1

Acoustics N+2

Prelude N+2

T 3

T 4

Prelude N+3
Hierarchical Barrier

OtherPrelude Acoustics Encoding

FrameFetch next frame
Frame characterization
Set encode parameters

Psycho Analysis
FFT long/short
Filter assemblage

Apply filtering
Noise Shaping
Quantize & Count bits

Add frame header
Check correctness
Write to disk

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

22

Design

What is the expected benefit?

How do you determine this with the least effort?

How long would it take to thread?

How much re-design/effort is required?

Prime Number GenerationPrime Number Generation

Rapid prototyping with OpenMP

Speedup(2P) = 100/(97/2+3) = ~1.941.94X

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

23

OpenMP

Fork-join parallelism:

• Master thread spawns a team of threads as needed

• Parallelism is added incrementally
• sequential program evolves into a parallel program

Parallel Regions

Master
Thread

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

24

Design

#pragma omp parallel for
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
globalPrimes[gPrimesFound++] =

i;
ShowProgress(i, range);

}

OpenMP

Create threads here for
this parallel region

Divide iterations
of the forfor loop

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

25

Design

What is the expected benefit?

How do you determine this with the least effort?

How long would it take to thread?

How much re-design/effort is required?

Is this the best scaling possible?

Speedup of 1.121.12X (less than 1.94X)Speedup of 1.121.12X (less than 1.94X)

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

26

Debugging for Correctness

Is this threaded implementation right?

No! The answers are different each time …

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

27

Debugging for Correctness

Intel® Thread Checker pinpoints notorious threading bugs like
data races, stalls and deadlocks

IntelIntel®® Thread CheckerThread Checker
VTune™ Performance AnalyzerVTune™ Performance Analyzer

+.so’s (Instrumented)

Binary
Instrumentation

Primes.exe
(Instrumented)

Runtime
Data

Collector

threadchecker.thr
(result file)

Primes.cPrimes.c

Compiler
Source

Instrumentation

Primes.exePrimes.exe

-openmp -tcheck

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

28

Debugging for Correctness

If application has source instrumentation, it can be run from
command prompt

threadchecker.thr
(result file)Primes.cPrimes.c

Compiler
Source

Instrumentation

Primes.exePrimes.exe

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

29

Threaded Programming Methodology for Linux

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

30

Debugging for Correctness

How much re-design/effort is required?

How long would it take to thread?

Thread Checker reported only 2
dependencies, so effort required

should be low

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

31

Debugging for Correctness

#pragma omp parallel for
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
#pragma omp critical

globalPrimes[gPrimesFound++] = i;
ShowProgress(i, range);

}

#pragma omp critical
{

gProgress++;
percentDone = (int)(gProgress/range *200.0f+0.5f)

}

Will create a
critical section for
this reference

Will create a critical
section for both
these references

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

32

Correctness

Correct answer, but performance has slipped to ~1.03X !

Is this the best we can expect from this algorithm?

No! From Amdahl’s Law, we
expect scaling close to 1.9X

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

33

Common Performance Issues

Parallel Overhead
• Due to thread creation, scheduling …

Synchronization
• Excessive use of global data, contention for the same

synchronization object

Load Imbalance
• Improper distribution of parallel work

Granularity
• No sufficient parallel work

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

34

Tuning for Performance

Thread Profiler pinpoints performance bottlenecks in threaded
applications

Thread ProfilerThread Profiler
VTune™ Performance AnalyzerVTune™ Performance Analyzer

+.so’s (Instrumented)

Binary
Instrumentation

Primes.c

Primes.exe
(Instrumented)

Runtime
Data

Collector

Bistro.tp/guide.gvs
(result file)

Compiler
Source

Instrumentation

Primes.exe

-openmp_profile

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

35

Tuning for Performance

If application has source instrumentation, it can be run from
command prompt

Primes.c

Bistro.tp/guide.gvs
(result file)

Compiler
Source

Instrumentation

Primes.exe

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

36

Thread Profiler for OpenMP

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

37

Thread Profiler for OpenMP

Speedup Graph

Estimates threading speedup and
potential speedup

– Based on Amdahl’s Law computation

Gives upper and lower bound
estimates

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

38

Thread Profiler for OpenMP

serial

serial

parallel

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

39

Thread Profiler for OpenMP

Thread 0

Thread 1

Thread 2

Thread 3

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

40

Thread Profiler for OpenMP

500000

250000

750000

1000000

Thread 0

342 factors to test 116747

Thread 1

612 factors to test 373553

Thread 2

789 factors to test 623759

Thread 3

934 factors to test 873913

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

41

Thread Profiler for OpenMP

Thread 0

342 factors to test 116747

Thread 1

612 factors to test 373553

Thread 2

789 factors to test 623759

Thread 3

934 factors to test 873913

500000

250000

750000

1000000

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

42

Fixing the Load Imbalance

Distribute the work more evenly

void FindPrimes(int start, int end)
{

// start is always odd
int range = end - start + 1;

#pragma omp parallel for schedule(static, 8)
for(int i = start; i <= end; i += 2)
{

if(TestForPrime(i))
#pragma omp critical

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);
}

} Scaling achieved is 1.021.02X
Optimizing Performance of Parallel Programs on Emerging

Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

43

Back to Thread Profiler

If no sync, would
only achieve 1.171.17X

Why are we not getting any
speedup?

Too much time in locks
and synchronization?

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

44

Serial code runs at 100%

Is it Possible to do Better?

Using toptop we see

Threaded code runs poorly…
…but has “flashes”

of good performance

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

45

Other Causes to Consider

Problems
Cache Thrashing

False Sharing

Excessive context switching

I/O

Tools
VTune Performance Analyzer

Thread Profiler (explicit threads)

Linux tools
• vmstat and sar
• Disk i/o, all CPUs, context switches,

network traffic, interrupts

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

46

Linux sar Output

Little paging activity

Memory doesn’t seem a
problem

Acceptable context switching

Less than 5000 context
switches per second
should be acceptable

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

47

Performance

This implementation has implicit synchronization calls

• Thread-safe libraries may have “hidden” synchronization to protect
shared resources

• Will serialize access to resources

I/O libraries share file pointers

• Limits number of operations in parallel

• Physical limits

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

48

void ShowProgress(int val, int range)
{

int percentDone;
#pragma omp critical
{

gProgress++;
percentDone = (int)((float)gProgress/(float)range*200.0f+0.5f);

}
if(percentDone % 10 == 0)

printf("\b\b\b\b%3d%%", percentDone);
}

Performance

How many times is printf() executed?

Hypothesis:Hypothesis: The algorithm has many more updates than the 10 needed for
showing progress. Why?

void ShowProgress(int val, int range)
{

int percentDone;
static int lastPercentDone = 0;

#pragma omp critical
{

gProgress++;
percentDone = (int)((float)gProgress/(float)range*200.0f+0.5f);

}
if(percentDone % 10 == 0 && lastPercentDone < percentDone / 10){

printf("\b\b\b\b%3d%%", percentDone);
lastPercentDone++;

}
}

This change should fix the contention issue
Optimizing Performance of Parallel Programs on Emerging

Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

49

Design

Eliminate the contention due to implicit synchronization

Speedup is 17.8717.87X!

Can that be right?

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

50

Performance

Our original baseline measurement had the “flawed” progress
update algorithm

Is this the best we can expect from this algorithm?

Speedup achieved is 1.491.49X (<1.9X)

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

51

Performance Re-visited

Let’s use Thread Profiler again…

70% of time spent in
synchronization and

overhead

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

52

OpenMP Critical Regions

#pragma omp parallel for
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
#pragma omp critical (one)

globalPrimes[gPrimesFound++] = i;
ShowProgress(i, range);

}
#pragma omp critical (two)
{

gProgress++;
percentDone = (int)(gProgress/range *200.0f+0.5f)

}

Naming regions will
create a different
critical section for
code regions

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

53

Performance Re-visited

Any better?

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

54

Reducing Critical Region Size

#pragma omp parallel for
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))
#pragma omp critical (one)

globalPrimes[gPrimesFound++] = i;
ShowProgress(i, range);

}
#pragma omp critical (two)
{

gProgress++;
percentDone = (int)(gProgress/range *200.0f+0.5f)

}

Two operations (read & write)
Only gPrimesFound update

needs protection

Write and read are separate

Use local variables for read access
outside critical region

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

55

Reducing Critical Region Size

#pragma omp parallel for
for(int i = start; i <= end; i+= 2){

if(TestForPrime(i)) {
#pragma omp critical (one)

lPrimesFound = gPrimesFound++;
globalPrimes[lPrimesFound] = i;

}
ShowProgress(i, range);

}

#pragma omp critical (two)
lProgress = gProgress++;

percentDone = (int)(lProgress/range *200.0f+0.5f)Speedup is up to 1.891.89X
Optimizing Performance of Parallel Programs on Emerging

Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

56

Scaling Performance

1.96X

1.97X

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

57

Summary

Threading applications require multiple iterations of designing,
debugging and performance tuning steps

Use tools to improve productivity

Unleash the power of dual-core and multi-core processors with
multithreaded applications

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

58

Threaded Programming Methodology for Linux

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Threading for Performance
- Other Threading Issues

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Synchronization is an expensive, but
necessary “evil” – Ways to minimize impact

• Heap contention
• Allocation from heap causes implicit synchronization
• Use local variable for partial results, update global after local

computations
• Allocate space on thread stack (alloca)

• Use thread-local storage API (TlsAlloc)

• Atomic updates versus Critical Sections
• Some global data updates can use atomic operations (Interlocked family)
• Use atomic updates whenever possible

• Critical Sections versus Mutual Exclusion
• Critical Section objects reside in user space
• Introduces lesser overhead

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

60

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

False Sharing is a common problem when
using data parallel threading

• False sharing can occur when 2 threads access distinct or
independent data that fall into the same cache line

• Care should be taken to duplicate private buffers and
counter variables be thread local

• Split dataset in such a manner as to avoid cache conflicts

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

61

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

False sharing Example

• Two threads divide the work by every other 3-component
vertex

• Two threads update the contiguous vertices, v[k] and
v[k+1], which fall on the same cache line (common case)

PP00 PP11 …….…….PP99PP88PP77PP66PP55PP44PP33PP22

Thread 1Thread 1
Thread 2Thread 2

Cache line 64 bytesCache line 64 bytesCache line 64 bytesCache line 64 bytes

12 bytes12 bytes12 bytes12 bytes

…….……. XXkk YYkk ZZkk XXk+1k+1

12 bytes12 bytes12 bytes12 bytes

PPkk PPk+1k+1

YYk+1k+1 ZZk+1k+1 …….…….

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

62

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

False sharing Example: Problem Fixed

• Let each thread handle half of the vertices by dividing the
data into equal halves

PPNN--11………………PPN/2+3N/2+3PPN/2+2N/2+2PPN/2+1N/2+1

Thread 1Thread 1

Thread 2Thread 2

PP11PP00 PPN/2N/2………………PP22

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

63

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Granularity of data decomposition is important to
dynamically scale for the system

• Finding the right sized “chunks” can be challenging
• Too large can lead to load imbalance
• Too small can lead to synchronization overhead

• What is the optimal # of concurrent threads? Depends
on

•• Total size of working setTotal size of working set
•• Thread synchronization overheadThread synchronization overhead

• Adjust dynamically to help keep the balance right and reduce
synchronization

GetSystemInfo(&lpSystemInfo);
N = lpSystemInfo->dwNumberOfProcessors;

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

64

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Threading with OpenMP

• Simple, portable, scalable SMP Specification
• Compiler directives
• Library routines

• Quick and Easy
• #pragma omp parallel for
• Thread scheduling, synchronization, sections, and more

• OpenMP is supported in Visual Studio® 2005

• Fork / Join programming Model
• Pool of Sleeping threads
• Single threaded until a Fork is reached

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

65

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

66

Intel® Threading Building Blocks
A Parallel Programming Model for C++

LowLow--Level Synchronization PrimitivesLevel Synchronization Primitives
SpinMutexSpinMutex
QueuingMutexQueuingMutex
ReaderWriterMutexReaderWriterMutex
MutexMutex

Generic Parallel AlgorithmsGeneric Parallel Algorithms
ParallelForParallelFor
ParallelWhileParallelWhile
ParallelReduceParallelReduce
PipelinePipeline
ParallelSortParallelSort
ParallelScanParallelScan

Concurrent ContainersConcurrent Containers
ConcurrentHashTableConcurrentHashTable
ConcurrentQueueConcurrentQueue
ConcurrentVectorConcurrentVector

TaskSchedulerTaskScheduler

66

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Native Win32 Threads is the most
commonly used currently

• _beginthread() / _endthread()
• Basic thread creation function
• Lacks configurability with potential for errors

• CreateThread() / ExitThread()
• Provides more flexibility during thread creation
• No automatic TLS (Thread Local Storage) created

• _beginthreadex() / _endthreadex()
• Best native thread creation function to use
• Automatically creates TLS to correctly execute multi-threaded C Runtime

libraries

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

67

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Atomic Updates

Use Win32 Interlocked* intrinsics in place of synchronization
object

static long counter;static long counter;

// Fast// Fast
InterlockedIncrement (&counter);InterlockedIncrement (&counter);

// Slower// Slower
EnterCriticalSection (&cs);EnterCriticalSection (&cs);

counter++;counter++;
LeaveCriticalSection (&cs);LeaveCriticalSection (&cs);

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

68

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Lock free algorithms

See Game Programming Gems 6 and other recent literature

Compare and Swap:

• implemented by InterlockedCompareAndExchange

• Atomically implemented in hardware in x86 CPUs

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

69

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

70

Parallel Overhead

Thread Creation overhead

• Overhead increases rapidly as the number of active threads
increases

Solution

• Use of re-usable threads and thread pools
• Amortizes the cost of thread creation
• Keeps number of active threads relatively constant

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

71

Synchronization

Heap contention

• Allocation from heap causes implicit synchronization

• Allocate on stack or use thread local storage

Atomic updates versus critical sections

• Some global data updates can use atomic operations (Interlocked
family)

• Use atomic updates whenever possible

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

72

Load Imbalance

Unequal work loads lead to idle threads and wasted
time

Tim
e

Busy
Idle

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

73

Granularity

Loosely defined as the
ratio of computation to
synchronization

Be sure there is enough
work to merit parallel
computation

Example: Two farmers
divide a field. How many
more farmers can be
added?

Optimizing Performance of Parallel Programs on Emerging
Multi-Core Processors & GPUs (OPECG-2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

