
1 C-DAC hyPACK-2013 Basics of GPU Based Programming

Classroom lecture :
An Overview of GPGPUs /GPU Computing

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-4 : GPUs)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Application Kernels

2 C-DAC hyPACK-2013 Basics of GPU Based Programming

Lecture Outline

Following topics will be discussed

 An Overview of GPUs – Past Developments – GPU Prog.

 An overview of CUDA enabled NVIDIA GPUs – OpenACC

CUDA 5.5 &

 An Overview of AMD GPUs – Programming - OpenCL

 An Overview of OpenCL – Heterogeneous Prog.

Source : References given in the presentation

An Overview of GPGPUs /GPU Computing

3 C-DAC hyPACK-2013 Basics of GPU Based Programming

An Overview of GPUs / Past –

GPU Programming on GPUs

Part-I (A)

Source & Acknowledgements : NVIDIA, AMD, References

4 C-DAC hyPACK-2013 Basics of GPU Based Programming

Overview

What is GPU ? Graphics Pipeline

GPU Architecture

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

Rendering pipeline on current GPUs

Low-level languages
 Vertex programming

 Fragment programming

High-level shading languages

GPU Architecture - Graphics Programming

Source : References

5 C-DAC hyPACK-2013 Basics of GPU Based Programming

What is GPU ?

From Wikipedia : A specialized processor efficient at

manipulating and displaying computer graphics

2D primitive support – bit block transfers

Some might have video support

And of course 3D support (a topic at the heart of this

presentation)

GPUs are optimized for raster graphics

Source : References

6 C-DAC hyPACK-2013 Basics of GPU Based Programming

Without GPU With GPU

What is GPU ?

Source : References given in the presentation

7 C-DAC hyPACK-2013 Basics of GPU Based Programming

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPU

 The GPU is specialized for compute-intensive, highly data parallel

computation (exactly what graphics rendering is about)

 So, more transistors can be devoted to data processing rather

than data caching and flow control

 Data-parallel portions of an application are executed on the device

as kernels which run in parallel on many threads

 GPU threads are extremely lightweight

 GPU needs 1000s of threads for full efficiency

What is GPU ?

8 C-DAC hyPACK-2013 Basics of GPU Based Programming

Graphics Processing Unit

GPU also occasionally called visual processing unit or
VPU

 It’sadedicatedgraphicsrenderingdeviceforapersonal
computer, workstation, or game console.

GPU is viewed as compute device that :

• Is a coprocessor to CPU or host machine
• Has its own DRAM (on the device)
• Runs many threads in parallel

 Thus GPU is dedicated super-threaded, massively data

parallel co-processor

What is GPU ?

9 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPGPU

Look at GPU as a fast SIMD processor

 It is a specialized processor, so not all programs

can be run

Example computational programs – FFT,

Cryptography, Ray Tracing, Segmentation and

even sound processing!

Source : References given in the presentation

10 C-DAC hyPACK-2013 Basics of GPU Based Programming

History
Dealing complex with

Graphics API

Sequential Flow of
Execution

Limited
Communication

Input Registers

Fragment
Program

Output Registers

Constants

Texture

Temp Registers

per thread

per Shader

per Context

FB Memory

What is GPU ?

11 C-DAC hyPACK-2013 Basics of GPU Based Programming

The Graphics pipeline

Application

Command

Geometry

Rasterization

Texture

Fragment

Display

12 C-DAC hyPACK-2013 Basics of GPU Based Programming

Low level

Specification not an API

Crossplatform implementations

Popular with some games

A simple seq of opengl instr (in C)
glClearColor(0.0,0.0,0.0,0.0);

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,1.0,1.0);

glOrtho(0.0,1.0,0.0,1.0,-1.0,1.0);

glBegin(GL_POLYGON);

glVertex(0.25,0.25,0.0);

glVertex(0.75,0.25,0.0);

glVertex(0.75,0.75,0.0);

glVertex(0.25,0.75,0.0);

glEnd();

3D Graphics Software Interfaces

OpenGL (v2.0 as of now)

Source : References

13 C-DAC hyPACK-2013 Basics of GPU Based Programming

Geometry Processing

Source : References

14 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA GeForce 6800

General Info

 Impressive performance stats
 600 Million vertices/s

 6.4 billion texels/s

 12.8 billion pixels/s rendering z/stencil only

 64 pixels per clock cycle early z-cull (reject rate)

Riva series (1st DirectX compatible)
 Riva 128, Riva TNT, Riva TNT2

GeForce Series
 GeForce 256, GeForce 3 (DirectX 8), GeForce FX, GeForce

6 series

Source : References

15 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA GeForce 6800

Block Diagram

Source : References

16 C-DAC hyPACK-2013 Basics of GPU Based Programming

Allow shader to be

applied to each vertex

Transformation and other

per vertex ops

Allow vertex shader to

fetch texture data (6

series only)

NVIDIA GeForce 6800
Vertex Processor (or vertex shader)

Source : References

17 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU from comp arch perspective

Processing units

Focus on Floating point math

 fp32 and fp16 precision support for intermediate

calculations

6 four-wide fp32 vector MADs/clock in shaders and 1

scalar multifunction op

16 four-wide fp32 vector MADs/clock in frag-proc plus 16

four-wide fp32 MULs

Dedicated fp16 normalization hardware

Source : References

18 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU from comp arch perspective Memory

Use dedicated but standard memory architectures (eg

DRAM)

Multiple small independent memory partitions for

improved latency

Memory used to store buffers and optionally textures

 In low-end system (Intel 855GM) system memory is

shared as the Graphics memory

19 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU interfaces with the CPU using fast buses like

AGP and PCI Express

Port speeds
 PCI express upto 8GB/sec (4 + 4)

 Practically upto (3.2 + 3.2)

 AGP upto 2 GB/sec (for 8x AGP)

Such bus speeds are important because textures and

vertex data needs to come from CPU to GPU (after

that it's the internal GPU bandwidth that matters)

GPU from comp arch perspective Memory

Source : References given in the presentation

20 C-DAC hyPACK-2013 Basics of GPU Based Programming

Texture caches (2 level)
 Shared between vertex procs and fragment procs

 Cache processed/filtered textures

Vertex caches
 cache processed and unprocessed vertexes

 improve computation and fetch performance

Z and buffer cache and write queues

GPU from comp arch perspective Memory

21 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Graphics Software Interfaces

Direct 3D (v9.0 as of now)

High level

3D API – part of DirectX

Very popular in the gaming industry

Microsoft platforms only

Source : References given in the presentation

22 C-DAC hyPACK-2013 Basics of GPU Based Programming

Traditional OpenGL Pipeline

23 C-DAC hyPACK-2013 Basics of GPU Based Programming

Programmable Pipeline

Most parts of the rendering pipeline can be

programmed

Shading programs to change hardware behavior
 Transform and lighting:

 vertex shaders / vertex programs
 Fragment processing:

 pixel shaders / fragment programs

History: from fixed-function pipeline to configurable

pipeline
 Steps towards programmability

24 C-DAC hyPACK-2013 Basics of GPU Based Programming

Programmable Pipeline

25 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU - Issues

How are vertex and pixel shaders specified?
 Low-level, assembler-like

 High-level language

Data flow between components
 Per-vertex data (for vertex shader)

 Per-fragment data (for pixel shader)

 Uniform (constant) data: e.g. modelview matrix,

material parameters

26 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Overview

Rendering pipeline on current GPUs

Low-level languages

 Vertex programming

 Fragment programming

High-level shading languages

27 C-DAC hyPACK-2013 Basics of GPU Based Programming

What Are Low-Level APIs?

Similarity to assembler

 Close to hardware functionality

 Input: vertex/fragment attributes

 Output: new vertex/fragment attributes

 Sequence of instructions on registers

 Very limited control flow (if any)

 Platform-dependent

 BUT: there is convergence

28 C-DAC hyPACK-2013 Basics of GPU Based Programming

What Are Low-Level APIs?

Current low-level APIs:
 OpenGL extensions: GL_ARB_vertex_program,

 GL_ARB_fragment_program

DirectX 9: Vertex Shader 2.0, Pixel Shader 2.0
 Older low-level APIs:

 DirectX 8.x: Vertex Shader 1.x, Pixel Shader 1.x

 OpenGL extensions: GL_ATI_fragment_shader,

GL_NV_vertex_program,…

Source : References given in the presentation

29 C-DAC hyPACK-2013 Basics of GPU Based Programming

Why Use Low-Level APIs?

Low-level APIs offer best performance &

functionality

Helptounderstandthegraphicshardware(ATI’s

r300,NVIDIA’snv30,...)

Help to understand high-level APIs (Cg, HLSL, ...)

Much easier than directly specifying configurable

graphics pipeline (e.g. register combiners)

30 C-DAC hyPACK-2013 Basics of GPU Based Programming

Applications Vertex Programming

Customized computation of vertex attributes

Computation of anything that can be interpolated

linearly between vertices

Limitations:
 Vertices can neither be generated nor destroyed

 No information about topology or ordering of vertices

is available

31 C-DAC hyPACK-2013 Basics of GPU Based Programming

Circumvents the traditional vertex pipeline

What is replaced by a vertex program?
 Vertex transformations

 Vertex weighting/blending

 Normal transformations

 Color material

 Per-vertex lighting

 Texture coordinate generation

 Texture matrix transformations

 Per-vertex point size computations

 Per-vertex fog coordinate computations

 Client-defined clip planes

OPEN_GL GL_ARB_vertex_program

32 C-DAC hyPACK-2013 Basics of GPU Based Programming

OPEN_GL GL_ARB_vertex_program

What is not replaced?

 Clipping to the view frustum

 Perspective divide (division by w)

 Viewport transformation

 Depth range transformation

 Front and back color selection

 Clamping colors

 Primitive assembly and per-fragment operations

 Evaluators

33 C-DAC hyPACK-2013 Basics of GPU Based Programming

Vertex Shader 2.0 introduced in DirectX 9.0

Similar functionality and limitations as

GL_ARB_vertex_program

Similar registers and syntax

Additional functionality: static flow control
 Control of flow determined by constants (not by per-

vertex attributes)

 Conditional blocks, repetition, subroutines

DirectX 9: Vertex Shader 2.0

Source : References given in the presentation

34 C-DAC hyPACK-2013 Basics of GPU Based Programming

Applications for Fragment Programming

Customized computation of fragment attributes

Computation of anything that should be computed per

pixel

Limitations:
 Fragments cannot be generated

 Position of fragments cannot be changed

 No information about geometric primitive is available

35 C-DAC hyPACK-2013 Basics of GPU Based Programming

OPEN_GL_ARB_fragment_program

Circumvents the traditional fragment pipeline

What is replaced by a pixel program?
 Texturing

 Color sum

 Fog

 for the rasterization of points, lines, polygons, pixel

 rectangles, and bitmaps

What is not replaced?
 Fragment tests (alpha, stencil, and depth tests)

 Blending

36 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Overview

Rendering pipeline on current GPUs

Low-level languages

 Vertex programming

 Fragment programming

High-level shading languages

37 C-DAC hyPACK-2013 Basics of GPU Based Programming

High-Level Shading Languages

Why?
 Avoids programming, debugging, and maintenance of

long assembly shaders

 Easy to read

 Easier to modify existing shaders

 Automatic code optimization

 Wide range of platforms

 Shaders often inspired RenderMan shading language

Source : References given in the presentation

38 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Application
Vertex

Program

Connect

Vertex In

Frame Buffer
Fragment

Program

Shader

mainVs

Connect

Vertex In
Shader

Connector

Vertex shader program

Fragment shader program

Connectors

Data Flow through Pipeline

39 C-DAC hyPACK-2013 Basics of GPU Based Programming

High-Level Shading Languages

Cg
 “CforGraphics”

 By NVIDIA

HLSL
 High-levelshadinglanguage”

 Part of DirectX 9 (Microsoft)

OpenGL 2.0 Shading Language
 Proposal by 3D Labs

40 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU - Cg

Typical concepts for a high-level shading language

Language is (almost) identical to DirectX HLSL

Syntax, operators, functions from C/C++

Conditionals and flow control

Backends according to hardware profiles

Support for GPU-specific features (compare to low-level)
 Vector and matrix operations

 Hardware data types for maximum performance

 AccesstoGPUfunctions:mul,sqrt,dot,…

 Mathematical functions for graphics, e.g. reflect

 Profiles for particular hardware feature sets

41 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg Shader

Direct X OpenGL

GPU

Offline or Rutume compile

Cg

Compiler
Compilation and

Optimization

Low-level

Assembly code

Internal machine

code

 Workflow in Cg

42 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Application
Vertex

Program

Connect

Vertex In

Frame Buffer
Fragment

Program

Shader

mainVs

Connect

Vertex In
Shader

Connector

First part of pipeline

Connectors: what kind of data is

transferred to/from vertex program?

Actual vertex shader

Phong Shading in Cg: Vertex Shader

43 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA G80 Block Diagram

Very little of this is graphic specic

 ...but, assumes threads are independent

44 C-DAC hyPACK-2013 Basics of GPU Based Programming

Hyper “Core” Computers

Speculation about the computer of the next decade:

 10s of CPU cores
 Use for scheduling

 Use for \irregular" part of problem

 Maybe higher precision (correction steps)

 100s of GPU cores
 Use for \regular" part of problem

 NUMA (Non-Uniform Memory Access) for both
 Programming languages must expose this

 Runtime systems?

 Always out-of-(some)-core

 Clusters of these?
 OpenMP/MPI not sufficient

45 C-DAC hyPACK-2013 Basics of GPU Based Programming

Limitations of GPUs

If the GPU is so great, why are we still using the CPU?

Youcannotsimply“port"existingcodeandalgorithms!

 Data-stream mindset required
 Parallel algorithms

 New data structures (dynamic data structures are

troublesome)

 Not suitable to all problems
 Pointer chasing impossible or inecient

 Recursion

 Debugging is hard
 Hardware is designed without debug bus

 Driver is closed

 Huge performance clis

 No standard API
 More about this later...

46 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Programming

GPUs have traditionally been closed architectures.
 Must program them through closed-source graphics driver

 Driver is like an OS (threads, scheduling, protected

memory)

OpenGL/DirectX are standard, but
 Designed for graphics, not general purpose computations

 Many revisions of each standard

New revisions for each HW-generation

 Allows for \capabilities"

 Large variations between vendors

Both vendors now have dedicated GPGPU APIs
 Nvidia CUDA (Compute Unified Device Architecture)

 AMD CTM (Close To Metal) – AMD ATI - FireStream

GPGPU version" of hardware as well

47 C-DAC hyPACK-2013 Basics of GPU Based Programming

An Overview of GPU Prog. Languages

Part-I (B)

Source & Acknowledgements : NVIDIA, AMD, References

48 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Renderman

Cg
HLSL

Sh

GLSL

SlabOps OpenVidia

BrookGPU

Rendertexture

GPU – Prog. Lang

OpenCL

49 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cook and Perlin first to develop languages for
performing shading calculations

Perlin computed noise functions procedurally;
introduced control constructs

Cook developed idea of shade trees @Lucasfilm

These ideas led to development of Renderman at
Pixar (Hanrahan et al) in 1988.

Renderman is STILL shader language of choice
for high quality rendering !

Languages intended for offline rendering; no
interactivity, but high quality.

GPU - Some History

50 C-DAC hyPACK-2013 Basics of GPU Based Programming

After RenderMan, independent efforts to develop high

level shading languages at SGI (ISL), Stanford

(RTSL).

ISL targeted fixed-function pipeline and SGI cards

(remember compiler from previous lecture): goal was

to map a RenderMan-like language to OpenGL

RTSL took similar approach with programmable

pipeline and PC cards (recall compiler from previous

lecture)

RTSL morphed into Cg.

GPU - Some History

51 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg was pushed by NVIDIA as a platform-neutral,
card-neutral programming environment.

In practice, Cg tends to work better on NVIDIA
cards (better demos, special features etc).

ATI made brief attempt at competition with
Ashli/RenderMonkey.

HLSL was pushed by Microsoft as a DirectX-
specific alternative.

In general, HLSL has better integration with the
DirectX framework, unlike Cg with
OpenGL/DirectX.

GPU - Some History

Overview –

C-like vertex, Cg, HLSL, GLSL,

Data Types, Shaders,Compilation

GPU – Level 1: Better Than Assembly ?

53 C-DAC hyPACK-2013 Basics of GPU Based Programming

Languages are specified in a C-like syntax.

The user writes explicit vertex and fragment
programs.

Code compiled down into pseudo-assembly

• this is a source-to-source compilation: no machine code
is generated.

Knowledge of the pipeline is essential

• Passing array = binding texture

• Start program = render a quad

• Need to set transformation parameters

• Buffer management a pain

GPU Lang. - Prog.: C-like vertex and fragment code

54 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Platform neutral, architecture
“neutral” shading language
developed by NVIDIA.

 One of the first GPGPU languages
used widely.

 Because Cg is platform-neutral,
many of the other GPGPU issues are
not addressed

• managing pbuffers

• rendering to textures

• handling vertex buffers

“As we started out with
Cg it was a great boost
to getting programmers
used to working with
programmable GPUs.
Now Microsoft has made
a major commitment
and in the long term we
don’t really want to be in
the programming
language busies”

David Kirk,

NVIDIA

GPU Lang. - Prog.: Cg

55 C-DAC hyPACK-2013 Basics of GPU Based Programming

Developed by Microsoft; tight coupling with
DirectX

Because of this tight coupling, many things are
easier (no RenderTexture needed !)

Xbox programming with DirectX/HLSL (XNA)

But…

Cell processor will use OpenGL/Cg

GPU Lang. - Prog.: HLSL

56 C-DAC hyPACK-2013 Basics of GPU Based Programming

 GLSL is the latest shader language, developed by

3DLabs in conjunction with the OpenGL ARB,

specific to OpenGL.

 Requires OpenGL 2.0

 NVIDIAdoesn’tyethavedriversforOpenGL!!2.0

Demos (appear to be) emulated in software

 ATI appears to have native GL 2.0 support and thus

support for GLSL.

Multiplicity of languages likely to continue

GPU Lang. - Prog.: GLSL

57 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Scalars: float/integer/boolean

 Scalars can have 32 or 16 bit precision (ATI supports
24 bit, GLSL has 16 bit integers)

 vector: 3 or 4 scalar components.

 Arrays (but only fixed size)

 Limited floating point support; no underflow/overflow
for integer arithmetic

 No bit operations

Matrix data types

 Texture data type

• power-of-two issues appear to be resolved in
GLSL

• different types for 1D, 2D, 3D, cubemaps.

GPU Lang. - Prog.: Datatypes

58 C-DAC hyPACK-2013 Basics of GPU Based Programming

Data Binding modes:

 uniform: the parameter is fixed over a glBegin()-
glEnd() call.

 varying: interpolated data sent to the fragment
program (like pixel color, texture coordinates, etc)

 attribute: per-vertex data sent to the GPU from the
CPU (vertex coordinates, texture coordinates,
normals, etc).

 Data direction:

 in: data sent into the program (vertex coordinates)

 out: data sent out of the program (depth)

 inout: both of the above (color)

GPU Lang. - Prog.: DatatBinding

59 C-DAC hyPACK-2013 Basics of GPU Based Programming

Usual arithmetic and special purpose algebraic ops
(trigonometry, interpolation, discrete derivatives, etc)

No integer mod…

for-loops, while-do loops, if-then-else statements.

discard allows you to kill a fragment and end
processing.

Recursive function calls are unsupported, but simple
function calls are allowed

Always one “main” function that starts the program,
like C.

GPU Lang. - Prog.: Operations And Control Flow

60 C-DAC hyPACK-2013 Basics of GPU Based Programming

 This is the most painful part of working with shaders.

 Allthreelanguagesprovidea“runtime”toload
shaders, link data with shader variables, enable and
disable programs.

 Cg and HLSL compile shader code down to
assembly(“source-to-source”).

 GLSL relies on the graphics vendor to provide a
compiler directly to GPU machine code, so no
intermediate step takes place.

GPU Lang.-Prog.: working with Shaders : The Mechanics

61 C-DAC hyPACK-2013 Basics of GPU Based Programming

Step 1: Load the shader

Shader source

Create Shader Object

Load shader

from file

Compile shader

GPU Lang.-Prog.: working with Shaders : The Mechanics

62 C-DAC hyPACK-2013 Basics of GPU Based Programming

Main C code

Shader source

float3 main(

uniform float v,

sampler2D t){

…

}

handle for v

handle for t

Get

handles

Set values

for vars

GPU Lang.-Prog.: working with Shaders : The Mechanics

Step 2: Bind Variables

63 C-DAC hyPACK-2013 Basics of GPU Based Programming

Enable Shader

Enable parameters

Render something

Enable Program

Load shader(s) into

program

In GLSL

GPU Lang.-Prog.: working with Shaders : The Mechanics

Step 3: Run the Shaders

64 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg code can be compiled to fragment code for
different platforms (directx, nvidia, arbfp)

HLSL compiles directly to directx

GLSL compiles natively.

It is often the case that inspecting the Cg compiler
output reveals bugs, shows inefficiencies etc that
can be fixed by writing assembly code (like writing
asm routines in C)

InGLSLyoucan’tdothisbecausethecodeis

compiled natively: you have to trust the vendor
compiler !

GPU Lang.-Prog.: Direct Compilation

65 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Shading languages like Cg, HLSL, GLSL are ways of

approaching Renderman but using the GPU.

 These will never be the most convenient approach for

general purpose GPU programming

 But they will probably yield the most efficient code

• you either need an HLL and great compilers

• or you suffer and program in these.

GPU Lang.-Prog.: Overview

66 C-DAC hyPACK-2013 Basics of GPU Based Programming

Writing code that works cross-platform, with all
extensions, is hard.

Wrappers take care of the low-level issues, use the
right commands for the right platform, etc.

Render Texture:

– Handles offscreen buffers and render-to-texture cleanly

– works in both windows and linux (only for OpenGL
though)

– de facto class of choice for all Cg programming (use Cg
for the code, and RenderTexture for texture
management).

GPU – Lang. Prog. ; Wrapper libraries

67 C-DAC hyPACK-2013 Basics of GPU Based Programming

Video and image processing library developed at

University of Toronto.

Contains a collection of fragment programs for basic

vision tasks (edge detection, corner tracking, object

tracking, video compositing, etc)

Provides a high level API for invoking these functions.

Works with Cg and OpenGL, only on linux (for now)

Level of transparency is low: you still need to set up

GLUT, and allocate buffers, but the details are

somewhat masked)

GPU – Lang. Prog. ; OpenVidia

68 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Create processing object:
• d=new FragPipeDisplay(<parameters>);

 Create image filter
• filter1 = new GenericFilter(…,<cg-

program>);

 Make some buffers for temporary results:
• d->init_texture(0, 320, 240, foo);

• d->init_texture4f(1, 320, 240, foo);

 Apply filter to buffer, store in output buffer
• d->applyFilter(filter1, 0,1);

GPU – Lang. Prog. : OpenVidia Example

69 C-DAC hyPACK-2013 Basics of GPU Based Programming

Main goal is to hide details of the runtime and distill
the essence of the computation.

These languages exploit the stream aspect of
GPUs explicitly

They differ from libraries by being general purpose.

They can target different backends (including the
CPU)

Either embed as C++ code (Sh) or come with an
associated compiler (Brook) to compile a C-like
language.

GPU – Lang. Prog. : High Level C-like languages

70 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Open-source code developed by group led by Michael
McCool at Waterloo

• Technical term is ‘metaprogramming’

• Code is embedded inside C++; no extra compile tools
are necessary.

• Sh uses a staged compiler: parts of code are compiled
when C++ code is compiled, and the rest (with certain
optimizations) is compiled at runtime.

• Has a very similar flavor to functional programming

• Parameter passing into streams is seamless, and
resource constraints are managed by virtualization.

GPU Lang. Prog. : High Level C-like languages :Sh

71 C-DAC hyPACK-2013 Basics of GPU Based Programming

 All kinds of other functions to extract data from streams
and textures.

 Lots of useful ‘primitive’ streams like passthru programs
and generic vertex/fragment programs, as well as
specialized lighting shaders.

 Sh is closely bound to OpenGL; you can specify all usual
OpenGL calls, and Sh is invoked as usual via a display()
routine.

 Plan is to have DirectX binding ready shortly (this may be
already be in)

 Because of the multiple backends, you can debug a shader
on the CPU backend first, and then test it on the GPU.

GPU Lang. Prog. : High Level C-like languages :Sh

And more ….. DirectX

72 C-DAC hyPACK-2013 Basics of GPU Based Programming

Open-source code developed by Ian Buck and
others at Stanford.

Intended as a pure stream programming language
with multiple backends.

Is not embedded in C code; uses its own compiler
(brcc) that generates C code from a .br file.

Workflow:

– Write Brook program (.br)

– Compile Brook program to C (brcc)

– Compile C code (gcc/VC)

GPU Lang. Prog. : High Level C-like languages

Brook GPU

73 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Designed for general-purpose computing (this is

primary difference in focus from Sh)

• You will almost never use any graphics

commands in Brook.

• Basic data type is the stream.

• Types of functions:

GPU Lang. Prog. : High Level C-like languages

Brook GPU

74 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Types of functions:

– Kernel: takes one or more input streams and

produces an output stream.

– Reduce: takes input streams and reduces them to

scalars (or smaller output streams)

– Scatter: a[oi] = si. Send stream data to array, putting

values in different locations.

– Gather: Inverse of scatter operation. si = a[oi].

• Support of all operations are required … check.

GPU Lang. Prog. : High Level C-like languages

Brook GPU

75 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Brook is more general: you

don’t need to know graphics

to run it.

 Very good for prototyping

 You need to rely on

compiler being good.

 Many special GPU features

cannot be expressed cleanly.

 Sh allows better control over

mapping to hardware.

 Embeds in C++; no extra

compilation phase necessary.

 Lots of behind-the-scenes

work to get virtualization: is

there a performance hit ?

 Still requires some

understanding of graphics.

GPU Lang. Prog. : High Level C-like languages

Sh Vs Brook GPU

76 C-DAC hyPACK-2013 Basics of GPU Based Programming

C-like API for programming newer Nvidia GPUs

 Computation kernels are written in C
 Compiles with dedicated compiler, nvcc

 Kernels are executed as threads, threads organized

into blocks
 Programmer decides #threads, #threads/block, and

mem/block

 Exposes different kinds of memory
 Thread-local (register)

 Shared per block

 Global (not cached, write everywhere)

 Texture (cached read only memory)

 Constant(cached read only memory)

 Some synchronization primitives

 cudaMalloc, cudaMemcpy for allocating and copying

memory

NVIDIA CUDA (Compute Unified Device Architecture)

77 C-DAC hyPACK-2013 Basics of GPU Based Programming

 The advent of Cg, and then Brook/Sh signified a
huge increase in the number of GPU apps. Having
good programming tools is worth a lot !

 The tools are still somewhat immature; almost non-
existent debuggers and optimizers, and only one
GPU simulator (Sm).

 Ishouldn’thavetoworryaboutthecorrect
parameters to pass when setting up a texture for use
as a buffer: we need better wrappers.

GPU Lang. Prog. : High Level C-like languages

The Big Picture

78 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Compiler efforts are lagging application development:
more work is needed to allow for high level language
development without compromising performance.

 In order to do this, we need to study stream
programming. Maybe draw ideas from the functional
programming world ?

 Libraries are probably the way forward for now.

GPU Lang. Prog. : High Level C-like languages

The Big Picture

79 C-DAC hyPACK-2013 Basics of GPU Based Programming

Hyper “Core” Computers

Speculation about the computer of the next decade:

 10s of CPU cores
 Use for scheduling

 Use for \irregular" part of problem

 Maybe higher precision (correction steps)

 100s of GPU cores
 Use for \regular" part of problem

 NUMA (Non-Uniform Memory Access) for both
 Programming languages must expose this

 Runtime systems?

 Always out-of-(some)-core

 Clusters of these?
 OpenMP/MPI not sufficient

80 C-DAC hyPACK-2013 Basics of GPU Based Programming

Limitations of GPUs

If the GPU is so great, why are we still using the CPU?

Youcannotsimply“port"existingcodeandalgorithms!

 Data-stream mindset required
 Parallel algorithms

 New data structures (dynamic data structures are

troublesome)

 Not suitable to all problems
 Pointer chasing impossible or inecient

 Recursion

 Debugging is hard
 Hardware is designed without debug bus

 Driver is closed

 Huge performance clis

 No standard API
 More about this later...

81 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Programming

GPUs have traditionally been closed architectures.
 Must program them through closed-source graphics driver

 Driver is like an OS (threads, scheduling, protected

memory)

OpenGL/DirectX are standard, but
 Designed for graphics, not general purpose computations

 Many revisions of each standard

New revisions for each HW-generation

 Allows for \capabilities"

 Large variations between vendors

Both vendors now have dedicated GPGPU APIs
 Nvidia CUDA (Compute Unified Device Architecture)

 AMD CTM (Close To Metal) – AMD ATI - FireStream

GPGPU version" of hardware as well

82 C-DAC hyPACK-2013 Basics of GPU Based Programming

Conclusions

 GPU Programming Language

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

OPECG-2009 -Hands-on session : Examples

An Overview of GPU Computing 83 hyPACK-2013

This page is intentionally kept blank

84 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs

Part-II(A)

Source & Acknowledgements : NVIDIA, References

85 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Source & Acknowledgements : NVIDIA, References

Computing - CPU/GPU

86 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Floating-Point Operations per Second and Memory Bandwidth for the CPU and GPU

Computing - CPU/GPU

Source & Acknowledgements : NVIDIA, References

87 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Why Are GPUs So Fast?

 GPU originally specialized for math-intensive, highly

parallel computation

 So, more transistors can be devoted to data

processing rather than data caching and flow control

 Commodity industry: provides economies of scale

 Competitive industry: fuels innovation

Control

Cache

DRAM DRAM

ALU ALU

ALU ALU

CPU GPU

AMD

NVIDIA

Source : NVIDIA, References

88 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Scaleto100’sofcores,1000’sofparallel

threads

Let programmers focus on parallel

algorithms & Re-writing the Code

• Not on the mechanics of a parallel

programming language

Enable heterogeneous systems (i.e. CPU

+ GPU)

• CPU and GPU are separate devices

with separate DRAMs

Some Design Goals

GPU Computing : Think in Parallel

0 1 2 3 4 5 6 7

……

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

89 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Computer Graphics

Hardware mimicked graphics APIs

 It is possible to formulate many

problems in this framework
 Uses graphics APIs

 Classical GPGPU"

DO NOT DO THIS ANYMORE!

 (Unless for graphics)

CPU

Geometry

Rasterize

Shade pixels

Display

Use GPU Computing with CUDA APIs for Data

Parallel Computations .(CUDA = Compute Unified

Device Architecture. CUDA is co-designed hardware

& software for direct GPU computing)

“OpenCL will enable programmers to easily develop

portable applications that maximize the performance

on GPU architectures.

90 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Computing drives new applications

• Reducing“TimetoDiscovery”

• 100 x Speedup changes science &

research methods

New applications drive the future of GPUs

• Drives new GPU capabilities

• Drives hunger for more performance

GPU Computing : Think in Parallel

Performance = parallel hardware

 +

 scalable parallel program

Application

CPU GPU

Source & Acknowledgements : NVIDIA, References

91 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Computing : Think in Parallel

 The GPU is a data-parallel processor

• Thousands of parallel threads

• Thousands of data elements to process

• All data processed by the same program

 SPMD computation model

• Contrast with task parallelism and ILP

 Bestresultswhenyou“Think Data Parallel”

• Design your algorithm for data-parallelism

• Understand parallel algorithmic complexity and efficiency

• Use data-parallel algorithmic primitives as building blocks

 Speedups of 8 x to 30x are quite common

for certain class of applications

Application

CPU GPU

Source : NVIDIA, AMD, References

Source & Acknowledgements : NVIDIA, References

92 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

•Performance /(Cost/Watt); Power for Core

•Structured Parallelism enables more flops less watts

Optimized for structured parallel execution

• Extensive ALU counts & Memory Bandwidth

• Cooperative multi-threading hides latency

Shared Instructions Resources

Fixed function units for parallel workloads dispatch

Extensive exploitations of Locality

GPU Computing : Think in Parallel

Why Are GPUs So Fast?

Source : NVIDIA, AMD, References

93 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimesit’sbettertorecomputethantocache

• GPU spends its translators on ALUs, not memory

Do more computation on the GPU to avoid costly data

transfers

• Even low parallelism computations can sometimes

be faster than transferring back and forth to host

GPU Computing : Think in Parallel

GPU Computing : Optimise Algorithms for the GPU

Source & Acknowledgements : NVIDIA, References

94 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Partition your computation to keep the GPU

multiprocessors equally busy

• Many threads, many thread blocks

Keep resource usage low enough to support

multiple active thread blocks per multiprocessor

• Registers, shared memory

GPU Computing : Use Parallelism Efficiently

GPU Computing : Think in Parallel

Source : NVIDIA,AMD, References

95 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Challenges with regard to Scientific Computing

GPU Programming : Two Main Challenges

 Example : Matrix Computations

• To port an existing scientific
application to a GPU

Challenge 1 : Programmability

 The user must focus considerable effort on optimizing
performance by manually orchestrating data movement
and managing thread level parallelism on GPU.

 GPU memory exists on the card itself
• Must send matrix array over PCI-Express Bus

 Send A, B, C to GPU over PCIe

Perform GPU-based computations on A,B, C

 Read result C from GPU over PCIe

Source : NVIDIA, AMD, References

Application

CPU GPU

96 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Challenge 2 : Accuracy

 Example : Non-Scientific Computation - Video Games (Frames)
(A single bit difference in a rendered pixel in a real-time graphics
program may be discarded when generating subsequence
frames)

 Past History : Most GPUs support single/double precision, 32 bit
/64-bit floating point operation, - all GPUs have necessarily
implemented the full IEEE Standard for Binary Floating-Point
Arithmetic (IEEE 754)

GPU Programming : Two Main Challenges

Source : NVIDIA, AMD, References

Source & Acknowledgements : NVIDIA, References

97 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA is Designed to Support Various Languages and Application

Programming Interfaces

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

98 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A CUDA kernel is executed by an array of threads

• All threads run the same code

• Each thread has an ID that it uses to compute

memory addresses and make control decisions

Arrays of Parallel Threads

0 1 2 3 4 5 6 7

……

float x = input[threadID];

float y = func(x);

output[threadID] = y;

……

threadID

NVIDIA - GPU Computing CUDA Kernels and Threads

Source : NVIDIA

99 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Solution: GPU Computing – NVIDIA CUDA

• NEW: GPU Computing with CUDA

 CUDA = Compute Unified Driver Architecture

 Co-designed hardware & software for direct GPU

computing

• Hardware: fully general data-parallel architecture

 General thread launch

 Global load-store

 Parallel data cache

• Software: program the GPU in C

 Scalable data-parallel execution/

 memory model

 Scalar architecture

 Integers, bit operations

 Single / Double

precision C with

powerful extensions

 CUDA 4.0 /CUDA 5.0

Source & Acknowledgements : NVIDIA, References

100 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA - Quick terminology review

CUDA is a development platform designed for writing and

running general-purpose applications on the nVIDIA GPU

• Similar to Graphics applications, CUDA applications can

be accelerated by data-parallel computation of millions of

threads.

A thread here is an instance of a kernel, namely a program

running on the GPU.

GPU platform can be regarded as a single instruction, multiple

data (SIMD) parallel machine rather than graphics hardware

• Keeping SIMD in mind, there is no need to understand

the graphics pipeline to execute programs on this highly

threaded architecture.
Source & Acknowledgements : NVIDIA, References

101 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Quick terminology review

 Thread: concurrent code and associated state executed on the

CUDA device (in parallel with other threads)

 The unit of parallelism in CUDA

 Note difference from CPU threads: creation cost, resource

usage, and switching cost of GPU threads is much smaller

Warp: a group of threads executed physically in parallel (SIMD)

 Thread Block: a group of threads that are execute together and

can share memory on a single multiprocessor

 Grid: a group of thread blocks that execute a single CUDA program

logically in parallel

 Device: GPU Host: CPU

 SM: Multiprocessor
Source : NVIDIA, References

102 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

To a CUDA Developer,

• The computing system consists of a host, which is a

traditional central processing unit (CPU) such as Intel,

AMD, IBM, Cray multi-core architecture and one more

devices, which are massively parallel processors equipped

with a large number of arithmetic execution units.

Computing depends upon the concept of Data Parallelism

 Image Processing, Video Frames, Physics, Aero dynamics,

Chemistry, Bio-Informatics

• Regular Computations and Irregular Computations.

Source & Acknowledgements : NVIDIA, References

103 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 NEW: GPU Computing with CUDA

• CUDA = Compute Unified Device Architecture

• Co-designed hardware & software for direct

GPU computing

 Hardware: fully general data-parallel architecture

• General thread launch; Global load-store

• Parallel data cache

 Software: program the GPU in C /C++

• Scalable data-parallel execution/ memory

model; Single/Double precision

 Hundreds of times faster than global memory

 Use one/ a few threads to load/computer data

shared by all thread

C
P
U

G
P
U

Application

CUDA
Libraries

CUDA Runtime

CUDA Driver

Compute Unified Device
Architecture Software Stack

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

104 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Several multiprocessors (MP), each with:

- several simple cores

- small shared memory

The threads executing

in the same MP must

execute the same

instruction

Shared memory must be

used to prevent the

high latency of the

global device memory

GPU : Architecture

Source & Acknowledgements : NVIDIA, References

105 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GPU Computing Architecture is a separate

HW interface that can be plugged into the desktops /

workstations / servers with little effort.

G80 series GPUs /Tesla deliver FEW HUNDRED to

TERAFLOPS on compiled parallel C applications

GeForce 8800 Tesla S870
Tesla D870

Glance at NVIDIA GPU’s

Source : NVIDIA, References

106 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

512 MB/256-bit GDDR3

@ 900 MHz

16x PCI-Express

SLI Connector

DVI x 2

sVideo

TV Out
Single slot cooling

GeForce 8800 GT Card

Source : NVIDIA, References

107 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Reflects the memory hierarchy
of the device

All threads from a single block
are executed in the same MP

Shared memory:
- Used for communication
and synchronization of
thread of the same block

How to map neuronal processing
and communications into
CUDA threads?

GPU Thread Organisation

Source & Acknowledgements : NVIDIA, References

108 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Data Parallelism

• It refers to the program property whereby many

arithmetic operations can be safely performed on the

data structure in a simultaneous manner.

 The concept of Data Parallelism is applied to typical

matrix-matrix computation.

Source & Acknowledgements : NVIDIA, References

109 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

C/C++ CUDA

Applications

CPU Code EDG

Open64

PTX Code

PTX to Target

Translator

CPU . . . CPU

Target Code

float4 me =

sx[gtid];

me.x += me.y * me.z;

id.global.v4.f31

mad.f32

{$f1,$f3,$f5,$f7),

[$r9+0};

$f1, $f5, $f3, $f1;

CUDA’s compilation process. Source code written for the host

CPU follows a fairly traditional path and allows developers to

choose their own C/C++ compiler, but preparing the GPU’s

source code for execution requires additional steps. Among the

unusual links in the CUDA tool chain are the EDG preprocessor,

which separates the CPU and GPU source code; the Open54

compiler, originally created for itanium; and Nvidia’s PTX-to-

Target Translator, which converts Open64’s assembly-language

output into executable code for specific Nvidia GPUs.

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

110 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Software Development

CUDA Optimized Libraries:

math.h, FFT, BLAS, …
Integrated CPU + GPU

C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing (PTX)
CPU Host Code

CUDA

Driver
Profile Standard C Compiler

GPU CPU

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

111 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Optimized Libraries:

math,h,FFT,BLAS,…

Nvidia Assembly for

Computing (PTX)

Cuda

Driver

GPU

Nvidia C Compiler

Cuda

Driver

Integrated CPU + GPU

CPU Host Code

Standard C Compiler

Compiler

NVIDIA CUDA platform for parallel processing on Nvidia

GPUs. Key elements are common C/C++ source code with

different compiler forks for CPUs and GPUs; function libraries

that simplify programming; and a hardware-abstraction

mechanism that hides the details of the GPU architecture from

programmers.

CUDA Performance Advantage

Source : NVIDIA, References

112 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GeForce GPU

Source & Acknowledgements : NVIDIA, References

113 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA PROGRAM STRCUTURE

A CUDA program consists of one or more phases that are

executed on either the host (CPU) or a device such as GPU.

• The phases that exhibit little or no data parallelism are

implemented in the host code.

• The phases rich amount of data parallelism are

implemented in the device code.

A CUDA program is a unified source code encompassing both

host and device code.

The NVIDIA C Compiler (nvcc) separates the two during the

compilation process. The host-code is straight ANSI C code

 The device code is written using ANSCI key-words for

labeling data-parallel functions called kernels and their

associated data structures. Source & Acknowledgements : NVIDIA, References

114 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An approach to Writing CUDA Kernels

Use algorithms that can expose substantial

parallelism,you’llneedthousandsofthreads…

Identify ideal GPU memory system to use for

kernel data for best performance

Minimize host/GPU DMA transfers, use pinned

memory buffers when appropriate

Optimal kernels involve many trade-offs, easier to

explore through experimentation with

microbenchmarks based key components of the

real science code, without the baggage

Analyze the real-world use cases and select the

kernel(s) that best match, by size, parameters, etc.

Source : NVIDIA, References

115 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 SPA

 Streaming Processor Array (variable across

GeForce 8-series, 8 in GeForce8800)

 TPC

 Texture Processor Cluster (2 SM + TEX)

 SM

 Streaming Multiprocessor (8 SP)

 Multi-threaded processor core

 Fundamental processing unit for CUDA thread

block

 SP

 Streaming Processor

 Scalar ALU for a single CUDA thread

Processor Terminology

Source : NVIDIA, References

116 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Data Parallelism : It refers to the program

property whereby many arithmetic

operations can be safely performed on the

data structure in a simultaneous manner

Example : The concept of Data Parallelism is

applied to typical matrix-matrix computation.

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure Data parallelism in matrix multiplication.

Each element of the product

matrix P is generated by

performing a dot product

between a row of input

matrix M and a column of

input matrix N as shown in

figure.
Source & Acknowledgements : NVIDIA, References

117 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure Data parallelism in matrix multiplication.

In figure, highlighted elements of a matrix

P is generated by taking the dot product of

the highlighted row of matrix M and the

highlighted column of matrix N

 Note : Dot product operations

for computing different matrix

P elements can be

simultaneously performed.

• None of these dot products

will affect the results of each

other.

Source & Acknowledgements : NVIDIA, References

118 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Source : NVIDIA

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure : Data parallelism in matrix

Multiplication.

For P = (1000 X 1000); M = (1000 X 1000) &

N = (1000 X 1000)

 The number of dot products : 1,000,000

 Each dot product involves 1000 multiply and

1000 accumulate arithmetic operations

Note :

1. Data Parallelism in real

application is not as simple

as matrix-matrix

multiplication.

2. Different forms of Data

parallelism exists in several

applications

119 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The device code is complied by the nvcc and executed on

a GPU device.

• Refer CUDA Software Development Kit (SDK) are

implemented in the host code.

About Kernel function :

• Generate a large number of threads to exploit

parallelism

• In Matrix into Matrix Multiplication algorithm, the kernel

that uses one thread to compute one element of output

matrix P would generate 1,000,000 threads when it is

invoked.

CUDA PROGRAM STRCUTURE

Source & Acknowledgements : NVIDIA, References

120 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA PROGRAM STRCUTURE

Remarks :

CUDA threads are of much lighter weight than the CPU

threads

 It can be assumed that these threads take very few cycles

to generate and schedule due to efficient hardware support.

• Note : CPU threads that typically require thousands of

clock cycles to generate and schedule.

• When kernel function is invoked or launched, all the

threads that are generated take advantage of data

parallelism.

• All the threads that are generated by a kernel during an

invocation are collectively called a grid.
Source & Acknowledgements : NVIDIA, References

121 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

. . .

Grid 0

. . .

Grid 1

CPU serial code

GPU parallel kernel

Kernel<<<nBIK, nTid>>>(args);

CPU serial code

GPU parallel kernel

Kernel<<<nBIK, nTid>>>(args);

Execution of a CUDA program.

CUDA PROGRAM STRCUTURE

Figure shows the execution of two grids of threads. When all the

threads of a kernel complete their execution, the corresponding grid

terminates, and the execution continues on the host until another

kernel is invoked. Source & Acknowledgements : NVIDIA, References

122 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA STRUCTURE

int main (void) {

 Step 1 : // allocate and the initialize the matrices M,N, P

 // I/O read the input matrices M & N

 ………….

 Step 2 : // M * N on the device

 MatrixMultiplication (M,N,P, Width)

 Step 3 : // I/O to write the Output matrix P

 // Free matrices M,N, P

………

return 0;

}

Source : NVIDIA

A simple main function for the matrix multiplication example

Example 1. : Matrix Multiplication

123 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure A simple matrix multiplication function with only host code.

k

j

k

j

Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 for (int i = 0; i < Width; ++i)

 for (int j = 0; j < Width; ++j) {

 float sum = 0;

 for (int k = 0; k < Width: ++k) {

 float a = M[i * Width + k];

 float b = N[k * Width + j];

 sum += a = b;

 }

 P[i * width + j] = sum;

 }

}

NVIDIA :CUDA STRUCTURE

Example : Matrix Multiplication

124 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

Placement of two-dimensional array elements into the linear address system memory.

NVIDIA :CUDA STRUCTURE

Note : 4 x 4 matrix is placed into 16 consecutive memory locations (Simple code can

be written using Standard C language.)

Example : Matrix Multiplication

125 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised host code simple matrix multiplication that moves the matrix

multiplication to a device

Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 …………………

 Step 1: // Allocate device memory for M, N, and P

 // copy M and N to allocate device memory locations

 Step 2: // Kernel invocation code – to have the device to

 // perform the actual matrix multiplication

 Step 3: // copy P from the device memory

 // free device matrices

}

NVIDIA :CUDA STRUCTURE

Example 2: Matrix Multiplication

Source & Acknowledgements : NVIDIA, References

126 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

–Processor:

–Set of Multi-Processors (MP)

–Set of Scalar Processor (SP)

–Memory:

–High b/w global memory

–Fast shared memory (per SP)

–Execution:

–Kernel program on GPU

–Threads scheduling in warps

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Off-Chip Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

CUDA Architecture

CUDA Device Memories and Data Transfer

Source & Acknowledgements : NVIDIA, References

127 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Off-Chip Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

 Host CPU

CPU initialize data

Launches kernel

Threads work on sub-

streams

Basic Implementation on GPU

CUDA Device Memories and Data Transfer

Source & Acknowledgements

: NVIDIA, References

Source & Acknowledgements : NVIDIA, References

128 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

CUDA device memory model & Data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

 global memory & constant

memory -devices host

code can transfer to and

from the device, as

illustrated by the bi-

directional arrows between

these memories and host

Host memory is not shown in the figure

Source & Acknowledgements : NVIDIA, References

129 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA device memory model & data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

CUDA API functions for device global memory management

• cudaMalloc()

— Allocates object in the device

global memory
— Two parameters

• Address of a pointer to the

allocated object

• Size of allocated object terms of

bytes

• cudaFree ()

— Frees object from device global

memory

• Pointer to freed object

Source & Acknowledgements : NVIDIA, References

130 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised host code simple matrix multiplication that moves the

matrix multiplication to a device
Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 …………………

 Step 1: // Allocate device memory for M, N, and P

 // copy M and N to allocate device memory locations

 Step 2: // Kernel invocation code – to have the device to

 // perform the actual matrix multiplication

 Step 3: // copy P from the device memory

 // free device matrices

}

NVIDIA :CUDA STRUCTURE

Example : Matrix Multiplication

Source & Acknowledgements : NVIDIA, References

131 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA device memory model & data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

Constant
Memory

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

CUDA API functions for data transfer between memories

• cudaMemcpy()

— Memory data transfer

— Requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

— Host to Host

— Host to Device

— Device to Host

— Device to Device

• Transfer is asynchronous

Source & Acknowledgements : NVIDIA, References

132 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

cudaMalloc() : Called from the host code to allocate a piece of global

memory for an object.

 float* Md

 int size = Width * Width *sizeof(float);

 cudaMalloc((void**)&Md, size);

 …………….

 cudaFree(Md);

 …………………

1. The first parameter of the cudaMalloc() function is the address of a

pointer variable that must point to the allocated object after allocation
2. The second parameter of cudaMalloc()function gives size of the

obejct to be allocated.
3. After the computation, cudaFree() is called with pointer Md as input to

free the storage space for the Matrix from the device global memory.

NVIDIA :CUDA STRUCTURE

Device Memory & Data transfer

133 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Programming Environment : Two symbolic constants

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost);

are predefined constants of the CUDA Programming Environment.

Note : The cudaMemcpy() function takes four parameters

1. The first parameter is a pointer destination location for the copy operation

2. The second parameter points to the source data object to be copied

3. The third parameter specifies the number of bytes to be copied

4. The fourth parameter indicates the types of memory involved in the copy:

from the host memory to host memory; from host memory to device

memory; from device memory to host memory

Note : Please note that cudaMemcpy() cannot be used to copy between

different GPUs to multi-GPU systems.

NVIDA :CUDA STRUCTURE

Device Memory & Data transfer

Source & Acknowledgements : NVIDIA, References

134 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The revised MatrixMultiplication() function Code
Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 Step 1. // Transfer of M and N to device memory

 cudaMalloc((void**)&Md, size);

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 cudaMalloc((void**)&Nd, size);

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc ((void**) &Pd, size)

 Step 2. // Kernel Invocation code

 ………………….

 Step 3. // Transfer P from device to host

 cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost);

 // free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

}

NVIDIA :CUDA STRUCTURE

Device Memory & Data transfer

Source & Acknowledgements : NVIDIA, References

135 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA STRUCTURE

KERNEL FUNCTIONS AND THREADING

CUDA kernel function is declared by “__global__” keyword

 This function will be executed on the device and can only

called from the host to generate a grid of threads on a

device.

 Besides “__global__” , there are two other keywords tha can

be used in front of a function declaration.

 __device__ float DeviceFun()

 __global__ void KernelFun()

 __host__ float HostFunc()

136 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

KERNEL FUNCTIONS AND THREADING

CUDA extensions to C function declaration

 __device__ float DeviceFun() : Declared as a CUDA device

function)

 __global__ void KernelFun() :Declared as a CUDA kernel

function)

 __host__ float HostFunc() :Declared as a CUDA host function)

Executed
 on the :

 Only calling
from the :

__device__ float DeviceFun() device device

__global__ void KernelFun() device host

 __host__ float HostFunc() host host

NVIDIA :CUDA STRUCTURE

Source & Acknowledgements : NVIDIA, References

137 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The MatrixMultiplication() Kernel function
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

{

 // 2D Thread ID

 Int tx = threadId.x;

 Int ty = threadId.y;

 // P value stores the Pd element that is computed by the

 // thread

 float Pvalue = 0;

 for (int k = 0; k < width; ++k) {

 float Mdelement = Md[ty * width + k];

 float Ndelement = Nd[k * width + tx];

 Pvalue += Mdelement * Ndelement;

 }

 // Write the matrix to device memory each thread writes one

 // element

 Pd[ty*Width + tx] = Pvalue;

 } // Limitation : Can handle only matrices of 16 elements in

each dimension

NVIDIA :CUDA THREAD ORGANIZATION

KERNEL FUNCTIONS AND THREADING

138 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The MatrixMultiplication() Kernel function
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

 Dot product loop uses threadIdx.x and threadIdx.y to identify the row

of Md and column of Nd to work on

Limitations

 Can handle only matrices of 16 elements in each dimension (Due to fact

that the kernel function does not use blockIdx)

 Limited to using only one block of threads

 It is assumed that each block can have upto 512 threads, we can limit to

16 X 16 because 32 X 32 requires more than 512 threads per block.

 Question : How to accommodate larger matrices ? (Hint : Use

multiple thread blocks)

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

139 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x & threadIdx.y

• Refer to the thread indices of a thread (Different threads will
see different values in their threadIdx.x and

threadIdx.y variables)

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates reflect a

multi-dimensional organization for the threads.

• CUDA threading hardware generates all of the
threadIdx.x and threadIdx.y variables for each thread.

• These work on particular part of data structure of the designed

code and with these thread indices allow a thread to access the

hardware registers at runtime that provides the identifying

coordinates to the thread.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

140 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x; threadIdx.y in CUDA matrix multiplication

Each thread uses its threadIdx.x and threadIdx.y to identify

the row of Md and the column of Nd to perform the dot product

operation.

Each thread also uses its threadIdx.x and threadIdx.y

values to select the Pd element that it is responsible for; for
example threadId2,2 will perform a dot product between column 2

of Nd and row 3 of Md and write the result into element (2,3) of Pd.

This way, the threads collectively generate all the elements of the Pd

matrix.

When a kernel is invoked or launched, it is executed as grid of

parallel threads & each CUDA thread grid typically is comprised of

thousands to millions of lightweight GPU threads per kernel

invocation.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

141 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A multidimensional example of CUDA grid

organization.

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Kernel 1

Kernel 2

Host

Block (1, 1)

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1)

Thread

(0, 0, 1)
Thread

(1, 0, 0)
Thread

(2, 0, 0)
Thread

(3, 0, 0)

Thread

(0, 1, 0)
Thread

(1,1, 0)
Thread

(2, 1, 0)
Thread

(3, 1, 0)

NVIDIA :KERNEL FUNCTIONS AND THREADING

A Thread block

— A thread block is a batch of

threads that can co-operate with

other by

• Synchronizing their

execution

For hazard-free shared

memory accesses

— Efficiently sharing data through

a low-latency shared memory
 Cop-operation - thread blocks

— Two threads from two different

blocks can not cooperate

Source & Acknowledgements : NVIDIA, References

142 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

// Kernel definition

global void VecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x;

 c(i) = A[i] + B[i];

}

int main ()

{

 ...

 // Kernel invocation with N Threads

 VecAdd<<<1, N>>>(A, B, C);

 ...

}

Kernel

NVIDIA :CUDA Thread Organisation

Ex : Vector Vector Addition

143 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Threads in a grid – CUDA

Threads in a grid are organized into a two-level hierarchy, as

illustrated in figure (Refer earlier slide)

At the top level, each grid consists of one or more thread blocks.

All blocks in a grid have the same number of threads

• Example : In figure (Refer earlier slide), Grid 1 is organized

as a 2 X 2 array of 4 blocks.

- Each block has a unique two-dimensional co-ordinate given

by the CUDA specific keywords blockIdx.x and

blockId.y

- All thread blocks must have the same number of threads

organized in the same manner Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

144 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

Each thread block is, in turn, organized as a three

dimensional array of threads with a total size up to 512 threads

The coordinates of threads in a block are uniquely defined three

thread indices : threadIdx.x, threadIdx.y and

threadIdx.z

Note : Not all applications will use all three (3) dimensions of a

thread block

Example : (Refer earlier slide)

- Each thread block is organized into a 4 x 2 x 2 three-

dimensional array of threads

- This gives a Grid one (1) a total of 4 x 16 = 64 threads

Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

145 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

 Example of host code that launches a kernel

 //Setup the execution configuration

 dim3 dimBlock(Width, Width);

 dim3 dimGrid(1,1);

 // Launch the device computation threads !
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width);

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

146 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Observations - Example 4: (Refer earlier slide 40)

 Code does not use any block index in accessing input and

output data.

 Threads with the same threadIdx values from different

blocks would end-up accessing the same input and output data

elements.

 As a result, the kernel can use only one thread block.

 The theadIdx.x and threadIdx.y values are used to

organize the block into a row-dimensional array of threads.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

147 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Observations - Example 4: (Refer earlier slide 40)

Because a thread block can have only up to 512 threads, each

thread calculates one element of the product matrix in Example 4,

the code can only calculate a product matrix upto 512 elements.

 Conclusions :

1. The solution is not scalable & not acceptable due to choice of

one thread block

2. To have a sufficient amount of data parallelism to benefit

from execution on a device use of multiple blocks is required.

Question to be addressed

 How to set the grid and thread block dimensions ?

 How to specify execution configuration parameters ?
Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

148 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

 //Setup the execution configuration

 dim3 dimBlock(Width, Width);

 dim3 dimGrid(1,1);

 // Launch the device computation threads !
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width);

KERNEL FUNCTIONS AND THREADING

• Two struct variable of type dim3 are declared

• The first is for describing the configuration of blocks,

which are defined as 16 x 16 groups of threads.

• The second variable, dimGrid, describes the

configuration of the grid.

In this example, we have only (1 X 1) block in each grid.

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

149 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

CUDA Threads

Part-II(B)

Source & Acknowledgements : NVIDIA, References

150 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 All threads in a grid execute the same kernel

Rely on unique coordinates to distinguish themselves from

each other and to identity the appropriate portion of the data to

process.

 The threads are organized into a two-level hierarchy using unique

coordinates

 blockIdx (for block index) and

 threadIdx (for thread index)

 (Assigned to them by the CUDA runtime system)

 The gridDim and blockDim are additional built-in,

pre-initialized variables that can be accessed within kernel

functions

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

151 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 All threads in a grid execute the same kernel

Rely on unique coordinates to distinguish themselves from

each other and to identity the appropriate portion of the data to

process.

 Size /Dimension of Grid or Block

The blockIdx and threadIdx appear as built-in,

preinitialized variables that can be accessed within kernel

functions

CUDA Thread Organization

 The yellow color box of each threads block in Figure shows a

fragment of the kernel code

 Part of the input data is read and

 Part of the output data is write

NVIDIA :CUDA – Thread Organization

152 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 The example figure consists of N thread blocks, each with a

blockIdx.x value ranges from 0 to N-1

Each block in-turn consists of M threads, each with a

threadIDx.x value ranges from 0 to M-1.

 All blocks at each grid level are organized as a one-dimensional

(1D) array

 All threads within each block level are organized as a 1D array

and each grid has a total of N*M threads

Example : The black box of each thread block in figure 6 shows a

fragment of the kernel code.
• The code fragment uses the

 Int threadI = blockId.x + blockDim.x + threadIdx.x;

 to identify the part of (a) input data to read from and (b) the part of the (b) output

data structure to write to.

NVIDIA :CUDA – Thread Organization

153 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Dim3 dimGrid(128, 1,1);

Dim3 dimBlock(32,1,1,);

Kernel Function <<< dimGrid, dimBlock >>> (…);

You can also use
Kernel Function << 128, 32 >>> (…);

 The values of gridDim.x and gridDim.y can

range from 1 to 65535

 The values of gridDim.x and gridDim.y can be

calculated based on other variables at kernel launch

time.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

154 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Kernel launches a grid of thread blocks

• Threads within a block cooperate via shared memory

• Threads within a block can synchronize

• Threads in different blocks cannot cooperate

Allows programs to transparently scale to different GPUs

Thread Batching

Shared Memory

Thread Block 0

Grid

. . .

Shared Memory

Thread Block 1

Shared Memory

Thread Block n

NVIDIA GPU Computing - CUDA Kernels and Threads

Source : NVIDIA

155 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 The example figure consists of N thread blocks, each with a

blockIdx.x value ranges from 0 to N-1

Each block in-turn consists of M threads, each with a

threadIDx.x value ranges from 0 to M-1.

Example : The code fragment uses the

 Int threadI = blockId.x + blockDim.x + threadIdx.x;

 to identify the part of (a) input data to read from and (b) the part of the (b) output

data structure to write to.

Thread 3 of Block 0 has a threadId value of 0*M + 3

Thread 3 of Block 1 has a threadId value of 1*M + 3

Thread 3 of Block 2 has a threadId value of 2*M + 3

Thread 3 of Block 3 has a threadId value of 3*M + 3

Thread 3 of Block 4 has a threadId value of 4*M + 3

Thread 3 of Block 5 has a threadId value of 5*M + 3

NVIDIA :CUDA – Thread Organization

156 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization
 The example figure consists of N thread blocks, each with a blockIdx.x

value ranges from 0 to N-1

 Each block in-turn consists of M threads, each with a threadIDx.x value

ranges from 0 to M-1.

 Each grid has a total of N*M threads

Example : Assume a each grid 128 blocks (N = 128) and each block has 32

(M=32)threads and a total of 128*32 = 4096 threads in the grid.

 Access to blockDim in the kernel function returns 32

NVIDA :CUDA – Thread Organization

Thread 3 of Block 0 has a threadId value of 0*32 + 3 = 3

Thread 3 of Block 4 has a threadId value of 4*32 + 3 = 131

Thread 3 of Block 20 has a threadId value of 20*32 + 3 = 643

Thread 3 of Block 40 has a threadId value of 40*32 +3 = 1283

Thread 10 of Block 80 has a threadId value of 80*32+10 = 2570

Thread 3 of Block 100 has a threadId value of 100*32+3 = 3203

Thread 15 of Block 102 has a threadId value of 102*32+15 = 3279

Thread 16 of Block 120 has a threadId value of 120*32+16 = 3856

157 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Management – An Overview

0 1 2 3 M-1

Thread block 0

theadIdx.x 0 1 2 3 M-1

Thread block 1

theadIdx.x

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

NVIDIA :CUDA THREAD ORGANIZATION

158 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Management – An Overview

0 1 2 3 M-1

Thread block 3

theadIdx.x 0 1 2 3 M-1

Thread block N-1

theadIdx.x

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

output[threadID] = y;

 …………..

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

.….

NVIDIA :CUDA THREAD ORGANIZATION

159 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Each thread of the 4096 threads has its own unique

threaded value

 Kernel code uses threadID variable to index into the input[]

array and output[] arrays.

 If we assume that both arrays are declared with 4096

elements, then each thread may take one of the input[] of

elements and produce one of the output[] elements

 Performance depends upon input[] array and output[]

arrays

NVIDIA :CUDA – Thread Organization

160 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid ; Host Code to launch the kernel

 Dim3 dimGrid(128, 1,1);

 Dim3 dimBlock(32,1,1,);

 Kernel Function <<< dimGrid, dimBlock >>> (…);

 The execution configuration parameters are
 between <<< and >>>

 The Scalar values can also be used for the execution

configuration parameters if a gird or a block has only one
dimension. For example

 Kernel Function << 128, 32 >>> (…);

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

161 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid

 In CUDA, a grid is organized as a 2D array or blocks.

 Grid Organization is determined by the execution of

configuration provided at kernel launch)
 dim3 dimGrid(128, 1,1);

• The first parameter - specifies the dimensions of each block in terms

of number of blocks

• The second parameter specifies the dimensions of each block in

terms of number of threads

 Each such parameter is a dim3 type, which is essentially a

C struct with three unsigned integer filed : x,y,and z.

• The third parameter –grid dimension parameter is set to 1 for

clarity. (Because of grids are 2D array of blocks dimensions)

 The exact organization of a grid is determined by the

execution configuration provided at kernel launch.

NVIDIA :CUDA – Thread Organization

162 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid ; Host Code to launch the kernel
 Dim3 dimGrid(128, 1,1);

 Dim3 dimBlock(32,1,1,);

 Kernel Function <<< dimGrid, dimBlock >>> (…);

 The values of gridDim.x and gridDim.y can range from 1

to 65535

 The values of gridDim.x and gridDim.y can be calculated

based on other variables at kernel launch time.

 All threads in a block share the same blockIdx value.

• blockIdx.x value ranges between 0 and gridDim.x-1

• blockIdx.y value ranges between 0 and gridDim.y-1

 Remark : Once a kernel is launched, its dimensions can not

change.

NVIDIA :CUDA – Thread Organization

163 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks

 In CUDA, a each thread block is organized into a 3D

array of threads

 All blocks in a grid have the same dimensions.

 Each threadIdx consists of three components : the

x-coordinate threadIdx.x,

 y-coordinate threadIdx.y, and

 z-coordinate threadIdx.z

 The exact organization of a thread block is determined by

the execution configuration provided at kernel launch.

NVIDIA :CUDA – Thread Organization

164 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks
 dim3 dimBlock(32, 1, 1);

 The first parameter - specifies the total terms of number of

blocks

 The second and third parameter specifies the number of

threads in each dimension

 The configuration parameter can be accessed as a pre-
defined C struct variable, blockDim

 Remark : The total size of a block is limited to 512 threads,

with flexibility in distribution these elements into the three

dimensions as long as the total number of threads does

not exceed 512.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

165 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A multidimensional example of CUDA grid

organization.

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Kernel 1

Kernel 2

Host

Block (1, 1)

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1)

Thread

(0, 0, 1)
Thread

(1, 0, 0)
Thread

(2, 0, 0)
Thread

(3, 0, 0)

Thread

(0, 1, 0)
Thread

(1,1, 0)
Thread

(2, 1, 0)
Thread

(3, 1, 0)

Dim3 dimGrid(2, 1,1);

Dim3 dimBlock(4,2,1,);

Kernel Function

 <<<

 dimGrid, dimBlock

 >>>

 (……);

NVIDIA :CUDA – Thread Organization

166 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Automatic Scalability : A multi-threaded program is partitioned into blocks of

threads that execute independently from each other, so that a GPU with more cores

will automatically execute the program in less time than a GPU with fewer cores.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

167 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Grid of Thread Blocks : Blocks are organized into a one-dimensional, two-

dimensional, or three-dimensional grid of thread blocks as illustrated by

Figure. The number of thread blocks in a grid is usually dictated by the size of

the data being processed or the number of processors in the system, which it

can greatly exceed.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

168 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heterogeneous Programming

NVIDIA :CUDA – Structure

Source & Acknowledgements : NVIDIA, References

169 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

CUDA Synchronization

Part-II(C)

Source & Acknowledgements : NVIDIA, References

170 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block 2

Block 0

Block 4

Block 6

Block 3

Block 1

Block 5

Block 7

 Kernel grid

time

Device

Block 2

Block 0

Block 4

Block 6

Block 3

Block 1

Block 5

Block 7

Block 2

Block 6

Block 3

Block 7

Block 1

Block 5

Block 0

Block 4

Device

Each block can execute in any order relative to other

blocks

Transparent Scalability for CUDA programs allowed by the lack of

synchronization constraints between locks

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

 CUDA allows threads in the same block to coordinate their activities using

barrier synchronization function __syncthreads().

 Call to _synchtreads(), ensures that all threads in a block have completed

a phase of their execution of the kernel before any moves on to the next

phase.

171 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

 In CUDA a __syncthreads() statement must be executed by all threads in

a block.

 Call to __syncthreads(), ensures that all threads in a block have

completed a phase of their execution of the kernel before any moves on to

the next phase.

Issues in CUDA Barrier Synchronization

 Use of __synthread() statement in “if”statement

Use of __synthread() statement in “if-then-else” statement

thread may perform executionof“then”pathOR“if”pathOR“else”

path, and this leads to waiting of threads at barrier synchronization

points. This results waiting for each other thread.

The ability to synchronize also imposes execution constraints on threads

within a block.

172 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

Issues in CUDA Barrier Synchronization : How to avoid excessive long

waiting time ?

 The threads in a each block should execute close time proximity with

each other.

 CUDA runtime systems satisfy this constraint by assigning execution

resources to all threads in a block as a unit, that is when a thread o a

block is assigned to an execution resources.

• This ensures the time proximity of all threads in a block an prevents

excessive waiting time during synchronization

Source & Acknowledgements : NVIDIA, References

173 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

Issues in CUDA Barrier Synchronization : How to avoid excessive long

waiting time ?

CUDA runtime can execute blocks in any order relative to each other

because none of them must wait for each other.

 Remark : The ability to execute the same application ode at a wide

range of speeds allows the production of a wide range of implementation

according to the cost, power, and performance requirements of particular

market segment.

 In CUDA one can execute large number of blocks at the same time,

subject to more resources exist for typical high-end implementation

Source & Acknowledgements : NVIDIA, References

174 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Thread Assignment :

 Once the kernel is launched, CUDA runtime system

generates the corresponding grid of threads.

 These threads are assigned to execution resources on a

block-by-block basis.

 Thread block assignment to streaming multiprocessors

(SMs)

Source & Acknowledgements : NVIDIA, References

175 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread block assignment to streaming multiprocessors (SMs)

NVIDIA : CUDA Threads Organisation

Thread Assignment :

SM 0

MT IU

SP

Shared

Memory

SP

SP

SP

SM 1

MT IU

SP

Shared

Memory

SP

SP

SP

t0, t1, t2,…,tm
Blocks

Blocks

t0, t1 ,12,…,tm

Source & Acknowledgements : NVIDIA, References

176 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Threads are assigned to SMs in

block

 Up to 8 Blocks to each SM as

resource allows

 Threads run concurrently

 SM assigns/maintains thread

id #s

 SM manages/schedules

thread execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Source : NVIDIA, References

NVIDIA : CUDA Threads Organisation

177 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Streaming Multiprocessor (SM)

 8 Streaming Processors (SP)

 2 Super Function Units (SFU)

 Multi-threaded instruction dispatch

 1 to 512 threads active

 Shared instruction fetch per 32

threads

 Cover latency of texture/memory

loads

 20+ GFLOPS (24 GFLOPS in G92)

 16 KB shared memory

 DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

Streaming Multiprocessor (SM)

Source : NVIDIA, References

178 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GT200 GPU Block Diagram GT200 : Tesla C1060/ S1070

Blocks partitioned into warps for thread scheduling

t1,t2,t3,…,t31

Streaming Multiprocessor
Instruction L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Block 1 Warps

t1,t2,t3,….t31

Block 2 Warps

t1,t2,t3,,…,t31

Block 3 Warps

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

Source & Acknowledgements : NVIDIA, References

179 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Execution resources are organized into streaming multiprocessors

 NVIDIA GT200 implementation features

• 30 Streaming Multi-Processors (SMs)

• 8 Threading blocks can be assigned to each SM as long as there are

enough execution resources to satisfy the needs of all the blocks.

• Each threading block can have atmost 512 threads

• 240 thread blocks can be simultaneously assigned to SMs

• Upto 1024 threads can be assigned to each SM

• Maximum of 30720 threads can be simultaneously residing in the SM

 Most grids contain many more than 240 blocks.

 The runtime system maintains a list of blocks that need to execute and assign new

blocks to SMs as they complete execution of blocks previously assigned to them.

 Note : In situations with an insufficient amount if any one or more types of

resources needed for the simultaneous execution of 8 blocks , the CUDA runtime

automatically reduces the number of blocks assigned to each SM until the resource

usage is under the limit.

NVIDIA : CUDA Threads Organisation

Thread Assignment

180 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Three thread blocks assigned to each SM.

 One of the SM resource limitations is the number of threads that can be

simultaneously tracked and scheduled.

 Hardware resources are required for SMs to maintain the thread, block IDs, and

track their execution status.

 Upto 1024 threads can be assigned to each SM.

• 4 blocks of 256 threads each, 8 blocks of 128 threads each .. (16 blocks of

64 threads each is not possible.)

 Execution resources are organized into streaming multiprocessors

 NVIDIA GT80 implementation features

• 16 Streaming Multi-Processors (SMs)

• 8 Threading blocks can be assigned to each SM as long as there are

enough execution resources to satisfy the needs of all the blocks.

• Each threading block can have atmost 256 threads

• Upto 768 threads can be assigned to each SM (3 blocks of 256 each; 6

blocks of 128 threads each)

• Maximum of 12288 threads can be simultaneously residing in the SM

NVIDIA : CUDA Threads Organisation

Thread Assignment

Source & Acknowledgements : NVIDIA, References

181 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks
Ex : A multi-dimensional example of CUDA grid organization

 The grid consists of four blocks organized into a 2 X 2 array

• Each block is in figure is labeled with (blockIdx.x,

blockIdx.y)

• Ex : Block (1,0) has blockIdx.x = 1, and blockIdx.y = 0

 In CUDA, total size of block is limited to 512 threads, with

flexibility in distributing these elements into the three

dimensions as long as the total number of threads does not

exceed 512 threads. (****)

 Ex : (512,1,1,), (8,16,2) and (16,16,2) are allowable blockDim

values, but (32,32,1) is not allowable because the total number

of threads would be 1024.

NVIDIA :CUDA – Thread Organization

182 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks

Ex : A multi-dimensional example of CUDA grid organization

 Grid consists of 4 blocks of 16 threads each, with a grand

total of 64 threads in the grid.

 Each thread block is organized into 4 X 2 X 2 arrays of threads

(16 threads). (Only one block is shown because of all thread

blocks in the grid have same dimension.)

 block (1,10) to show its 16 threads;

 thread (2,1,0) has
 blockIdx.x = 2, blockIdx.y = 1, blockIdx.z = 0

 CUDA grid contain thousands to million of threads

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

183 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x & threadIdx.y

• Refer to the thread indices of a thread (Different threads will see
different values in their threadIdx.x and threadIdx.y

variables)

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates

reflect a multi-dimensional organization for the threads.

• CUDA threading hardware generates all of the threadIdx.x

and threadIdx.y variables for each thread.

• These work on particular part of data structure of the designed

code and with these thread indices allow a thread to access the

hardware registers at runtime that provides the identifying

coordinates to the thread.

Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA – Thread Organization

184 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

 TILE_WIDTH

Pdsub

15
 Matrix Multiplication using multiple blocks by tiling Pd

012 ….TILE WIDTH-1

xb
0 1 2

TILE WIDTH-1

by ty
0

1

2

0

1

2

tx

W
ID

T
H

W

ID
T

H

T
IL

E
_

W
ID

T
H

NVIDIA :CUDA – Thread Organization

• USING blockIdx AND threadIdx

— Break Pd into square tiles

— All the Pd element s of a tile are computed

by a block of threads

• Keep dimensions of these Pd tiles

small, we can increase the total number

of threads in each block to 512 which is

maximum allowable block size.

185 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

For convenience sake,

 threadIdx.x and threadIdx.y as tx and ty; and

blockIdx.x and blockIdx.y as bx and by.

• Each thread calculates one Pd element. The difference is

that it must uses its blockIdx.x values to identify its

element inside the tile.

• Each thread uses both threadIdx and blockIdx to

identify the Pd element to work on.

• All threads calculating the Pd elements within a tile have

the same blockIdx values

Source : NVIDIA

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

186 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Assume that the dimensions of a block are square and are
specified by the variable TILE_WIDTH

 Each dimensions of Pd is now divided into section s of

TILE_WIDTH elements each and each block handles such

a section.

• Thread can find x index and y index of Pd element i.e.

x = bx + TILE_WIDTH + tx

 y = by + TILE_WIDTH + ty

Pd element at respective column & row can be computed.

Source : NVIDIA

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

187 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Assume that the dimensions of a block are square and are
specified by the variable TILE_WIDTH

 Each dimensions of Pd is now divided into section s of

TILE_WIDTH elements each and each block handles such

a section.

• Thread can find x index and y index of Pd element i.e.

x = bx + TILE_WIDTH + tx

 y = by + TILE_WIDTH + ty

Pd element at respective column & row can be computed.

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

188 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Using Multiple blocks to

 calculate Pd.

USING blockIdx AND threadIdx

Pd0, 0 Pd1, 0 Pd2, 0 Pd3, 0

Pd0, 1 Pd1, 1 Pd2, 1 Pd3, 1

Pd0, 2 Pd1, 2 Pd2, 2 Pd3, 2

Pd0, 3 Pd1, 3 Pd2, 3 Pd3, 3

Block(0,0) Block(1,0)

Block(1,1)
Block(0,1)

• Using Multiple blocks to calculate Pd.

— Break Pd into 4 tiles

— Each dimension of Pd is now divided

into sections of 2 elements

— Each block needs to calculate 4 Pd

elements
• Identify the indices for the Pd element

Thread (0,0) of block (0,0) calculates

Pd0,0 whereas thread (0,0) of block

(1,0) calculates Pd2,0

• Identify the row (y) of Md and the column

(x) of index of Nd for input values using

TILE_WIDTH

Ex : Matrix Multiplication

• For the row index of Md used by thread (tx,ty)

of block (bx,by) is (by*TILE_WIDTH + ty)

• For the clumn index of Nd used by the same is

(bx*TILE_WIDTH + tx)

NVIDIA :CUDA THREAD ORGANIZATION

189 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Nd1, 0

Nd1, 1

Nd1, 2

Nd1, 3

Nd0, 0

Nd0, 1

Nd0, 2

Nd0, 3

Md0, 1 Md1, 1
Md2, 1 Md3, 1

Md0, 0 Md1, 0
Md2, 0 Md3, 0

Pd2, 0

Pd2, 1

Pd2, 2

Pd2, 3

Pd3, 0

Pd3, 1

Pd3, 2

Pd3, 3

Pd1, 2 Pd0, 2

Pd0, 3 Pd1, 3

Pd0, 0 Pd1, 0

Pd0, 1 Pd1, 1

 Matrix multiplication actions of one thread block

NVIDIA :CUDA Thread Organisation

USING blockIdx AND threadIdx

Ex : Matrix Multiplication

• Threads in block (0,0) produce four dot products

• Thread (0,0) generates Pd0,0 by calculating the dot

product of row 0 of Md and column 1 of Nd

• The arrows of Pd0,0, Pd1,0, Pd0,1 and Pd1,1 shows the

row and column used for generating their result value.

190 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA Thread Organisation

Ex : Matrix Matrix Addition

// Kernel definition

global void MatAdd(float A[N][N], float B[N][N],

 float C[N][N])

{

 int i = blockIdx.x * blockDim.x + threadIdx.x

 int j = blockIdx.y * blockDim.y + threadIdx.y

 if (i < N && j < N)

 c[i][j] = A[i][j] + B[i][j];

}

int main()

{

 ...

 // Kernel invocation

 dim3 threadsPerBlock(16, 16);

 dim3 numBlocks(N / threadsPerBlock.x, N/ threadPerBlock.y);

 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

 …

}

191 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread Hierarchy

NVIDIA :CUDA Thread Organisation

Ex : Matrix Matrix Addition

// Kernel definition

global void MatAdd(float A[N][N], float B[N][N],

 float C[N][N])

{

 int i = threadIdx.x;

 int j = threadIdx.y;

 c[i][j] = A[i][j] + B[i][j];

}

int main()

{

 ...

 // Kernel invocation with one block of N * N * 1 threads

 int numBlocks = 1;

 dim3 threadsPerBlock(N, N);

 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

 ...

}

192 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd,

int Width)

{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y *TILE_WIDTH + threadIdx.y;

 // Calculate the column index of the Pd element and N
 int Col = blockIdx.x *TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;

 // each thread computes one element of the block sub-matrix
 for(int k = 0; k < Width; ++k)

 Pvalue +- Md[Row*Width+k] * Nd[k*Width+Col)];

 Pd[Row*Width_col] = Pvalue;

}

NVIDIA :CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

193 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA – Thread Organization

Step 1 : Each thread uses its blockIdx and threadIdx

values to identity the row index (Row) and the column index

(Col) of the Pd element that is responsible for.

 Step 2 : Performs a dot product on the row of Md and

column of Nd to generate the value of the Pd element. It

eventually writes the Pd value to the appropriate global

memory locations.

 Note : This kernel can handle matrices upto 16 X 65,535

elements in each dimension.

 For large matrices, one can divide the Pd matrix into sub-

matrices of a size permitted by the kernel Source : NVIDIA

Summary of matrix multiplication kernel using multiple-blocks:

194 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA – Thread Organization

For large matrices, one can divide the Pd matrix into sub-

matrices of a size permitted by the kernel

Each submatrix can be processed by an ample number of

blocks (65,535 X 65,535). All of these blocks can run in

parallel provided new design of GPUs which can

accommodate large number of execution resources.

Summary of matrix multiplication kernel using multiple-blocks:

Source & Acknowledgements : NVIDIA, References

195 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Case Study :

 G200 : Number of warps per SM may increased up to 32.

 The warp scheduling is used for long-latency hiding (long latency

operations) refers to access of global memory access

 Zero-overhead thread scheduling takes place in CUDA, in which

selection of ready warps for execution does not introduce any idle time

into the execution timeline.

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

196 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised Host code for launching the revised kernel

// Setup the execution configuration
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);

 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads;
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Note : dimGrid receives the value of Width/TILE_WIDTH for both

the x dimension and y dimension.

 Md, Nd, and Pd array as 1D array with row major layout

 The calculation of indices used to access Md, Nd and Pd is the

same

NVIDIA : CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

197 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array

Texture Processor

Cluster

SM

SM

SM

Streaming Multiprocessor

Instruction L1 Data L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Constant Cache

64 KB, read-only

Special

Function Unit

SIN, EXP,

RSQRT, Etc..

Streaming

Processor

ADD, SUB,

MAD, Etc…

FP64 Unit

NVIDIA GT200 GPU Block Diagram GT200 :

Tesla Architecture incorporated in Tesla C1060 & S1070 products.

NVIDIA – GPU Computing Products - History

Sour

ce :

NVI

DIA,

Refe

rence

s

198 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Once a thread block is assigned to each SM, it is further divided into 32-

thread units called warps.

 (Knowledge of warps can be helpful in understanding and optimizing the

performance of CUDA applications on particular generations of CUDA

devices.

 The warp is the unit of thread scheduling in SMs

 Each warp consists of 32 threads of consecutive threadIx values

• Threads 0 through 31 from the first warp, threads 32 through 63 second

warp,andsoon…..

 Ex : Three blocks (Block 1, Block2, & Block 3) are assigned to an SM

 and each block is further divided into warps for scheduling.

• If each block has 256 threads, then we can determine that each block

has 256/32 or 8 warps.

• With 4 blocks in each SM, we have 8 x 3 = 24 warps in each SM

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

199 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 G80 : In each SM maximum number of threads is 768, equivalent to

24 warps.

 G200 : Number of warps per SM may increased up to 32.

 The warp scheduling is used for long-latency hiding (long latency

operations) refers to access of global memory access

 Zero-overhead thread scheduling takes place in CUDA, in which

selection of ready warps for execution does not introduce any idle time

into the execution timeline.

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

Source & Acknowledgements : NVIDIA, References

200 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix – Matrix Multiplication; G200 : Number of warps per SM is 32 and

the number of threads that can be assigned to each SM is 1024 & the

number of threads assigned to each thread block is 512

Pros & Cons ofchoiceof“differentthreadblocks”fortheGT200

 Case Study -1 : 8 X 8 thread blocks : Each block has 64 threads, &

12 (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited

and hence 64x 8 = 512 threads in each SM is possible.

• This shows SM execution resources will likely to be under utilized as

there will be fewer warps

 Case Study -2 : 16 X 16 thread blocks : Each block has 256 threads,

& 4 (1024/256) blocks fully occupy an SM (8 blocks in each SM are

limited and it s well within the limits. Good choice for performance.

 Case Study -3 : 32 X 32 thread blocks : Each block has 1024 thread

which exceeds the limitation of up to 512 threads per block

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

201 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GT200 GPU Block Diagram GT200 : Tesla C1060/ S1070

Blocks partitioned into warps for thread scheduling

t1,t2,t3,…,t31

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array
Constant Cache

64 KB, read-only

Special

Function Unit
SIN, EXP,

RSQRT, Etc..

Streaming

Processor
ADD, SUB,

MAD, Etc…

FP64 Unit Texture Processor

Cluster

SM

SM

SM

Streaming Multiprocessor
Instruction L1 Data L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Sour

ce :

NVI

DIA,

Refe

renc

es

Block 1 Warps

t1,t2,t3,….t31

Block 2 Warps

t1,t2,t3,,…,t31

Block 3 Warps

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

202 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix – Matrix Multiplication; G200 : Number of warps per SM is 32 and

the number of threads that can be assigned to each SM is 1024 & the

number of threads assigned to each thread block is 512

Pros & Cons ofchoiceof“differentthreadblocks”fortheGT200

 Case Study -1 : 8 X 8 thread blocks : Each block has 64 threads, &

12 (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited

and hence 64x 8 = 512 threads in each SM is possible.

• This shows SM execution resources will likely to be under utilized as

there will be fewer warps

 Case Study -2 : 16 X 16 thread blocks : Each block has 256 threads,

& 4 (1024/256) blocks fully occupy an SM (8 blocks in each SM are

limited and it s well within the limits. Good choice for performance.

 Case Study -3 : 32 X 32 thread blocks : Each block has 1024 thread

which exceeds the limitation of up to 512 threads per block

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

203 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

CUDA Memories

Part-II(D)

Source & Acknowledgements : NVIDIA, References

204 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Hundreds of times faster than global

memory

Threads can cooperate via shared memory

Use one/ a few threads to load/computer

data shared by all threads

Use it to avoid non-coalesced access

• Stage loads and stores in shared

memory to re-order non-coalesceable

addressing

• Matrix transpose example later

GPU Computing : Think in Parallel

GPU Computing : Take Advantage of Shared Memory

Application

CPU GPU

Source & Acknowledgements : NVIDIA, References

205 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Memory Hierarchy

NVIDIA :CUDA – Memory Hierarchy

206 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA - Quick terminology review

CUDA exposes the memory hierarchy to developers,

allowing them to maximize application performance by

optimizing data access

The GPU is implemented on a graphics card with video

memory, called device memory

• The video memory (off-chip) memory is separated from

the GPU, and it takes at least 400 clock-cycles to fetch

data from that memory.

• Two groups of memory on a graphics card.

 On-chip (shared) memory is almost fast as registers.

 Off-chip (device) memory takes 400-600 clock cycles

/store data.
Source : NVIDIA

207 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Ex : Matrix – Matrix Multiplication : Memory access calculation for

matrix-matrix commutations – “for”loopbasedonCGMA

 Compute to Global Memory Access (CGMA) ratio : Number of floating

point calculations performed for each access to the global memory within

a region of a CUDA program

• The ratio of floating-point calculation to the global memory access

operations is 1 to 1. or 1.0

 The CGMA ratio has major implications on the performance of a CUDA

kernel.

• Ex : NVIDIA G*80 supports 86.4 gigabytes per second (GB/s) of

global memory access bandwidth.

• The highest achievable floating-point calculation throughput is limited

by the rate at which the input data can be loaded from the global

memory.

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

208 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Ex : Matrix – Matrix Multiplication : Memory access calculation for matrix-

matrix computations – “for”loopbasedonCGMA

 With 4 bytes in each single precision floating-point datum, one can expect

to load not more than 21.6 (86.4/4) giga single-precision data per second.

 With a CGMA ration of 1.0, the matrix multiplication kernel will execute at

no more than 21.6 billion floating point operations per second (gigaflops),

as each floating operation requires one single-precision global memory

datum.

 The achieved is fraction of the peak performance of 367 gigaflops for the

G80

How CGMA ratio is increased to achieve a higher level of performance

for the kernel ?

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

209 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

CUDA device memory model & Data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

 global memory & constant

memory -devices host

code can transfer to and

from the device, as

illustrated by the bi-

directional arrows between

these memories and host

Host memory is not shown in the figure

Source & Acknowledgements : NVIDIA, References

210 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Global memory and constant memory can be written (W) and (R) by the

host by calling application programming interface (API) functions.

 The constant memory supports short-latency, high-bandwidth, read-only

access by the device when all threads simultaneously access the same

location.

 Registers and shared memory are on-chip memories.

 Variables that reside in these types of memory can be accesses at very

high speed in a highly parallel manner.

 Registers are allocated to individual threads; each thread can only

access its own registers.

 A kernel function typically uses registers to hold frequently accesses

variables that are private to each thread.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types

211 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Shared memory is allocated to thread blocks ; all threads in a block can

access variables in the shared memory locations allocated to the block.

 Shared memory is an efficient means for threads to co-operate by sharing

their input data and the intermediate results of their work by declaring a

CUDA variable in one of the CUDA memory types, A CUDA programmer

dictate the visibility and access speed of the variable.

 CUDA syntax for declaring program variables into the various devices

memory.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types - Shared Memory

CUDA Variable Type Qualifiers

Variable Declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel

Automatic array variables Local Threads Kernel

 __device__, __shared__, int SharedVar; Shared Block Kernel

__device__, int GlobalVar; Global Grid Application

__Device__, ___constant__, int ConstVar; Constant Grid Application

212 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SCOPE :
 Each declaration gives its declared CUDA variable a scope and

lifetime.

 Scope identifies the range of threads of a block, or by all threads of

all grids.

 If the scope of a variable is a single thread, a private version of the

variable will be created for every thread; each thread can only access

its private version of the variable.

 For Example : if a kernel declares a variable whose scope is a thread

and it is launched with 1 million threads, then 1 million versions of

the variable will be created so each thread initializes and used its own

version of the variable.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types - Shared Memory

213 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

• Device code can:

— R/W per-thread registers

— R/W per-thread local

memory

— R/W per-block shared

memory

— R/W per-grid global

memory

— Read only per-gold

constant

— Host code can

— Transfer data

 to/from per-grid

 global and constant

 memories

Overview of the CUDA device memory model .

CUDA Device Memory Types

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

214 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

Figure 3.7 Overview of the CUDA device memory model .

215 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd,

int Width)

{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y *TILE_WIDTH + threadIdx.y;

 // Calculate the column index of the Pd element and N
 int Col = blockIdx.x *TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;

 // each thread computes one element of the block sub-matrix
 for(int k = 0; k < Width; ++k)

 Pvalue +- Md[Row*Width+k] * Nd[k*Width+Col)];

 Pd[Row*Width_col] = Pvalue;

}

NVIDIA :CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

216 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix Multiplication

without Shared

Memory

NVIDIA :CUDA – Use of Memory

217 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix Multiplication

with Shared Memory

NVIDIA :CUDA – Use of Memory

218 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Nd1, 0

Nd1, 1

Nd1, 2

Nd1, 3

Nd0, 0

Nd0, 1

Nd0, 2

Nd0, 3

Md0, 1 Md1, 1
Md2, 1 Md3, 1

Md0, 0 Md1, 0
Md2, 0 Md3, 0

Pd2, 0

Pd2, 1

Pd2, 2

Pd2, 3

Pd3, 0

Pd3, 1

Pd3, 2

Pd3, 3

Pd1, 2 Pd0, 2

Pd0, 3 Pd1, 3

Pd0, 0 Pd1, 0

Pd0, 1 Pd1, 1

Figure Matrix multiplication actions of one thread block.

CUDA Programming Structure

219 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

CUDA Execution

Part-II(D)

Source & Acknowledgements : NVIDIA, References

220 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

T(0, 0) T(1, 0) T(2, 0) T(3, 0)

T(0, 1) T(1, 1) T(2, 1) T(3, 1)

T(0, 2) T(1, 2) T(2, 2) T(3, 2)

T(0, 3) T(1, 3) T(2, 3) T(3, 3)

T0, 0 T1, 0 T2, 0 T3, 0 T0, 2 T1, 2 T2, 2 T3, 2 T0, 3 T1, 3 T2, 3 T3, 3
T1, 1 T2, 1 T3, 1

T0, 1

Placing threads into linear order

Logical 2-D

organization

CUDA Thread Execution - Performance

Warp Parallelism

 Single Instruction – Multiple thread (SIMT)

 Constructs Using

 If-then-else

 Diverge in

 Execution

221 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A simple sum reduction kernel.

1. _shared_float partialSum[]

2. Unsingned int t = threadsIdx.x;

3. for (unsigned int stride = 1;

4. stride < blockDim.X; stride *=2)

5. {

6. __syncthreads ();

7. If (t % (2*stride) == 0)

8. partialSum[t] + = partialSum[t +stride];

9. }

CUDA Thread Execution - Performance

Source & Acknowledgements : NVIDIA, References

222 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

0 1 2 3 4 5 6 7 8 9 10 11

0+1 2+3 4+5 6+7 8+9 10+11

0…3 4…7 8…11

0…7 8…15

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

1

2

3

Iterations
Array elements

A Deduction of the sum reduction kernel.

CUDA Thread Execution - Performance

223 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A kernel with les thread divergence.

1. _shared_float partialSum[]

2. Unsingned int t = threadsIdx.x;

3. for (unsigned int stride = 1;

4. stride < blockDim.X; stride *=2)

5. {

6. __syncthreads ();

7. If (t < stride)

8. partialSum[t] + = partialSum[t +stride];

9. }

CUDA Thread Execution - Performance

224 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

0 1 2 3 … 253 254 255 256 257 258 …

0+256 256+511 1

2

3

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

Execution of the revised algorithm.

CUDA Thread Execution - Performance

225 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Nd

WIDTH

Coalesced

W
ID

T
H

Not coalesced

Thread 1

Thread 2

A B

Memory access pattern for coalescing.

CUDA Thread Execution - Performance

Global Memory Bandwidth
 Kernel performance is related to

accessing data in the global

memory

 Use of Memory Coalescing

 Move the data from the

 global memory into shared

memories and registers.

 Memory Coalescing technique is

 used in conjunction with tiling

 technique

226 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

Placing matrix elements order into linear order.

Linearized order in increasing address

CUDA Thread Execution - Performance

Global Memory Bandwidth

227 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

A coalesced access pattern.

Load iteration 1

T(0) T(1) T(2) T(3)

Load iteration 2

T(0) T(1) T(2) T(3)

Global Memory Bandwidth

Access

direction in

kernel code

CUDA Thread Execution - Performance

228 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

A uncoalesced access pattern.

. . .

T(0) T(1) T(2) T(3)

Load iteration 2

Load iteration 1

T(0) T(1) T(2) T(3)

Access

direction in

kernel code

Global Memory Bandwidth

CUDA Thread Execution - Performance

229 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Nd

WIDTH

W
ID

T
H

Using shared memory to enable coalescing.

Original

access

pattern

Md Nd

Tiled

access

pattern

Copy into

scratchpad

memory

Perform

multiplication

with

scratchpad

values

CUDA Thread Execution - Performance

Global Memory Bandwidth

230 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The matrix multiplication kernel using shared memories.

global void MatrixMulKernel(float*Md, float*Nd, gloat*Pd, int width)

{

1. _shared_float Mds[TILE_WIDTH][TILE_WIDTH];

2. _shared_float Nds{TILE_WIDTH][TIKE_WIDTH];

3. int bx = blockIdx .x; int by = blockidx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. Float Pvalue = 0;

// Loop over the Md and Nd tiles required to computer the Pd element

8. For (int m = 0; m < Width/TILE_WIDTH; ++m) {

//Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd (m*TILE_WIDTH + ty) * Width + Col];

11. _synchthreads ();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue +=Mds [ty][k] * Nds[k] [tx];

14. Pd [Row] [Col] = Pvalue;

 }

}

Md Nd

CUDA Thread Execution - Performance

Global Memory Bandwidth

231 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013 2

3

1

GPU performance : Memory Coalescing

8 8 8 …

1

128

bytes
 Shared

Memory

128

bytes

 Global

Memory

8 8 8 …

- Request >16-bytes serviced iteratively

Thread

 Reading 16-

bytes at a time

232 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013 2

3

2

GPU performance : Memory Coalescing

8 8 8 …

2 1 16

128

bytes
 Shared

Memory

Half

Warp

128

bytes

 Global

Memory

8 8 8 …

Read-Write operation:

 Collectively by threads in half

warp

 Coalesce memory accesses in

single transaction

 Threads of half-warp

collaborate and utilize the

memory coalescing

Source & Acknowledgements : NVIDIA, References

233 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013 2

3

3

Modify operation:

 Threads work individually

 on data Iteratively after

memory transfer

 Bank conflicts lead to

serialization of memory

requests

GPU performance : Memory Coalescing

128

bytes

 Shared

Memory

Threads of a Half-warp

2 1 16

Source & Acknowledgements : NVIDIA, References

234 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013 2

3

4

Modify operation:

Pad offset of 8 bytes,

 Thereby reduce bank conflicts

GPU performance : Memory Coalescing

Padding Shared

Memory

Threads of a Half-warp

2 1 16

Source & Acknowledgements : NVIDIA, References

235 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread contexts

SP0 SP7

32KB register file

16KB shared memory

Pre-”optimization” A

Thread contexts

SP0 SP7

32KB register file

16KB shared memory

Post-”optimization” B

.

Insufficient registers

to allocate 3 blocks TB0 TB1 TB2

Figure. Interaction of resource limitations.

Md Nd

CUDA Thread Execution - Performance

Global Memory Bandwidth : Dynamic Partitioning of SM resources

236 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Loop{

Load current tile to shared

 memory

_synchthreades()

Computer current tile

_synchthreads()

}

Load first tile from global memory into

 registers

Loop {

Deposit tile from registers to shared

 memory

_synchthreads()

Load next tile from global memory into

 registers

Computer current tile

_synchthreads ()

} A

B

Without prefetching

With prefetching

CUDA Thread Execution - Performance

Global Memory Bandwidth : Prefetching

FP Instruction, Load Instruction, Branch Instruction

237 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

TILE_WIDTH

Pdsub
Pdsub

TILE_WIDTH TILE_WIDTH

15 Increased thread granularity with rectangular tiles.

012 TILE WIDTH-1

bx

0 1 2

TILE WIDTH-1

by bx

0

1

2

0

1

2

by

CUDA Thread Execution - Performance

Global Memory Bandwidth :

Thread Granularity

More work on each thread and

use fewer threads (Load the tile

Independent Instructions,

Prefetching elements)

238 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

TILE_WIDTH

Pdsub
Pdsub

TILE_WIDTH TILE_WIDTH

15 Increased thread granularity with rectangular tiles.

012 TILE WIDTH-1

bx

0 1 2

TILE WIDTH-1

by bx

0

1

2

0

1

2

by

CUDA Thread Execution - Performance

Global Memory Bandwidth :

Thread Granularity

 Loading of Tiles into registers

and depositing these tiles into

shared memories

 No. of Blocks running on shared

memories

239 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

for (int k = 0; k < BLOCK_SIZE; ++k)

 Pvalue += Ms [ty][k] * Ns [k] 9tx0;

 (a) Loop incurs overhead instruction

 Pvalue += Ms[ty][0] * Ns[0][tx] += Ms[ty][15]*Ns[15][tx];

 (b) Loop unrolling improves instruction mix.

Instruction mix consideration.

CUDA Thread Execution - Performance

 Loading of Tiles into registers and depositing these tiles

into shared memories

 No. of Blocks running on shared memories

 Executes two floating arithmetic, one loop branch

instruction, two address arithmetic instructions, one loop

counter increment instruction,

240 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA Tool Kit : CUBLAS

 CUBLAS is an implementation of BLAS (Basic Linear Algebra

 Subprogram) on top of the CUDA driver. It allows access to the

 computational resources of NVIDIA GPUs.

 The library is self-contained at the API level, that is, no direct interaction

 with the CUDA driver is necessary.

 The basic model by which applications use the CUBLAS library is to:

• Create matrix and vector objects in GPU memory space

• Fill them with data

• Call a sequence of CUBLAS functions

• Upload the results from GPU memory space back to the host

 CUBLABS provides helper functions for creating and destroying objects

 in GPU space, and for writing data to and retrieving data from these

 objects

Source : NVIDIA, References

241 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – BLAS Supported features

 BLAS functions implemented (single precision only):

 Real data: level 1, 2 and 3

 Complex data: level a and CGEMM

(Level 1=vector vector O(N), Level 2=matrix vector O(N2), Level

3=matrix matrix O(N3))

 For maximum compatibility with existing Fortran environments,

CUBLAS uses column-major storage, and 1-based indexing:

 Since C and C++ use row-major storage, this means applications

cannot use the native C array semantics for two-dimensional

arrays. Instead, macros or inline functions should be defined to

implement matrices on top of one-dimensional arrays.

Source : NVIDIA, References

242 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Using CUBLAS

 The interface to the CUBLAS library is the header file
cublas.h

 Function names: cublas(Original name).

 cublasSgemm

 Because the CUBLAS core functions (as opposed to the

helped functions) do not return error status directly, CUBLAS

provides a separate function to retrieve the last error that was

recorded, to aid in debugging

 CUBLAS is implemented using the C-based CUDA tool

chain, and thus provides a C-style API. This makes

interfacing to applications written in C or C++ trivial.

Source : NVIDIA, References

243 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublaslnit, cublasShutdown

 cublasStatus cublasInit()

initializes the CUBLAS library and must be called before any

other CUBLAS API function is invoked. It allocates hardware

resources necessary for accessing

 cublasStatus cublasShutdown()

releases CPI-side resources used by the CUBLAS library. The

release of GPU-side resources may be deferred until the

application shuts down.

Source : NVIDIA, References

244 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasGetError, cublasAlloc, cublasFree

 cublasStatus cublasGetError()

returns the last error that occurred on invocation of any of the CUBLAS

core functions. While the CUBLAS helper functions return status

directly, the CUBLAS core functions do not, improving compatibility

with those existing environments that do not expect BLAS functions to

return status. Reading the error status via cublasGetError() rests the

internal error state to CUBLAS_STATUS_SUCCESS.

 cublasStatus cublasAlloc (int n, int elemSize, void **devicePtr)

creates an object in GPU memory space capable of holding an array of

n elements, where each clement requires elemSize bytes of storage.

Note that this is a device pointer that cannot be dereferenced in host

code.

cublasAlloc() is a wrapper around cudaMalloc().

Device pointers returned by cublasAlloc() can therefore be passed to

any CUDA device kernels, not just CUBLAS functions.

 cublasStatus cublasFree(const void *device Ptr)

destroys the object in GPU memory space referenced by device Ptr.

Source : NVIDIA, References

245 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasSetVector, cublasGetVector

 cublasStatus cublasSetVector(int n, int elemSize, const

 void *x, int incx, void *y, int incy)

copies n elements from a vector x in CPU memory space to a

vector y in GPU memory space. Elements in both vectors are

assumed to have a size of elemSize bytes. Storage spacing

between consecutive elements in incx for the source vector x and

incy for the destination vector y

cublasStatus cublasGetVector (int n, int elemSize, const

 void *x, int incx, void *y, int incy)

copies n elements from a vector x in GPU memory space to a

vector y in CPU memory space. Elements in both vectors are

assumed to have a size of elemSize bytes. Storage spacing

between consecutive elements is incx for the source vector x and

incy for the destination vector y

Source : NVIDIA, References

246 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasSetMatrix, cublasGetMatrix

 cublasStatus cublasSetMatrix(int rows, int cols, int

 elemSize, const void *A, int Ida, void *B, int Idb)

copies a tile of rows x cols elements from a matrix A in CPU memory

space to a matrix B in GPU memory space. Each element requires

storage of elemSize bytes. Both matrices are assumed to be stored

in column-major format, with the leading dimension (that is, the

number of rows) of source matrix A provided in Ida, and the leading

dimension of destination matrix B provided in Idb

 cublasStatus cublasGetVector (int rows, int cols, int

 elemSize, const void *A, int Ida, void *B, int Idb)

copies a tile of rows x cols elements from a matrix A in GPU

memory space to a matrix B in CPU memory space. Each element

requires storage of elemSize bytes. Both matrices are assumed to

be stored in column-major format, with leading dimension (that is,

the number of rows) of source matrix A provided in Ida, and the

leading dimension of destination matrix B provided in Idb

247 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Calling CUBLAS from FORTRAN

 Fortran-to-C calling conventions are not standardized and

 differ by platform and tool chain.

 In particular, differences may exist in the following areas:

• Symbol names (capitalization, name decoration)

• Argument passing (by value or reference)

• Passing of string arguments (length information)

• Passing of pointer arguments (size of the pointer)

• Returning floating-point or compound data types (for

example, single-precision or complex data type)

 CUBLABS provides provides wrapper functions (in the file

fortran.c) that need to be compiled with the user preferred tool

chain.Providing source code allows users to make any

changes necessary for a particular platform and tool chain.
 Source : NVIDIA, References

248 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

CUDA Memories

Part-II(E)

Source & Acknowledgements : NVIDIA, References

249 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

Nsight Eclipse Edition : Develop & Debug and Profile GPU

Accelerated Applications on Linux - All in on IDE

RDMA for GPUDirect : Direct Communication between GPUs

and other PCIe Devices

GPU Library Object Linking : Easily Accelerate parallel nested

loops starting with Tesla K20 Kepler GPUs

Dynamic Parallelism : library of templated performance

primitives such as sort, reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance
Source : NVIDIA, References

250 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Accelerated communication with network and storage

devices : Avoid unnecessary system memory copies and CPU

overhead by copying data directly to/from pinned CUDA host

memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

Source : NVIDIA, References

251 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• RDMA : Eliminate CPU bandwidth and latency bottlenecks

using direct memory access (DMA) between GPUs and other

PCIe devices, resulting in significantly improved MPISendRecv

efficiency between GPUs and other nodes (new in CUDA 5)

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

252 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for RDMA, Introduced with CUDA 5

Eliminate CPU bandwidth and latency bottlenecks using direct

memory access (DMA) between GPUs and other PCIe devices,

resulting in significantly improved MPISendRecv efficiency

between GPUs and other nodes (new in CUDA 5)

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

253 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for Accelerated Communication with Network and

Storage Devices

Without GPUDirect

Same data copied three times
1. GPU write to pinned sysmem1

2. CPU copies from system1 to sysmem2

3. InfiniBand driver copies form sysmem2

With GPUDirect

Data only copied twice times
1. Sharing pinned system memory makes

2. System-to-system-copy unnecessary

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

254 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs on

the Same PCIe Bus : GPUDirect peer-to-peer transfers and memory access

are supported natively by the CUDA Driver. All you need is CUDA Toolkit

v4.0 and R270 drivers (or later) and a system with two or more Fermi-

architecture GPUs on the same PCIe bus.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

255 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

Share GPUs across multiple threads

Use all GPUs in the system concurrently from a single host

thread

No-copy pinning of system memory, a faster alternative to

cudaMallocHost()

C++ new/delete and support for virtual functions

Support for inline PTX assembly

Thrust library of templated performance primitives such as sort,

reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance Source : NVIDIA, References

256 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

 GPUDirect v2.0 : Features :

• GPUDirect v2.0 support for Peer-to-Peer Communication :

Accelerated communication with network and storage devices :

Avoid unnecessary system memory copies and CPU overhead

by copying data directly to/from pinned CUDA host memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

257 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

CUDA Multi-GPU Programming : CUDA Programming

model provides two basic approaches available to execute

CUDAkernelsonmultipleGPUs(CUDA“devices”)

concurrently from a single host application:

Use one host thread per device, since any given host
thread can call cudaSetDevice() at most one time.

Use the push/pop context functions provided by the CUDA

Driver API.

Unified Virtual Addressing (UVA) allows the system memory

and the one or more device memories in a system to share

a single virtual address space.

 Source : NVIDIA, References

258 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Driver API : Features in which multiple host threads to set

a particular context current simultaneously using either
cuCtxSetCurrent() or cuCtxPushCurrent().

Host threads can now share device memory allocations, streams,

events, or any other per-context objects (as seen above).

Concurrent kernel execution devices of compute capability 2.x is

now possible across host threads, rather than just within a single

host thread. Note that this requires the use of separate streams;

unless streams are specified, the kernels will be executed

sequentially on the device in the order they were launched

Built on top of UVA, GPUDirect v2.0 provides for direct peer-to-

peer communication among the multiple devices in a system and

for native MPI transfers directly from device memory.

Source : NVIDIA, References

CUDA Tool KIT 4.0/5.0

259 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Host-CPU – Device GPU CUDA Prog :

The algorithm is designed in such a way that each CPU

thread (Pthreads, OpenMP, MPI) to control a different GPU.

Achieving this is straightforward if a program spawns as

many lightweight threads as there are GPUs – one can

derive GPU index from thread ID. For example, OpenMP

thread ID can be readily used to select GPUs.

MPI rank can be used to choose a GPU reliably as long as

all MPI processes are launched on a single host node

having GPU devices and host configuration of CUDA

programming environment.

 Source : NVIDIA, References

CUDA Tool Kit 4.0/5.0

260 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Fermi Performance : CUDA enabled NVIDIA GPU

Performance Fermi GPU : Device-CPU (NVIDIA)

One Tesla C2050 (Fermi) with 3 GB memory; Clock Speed

1.15 GHz, CUDA 4.1 Toolkit

Reported theoretical peak performance of the Fermi

(C2050) is 515 Gflop/s in double precision (448 cores; 1.15

GHz; one instruction per cycle) and reported maximum

achievable peak performance of DGEMM in Fermi up to

58% of that peak.

The theoretical peak of the GTX280 is 936 Gflops/s in single

precision (240 cores X 1.30 GHz X 3 instructions per cycle)

and reported maximum achievable peak performance of

DGEMM up to 40% of that peak.
Source & Acknowledgements : NVIDIA, References

261 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

cuBLAS : The NVIDIA CUDA Basic Linear Algebra

Subroutines (cuBLAS) library is a GPU-accelerated version

of the complete standard

cuFFT : The NVIDIA CUDA Fast Fourier Transform library

(cuFFT) provides a simple interface for computing FFTs up

to 10x faster.

cuRAND : The NVIDIA CUDA Random Number Generation

library (cuRAND) delivers high performance GPU-

accelerated random number generation (RNG).

cuSPARSE : The NVIDIA CUDA Sparse Matrix library

(cuSPARSE) provides a collection of basic linear algebra

subroutines used for sparse matrices

Source : NVIDIA, References

262 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

NPP : NVIDIA Performance Primitives : The NVIDIA

Performance Primitives library (NPP) is a collection of GPU-

accelerated image, video, and signal processing functions

Thurst : Thrust is a powerful library of parallel algorithms

and data structures. Thrust provides a flexible, high-level

interface for GPU programming that greatly enhances

developer productivity.

NVIDIA Visual Profiler : The NVIDIA Visual Profiler is a

cross-platform performance profiling tool that delivers

developers vital feedback for optimizing CUDA C/C++ and

OpenCL applications.

Source & Acknowledgements : NVIDIA, References

263 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0 Libraries

CUDA-GDB debuggers :CUDA-GDB debuggers : CUDA-

GDB supports debugging of both 32 and 64-bit CUDA

C/C++ applications.

 CUDA-MEMCHECK : CUDA-MEMCHECK detects these

errors in your GPU code and allows you to locate them

quickly.

MAGMA : MAGMA is a collection of next generation, GPU

accelerated ,linear algebra libraries. Designed for

heterogeneous GPU-based architectures. It supports

interfaces to current LAPACK and BLAS standards.

Source & Acknowledgements : NVIDIA, References

264 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmarks & NVIDIA CUDA Prog. Env - This is C-DAC In-house HPC GPU
Cluster project work in collaboration with NVIDIA

Source : http://www.nvidia.com; NVIDIA CUDA

An Overview of CUDA enabled NVIDIA GPUs:

Kepler / Results

Part-II(F)

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

265 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

Nsight Eclipse Edition : Develop & Debug and Profile GPU

Accelerated Applications on Linux - All in on IDE

RDMA for GPUDirect : Direct Communication between GPUs

and other PCIe Devices

GPU Library Object Linking : Easily Accelerate parallel nested

loops starting with Tesla K20 Kepler GPUs

Dynamic Parallelism : library of templated performance

primitives such as sort, reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance
Source : NVIDIA, References

266 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Accelerated communication with network and storage

devices : Avoid unnecessary system memory copies and CPU

overhead by copying data directly to/from pinned CUDA host

memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

Source : NVIDIA, References

267 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• RDMA : Eliminate CPU bandwidth and latency bottlenecks

using direct memory access (DMA) between GPUs and other

PCIe devices, resulting in significantly improved MPISendRecv

efficiency between GPUs and other nodes (new in CUDA 5)

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

268 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for RDMA, Introduced with CUDA 5

Eliminate CPU bandwidth and latency bottlenecks using direct

memory access (DMA) between GPUs and other PCIe devices,

resulting in significantly improved MPISendRecv efficiency

between GPUs and other nodes (new in CUDA 5)

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

269 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for Accelerated Communication with Network and

Storage Devices

Without GPUDirect

Same data copied three times
1. GPU write to pinned sysmem1

2. CPU copies from system1 to sysmem2

3. InfiniBand driver copies form sysmem2

With GPUDirect

Data only copied twice times
1. Sharing pinned system memory makes

2. System-to-system-copy unnecessary

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

270 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs on

the Same PCIe Bus : GPUDirect peer-to-peer transfers and memory access

are supported natively by the CUDA Driver. All you need is CUDA Toolkit

v4.0 and R270 drivers (or later) and a system with two or more Fermi-

architecture GPUs on the same PCIe bus.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

271 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

Share GPUs across multiple threads

Use all GPUs in the system concurrently from a single host

thread

No-copy pinning of system memory, a faster alternative to

cudaMallocHost()

C++ new/delete and support for virtual functions

Support for inline PTX assembly

Thrust library of templated performance primitives such as sort,

reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance Source : NVIDIA, References

272 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

 GPUDirect v2.0 : Features :

• GPUDirect v2.0 support for Peer-to-Peer Communication :

Accelerated communication with network and storage devices :

Avoid unnecessary system memory copies and CPU overhead

by copying data directly to/from pinned CUDA host memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

273 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

CUDA Multi-GPU Programming : CUDA Programming

model provides two basic approaches available to execute

CUDAkernelsonmultipleGPUs(CUDA“devices”)

concurrently from a single host application:

Use one host thread per device, since any given host
thread can call cudaSetDevice() at most one time.

Use the push/pop context functions provided by the CUDA

Driver API.

Unified Virtual Addressing (UVA) allows the system memory

and the one or more device memories in a system to share

a single virtual address space.

 Source : NVIDIA, References

274 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Driver API : Features in which multiple host threads to set

a particular context current simultaneously using either
cuCtxSetCurrent() or cuCtxPushCurrent().

Host threads can now share device memory allocations, streams,

events, or any other per-context objects (as seen above).

Concurrent kernel execution devices of compute capability 2.x is

now possible across host threads, rather than just within a single

host thread. Note that this requires the use of separate streams;

unless streams are specified, the kernels will be executed

sequentially on the device in the order they were launched

Built on top of UVA, GPUDirect v2.0 provides for direct peer-to-

peer communication among the multiple devices in a system and

for native MPI transfers directly from device memory.

Source : NVIDIA, References

CUDA Tool KIT 4.0/5.0

275 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Host-CPU – Device GPU CUDA Prog :

The algorithm is designed in such a way that each CPU

thread (Pthreads, OpenMP, MPI) to control a different GPU.

Achieving this is straightforward if a program spawns as

many lightweight threads as there are GPUs – one can

derive GPU index from thread ID. For example, OpenMP

thread ID can be readily used to select GPUs.

MPI rank can be used to choose a GPU reliably as long as

all MPI processes are launched on a single host node

having GPU devices and host configuration of CUDA

programming environment.

 Source : NVIDIA, References

CUDA Tool Kit 4.0/5.0

276 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Fermi Performance : CUDA enabled NVIDIA GPU

Performance Fermi GPU : Device-CPU (NVIDIA)

One Tesla C2050 (Fermi) with 3 GB memory; Clock Speed

1.15 GHz, CUDA 4.1 Toolkit

Reported theoretical peak performance of the Fermi

(C2050) is 515 Gflop/s in double precision (448 cores; 1.15

GHz; one instruction per cycle) and reported maximum

achievable peak performance of DGEMM in Fermi up to

58% of that peak.

The theoretical peak of the GTX280 is 936 Gflops/s in single

precision (240 cores X 1.30 GHz X 3 instructions per cycle)

and reported maximum achievable peak performance of

DGEMM up to 40% of that peak.
Source & Acknowledgements : NVIDIA, References

277 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

cuBLAS : The NVIDIA CUDA Basic Linear Algebra

Subroutines (cuBLAS) library is a GPU-accelerated version

of the complete standard

cuFFT : The NVIDIA CUDA Fast Fourier Transform library

(cuFFT) provides a simple interface for computing FFTs up

to 10x faster.

cuRAND : The NVIDIA CUDA Random Number Generation

library (cuRAND) delivers high performance GPU-

accelerated random number generation (RNG).

cuSPARSE : The NVIDIA CUDA Sparse Matrix library

(cuSPARSE) provides a collection of basic linear algebra

subroutines used for sparse matrices

Source : NVIDIA, References

278 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

NPP : NVIDIA Performance Primitives : The NVIDIA

Performance Primitives library (NPP) is a collection of GPU-

accelerated image, video, and signal processing functions

Thurst : Thrust is a powerful library of parallel algorithms

and data structures. Thrust provides a flexible, high-level

interface for GPU programming that greatly enhances

developer productivity.

NVIDIA Visual Profiler : The NVIDIA Visual Profiler is a

cross-platform performance profiling tool that delivers

developers vital feedback for optimizing CUDA C/C++ and

OpenCL applications.

Source & Acknowledgements : NVIDIA, References

279 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0 Libraries

CUDA-GDB debuggers :CUDA-GDB debuggers : CUDA-

GDB supports debugging of both 32 and 64-bit CUDA

C/C++ applications.

 CUDA-MEMCHECK : CUDA-MEMCHECK detects these

errors in your GPU code and allows you to locate them

quickly.

MAGMA : MAGMA is a collection of next generation, GPU

accelerated ,linear algebra libraries. Designed for

heterogeneous GPU-based architectures. It supports

interfaces to current LAPACK and BLAS standards.

Source & Acknowledgements : NVIDIA, References

280 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Dynamic Parallelism : adds the capability for the GPU

to generate new work for itself, synchronize on results,

and control the scheduling of that work via dedicated,

accelerated hardware paths, all without involving the

CPU.

• Hyper-Q : Hyper‐Q enables multiple CPU cores to

launch work on a single GPU simultaneously, thereby

dramatically increasing GPU utilization and significantly

reducing CPU idle times

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

Source & Acknowledgements : NVIDIA, References

281 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Dynamic Parallelism : adds the capability for the GPU

to generate new work for itself, synchronize on results,

and control the scheduling of that work via dedicated,

accelerated hardware paths, all without involving the

CPU.

• Hyper-Q : Hyper‐Q enables multiple CPU cores to

launch work on a single GPU simultaneously, thereby

dramatically increasing GPU utilization and significantly

reducing CPU idle times

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

Source & Acknowledgements : NVIDIA, References

282 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Grid Management Unit : Enabling Dynamic Parallelism

requires an advanced, flexible grid management and

dispatch control system. The new GK110 Grid

Management Unit (GMU) manages and prioritizes grids

to be executed on the GPU. The GMU can pause the

dispatch of new grids and queue pending and

suspended grids until they are ready to execute,

providing the flexibility to enable powerful runtimes, such

as Dynamic Parallelism. The GMU ensures both

CPU‐ and GPU‐generated workloads are properly

managed and dispatched.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf
Source & Acknowledgements : NVIDIA, References

283 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Grid Management Unit : Enabling Dynamic Parallelism

requires an advanced, flexible grid management and

dispatch control system. The new GK110 Grid

Management Unit (GMU) manages and prioritizes grids

to be executed on the GPU. The GMU can pause the

dispatch of new grids and queue pending and

suspended grids until they are ready to execute,

providing the flexibility to enable powerful runtimes, such

as Dynamic Parallelism. The GMU ensures both

CPU‐ and GPU‐generated workloads are properly

managed and dispatched.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf
Source & Acknowledgements : NVIDIA, References

284 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• GPUDirect : NVIDIAGPUDirect™isacapabilitythat

enables GPUs within a single computer, or GPUs in

different servers located across a network, to directly

exchange data without needing to go to CPU/system

memory. The RDMA feature in GPUDirect allows third

party devices such as SSDs, NICs, and IB adapters to

directly access memory on multiple GPUs within the

same system, significantly decreasing the latency of

MPI send and receive messages to/from GPU memory

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

Source & Acknowledgements : NVIDIA, References

285 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Tesla C 2075

GPU -CUDA enabled NVIDIA GPU

 Peak Double Precision Floating
Point Performance

 Peak Single precision floating

Performance

 Memory Bandwidth (ECC off)

 Memory Size (GDDr5)

 CUDA Cores

515 Gflops

1030 Gflops

148 GBytes/s

6 GB

448 Cores

286 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

GPU -CUDA enabled NVIDIA GPU

Each floating point operates on upto 12-16 bytes of
source data, the available memory bandwidth cannot
sustain even a small fraction of the peak performance is
all the source data are accessed from global memory

To address above, CUDA & underlying GPUs offer multiple
memory types with different bandwidths & latencies

287 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

2/22/12

GPU -CUDA enabled NVIDIA GPU

CUDA & underlying GPUs offer multiple memory types with
different bandwidths & latencies

CUDA memory types have access restrictions to allow
programmers to conserve memory bandwidth while
increasing the overall performance of applications.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

288 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU -CUDA enabled NVIDIA GPU

CUDA Programmers are responsible for explicitly allocating
space and managing data movement among the different
memories to conserve memory bandwidth

CUDA Programmers shoulders the responsibility of massaging
the code to produce the desirable access patterns

CUDA code should explicitly optimize for GPU’s memory
hierarchy.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

289 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU -CUDA enabled NVIDIA GPU

CUDA Provides additional hardware mechanisms at
the memory interface can enhance the main
memory access efficiency if the access patterns
follow memory coalescing rules.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

290 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Compute Unified Device Architecture

• Step 1 – copy data from main memory to GPU
global memory (from host to device)

• Step 2 – threads run code inside kernel function

– Each thread fetches some data from global memory
and stores it in registers

– Each thread performs computations

– Each thread stores a result in global memory

• Step 3 – copy results from device back to host

General CUDA Program Format

291 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Kepler GK110-the new CUDA Compute Capability 5.0

GTX 470/480s have GT100s C2050s on grid06 and grid07 are compute cap 2.0

FERMI
GF100

FERMI
GF104

KEPLER
GK104

KEPLER
GK110

Compute Capability 2.0 2.1 3.0 3.5

Threads / Warp 32 32 32 32

Max Warps / Multiprocessor 48 48 64 64

Max Threads / Multiprocessor 1536 1536 2048 2048

Max Threads Blocks / Multiprocessor 8 8 16 16

32-bit Registers / Multiprocessors 32768 32768 65536 65536

Max Registers / Thread 63 63 63 255

Max Threads / Thread Block 1024 1024 1024 1024

Shared Memory Size Configuration (bytes) 16K
48K

16K
48K

16K
32K
48K

16K
32K
48K

Max X Grid Dimension 2^16-1 2^16-1 2^32-1 2^32-1

Hyper-Q No No No Yes

Dynamic Parallelism No No No Yes

292 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SMX (power efficiency)
Hyper-Q (programmability and
 application coverage)
Dynamic Parallelism

 Source : http://www..nvidia.com

GPU Computing – NVIDIA KEPLER GPUs

293 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GTX 470/480s have GT100s C2050s on grid06 and grid07 are compute cap 2.0

Features Tesla K20X Tesla K20
(Kepler
GK110)

Peak double Precision Floating
Point Performance

1.31 Tflops 1.17 Tflops

Peak Single Precision Floating
Performance

3.95 Tflops 3.52 Tflops

Memory Bandwidth (ECC off) 250 GB/s 208.8 B/s

Memory size (GDDR5) 6 GB 5 GB

CUDA Cores 2688 2496

Kepler GK110 supports the new CUDA

Compute Capability 5.0

294 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Current: Cuda 4.1
 Share GPUs across multiple threads
 Unified Virtual Addressing
 Use all GPUs from a single host thread
 Peer-to-Peer communication

 Coming in Cuda 5
 Direct communication between GPUs and other PCI devices
 Easily acceleratable parallel nested loops starting with Tesla K20 Kepler

GPU

 Current: OpenCL 1.2
 Open royalty-free standard for cross-platform parallel computing
 Latest version released in November 2011
 Host-thread safety, enabling OpenCL commands to be enqued from

multiple host threads
 Improved OpenGL interoperability by linking OpenCL event objects to

OpenGL

 OpenACC
 Programming standard developed by Cray, NVIDIA, CAPS and PGI
 Designed to simplify parallel programming of heterogeneous CPU/GPU

systems
 The programming is done through some pragmas and API functions
 Planned supported compilers – Cray, PGI and CAPS

http://developer.nvidia.com/cuda-toolkit

NVIDIA GPU Prog. Models

295 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 A full k110 implementation includes 15 SMX units and six
64-bit memory controllers. Different products will use
different configurations of K110.

Key features ...

 The new SMX processor architecture

 An enhanced memory subsystem, offering additional
caching capabilities, more bandwidth at each level of the
hierarchy and a fully redesigned and substantially faster
DRAM I/O implementation.

Kepler Architectural Overview

296 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

New: 48 KB Read-only memory cache
Compiler/programmer can use to advantage

Shared memory/L1 cache split:
Each SMX has 64 KB on‐chip
memory, that can be configured as:
• 48 KB of Shared memory with

16 KB of L1 cache,
or
• 16 KB of shared memory with 48

KB of L1 cache
or
• (new) a 32KB / 32KB split

between shared memory and L1
cache.

Faster than L2

Kepler Memory Subsystem

297 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

“Dynamic Parallelism allows more parallel code in an application to be

launched directly by the GPU onto itself (right side of image) rather than

requiring CPU intervention (left side of image).”

Control must be transferred
back to CPU before a new
kernel can execute

Only return to CPU when all
GPU operations are completed.
Why is this faster?

Kepler Dynamic Parallelism

298 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA – Application Kernels

http://www.nvidia.com

Source : http://www.nvidia.com; NVIDIA CUDA

(*) = Speedup results were gathered using untuned & unoptimized versions of

benchmark and NVIDIA Prog. Env on NVIDIA Fermi /Kepler

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

299 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : LINPACK (Top-500) Kepler

Total (CPU+GPU) Peak Performance : 1267 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 1170 Gflops (1.17 Tflops)

Nodes/GPUs LINPACK Gflops

Nodes GPUs T/V N NB P Q Time

1 1 WR10L2L2 34560 768 1 1 100.21 764.4

1 1 WR10L2L2 44968 768 1 1 187.71 785.5

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

62.13% sustained performance of Top-500 LINPACK is achieved

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

300 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : MAGMA (Open Source Software : NLA) Fermi

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Node Library Routine Used Matrix Size Sustained Performance in
Gflops

 1 MAGMA DGEMM 10240 302.81

1 CUBLAS DGEMM 10240 302.75

1 MAGMA DGETRF 5952 219.31

1 DGETRF 9984 256.29

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

Intel MKL version 10.2, CUBLAS version 3.2, Intel icc11.1

The routines such as DGETRF (LU factorization of certain class of matrices) show goof performance.

The MAGAMA uses LAPACK, CUDA BLAS, and MAGMA BLAS routines for factorization (LU, QR &

Cholesky) of matrices

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

301 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : Jacobi Iterative Method (Fermi)

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Jacobi Iterative Method : To solve system of dense matrix system of linear

equations [A] {x}= {b}

Time Taken in Seconds

Matrix Size CUDA API CUBLAS

1024 1.6439 0.0525

2048 5.4248 0.0972

4096 26.3400 0.2299

 8092 87.768 0.7138

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

302 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU : Kepler

Results : Total (CPU+GPU) Peak Performance : 1267 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 1170 Gflops (1.17 Tflops)

C-DAC HPC GPU Cluster : Benchmarks

Experiment Results for LINPACK(*) : without any Optimizations

62.13% is sustained performance of LINPACK can be achieved for

appropriate matrix sizes i.e., N= 48000 ~ 64000. Further Optimization

may improve by10% to 15 %

Visit http://www.nvidia.com

(*=In collaboration with NVIDIA)

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

http://www.nvidia.com/

303 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Node = Fermi

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

C-DAC HPC GPU Cluster : Benchmarks

Experiment Results for DGEMM : Without any Optimizations

60.0% is sustained performance of CUDA (CUBLAS) can be

achieved for appropriate matrix sizes i.e., N= 10000 ~ 16000. Further

Optimization may improve by10% to 15 %

Visit http://www.nvidia.com

(*=In collaboration with NVIDIA)
(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA Kepler

http://www.nvidia.com/

304 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : Conjugate Gradient Method

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Conjugate Gradient Method : To solve system of dense matrix system of

linear equations [A] {x}= {b}

Time Taken in Seconds

Matrix Size CUDA API CUBLAS

1024 0.5186 0.0296

2048 1.881 0.0740

4096 8.677 0.2214

 8092 33.376 0.7893

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

305 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results for DGEMM (CPU+GPU) : In-house (Fermi)
Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

 Nodes GPUs Matrix Size
(CPU + GPU)

Sustained Perf in Gflops
 Total (CPU +GPU)

Utilization (%)

 1 1 1024 181.25 29.66

1 1 4096 326.73 53.47

1 1 10240 363.47(*) 59.49

1 1 12288 366.42(*) 59.47

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

Intel MKL version 10.2, CUBLAS version 3.2, Intel icc11.1

 (* = relative error exists). 60% sustained performance of is achieved

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

306 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Using pre trained Haar - classifier and

integral image on GPU cluster

Courtesy : Viola and Jones

Image size GPU (Fermi)
time(sec)

GPU time
(sec)

512 threads/
block

8 threads/
block

132*184 0.000620 0.000285

700*500 0.003376 0.001120

1289*649 0.005940 0.002531

 Four kinds of Haar features are used in detection algorithm. Trained cascaded classifiers

are obtained, apply these classifiers to detect images

 Parallelize the detection process by mapping each window to a thread for face detection.

 MPI – CUDA - GPU Implementation of Face Detection(*)

Courtesy : C-DAC Projects & Viola and Jones Alg.

(*) = Speedup results were gathered using untuned and unoptimized
versions of benchmark and NVIDIA Prog. Env on NVIDIA Fermi

Courtesy : C-DAC Intrnal Projects

Application : Image Processing –

Multi-Core – Many-Core Implementation

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

307 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 MPI – CUDA - GPU Implementation of Edge Detection

 Each thread within the thread block

corresponds to a single pixel or Multiple

pixels within the image

 Pixels OpenCV

(Time in ms)

CUDA - GPU optimized

Block Size of 8 x 8 (Time in ms)

512 x 512 8.40 0.62

1024 x 1024 28.01 2.30

2048 x 2048 108.52 9.34
4096 x 4096 398.14 38.17

Courtesy : Viola and Jones

512*512 1024*1024

 Pixels OpenCV

(Time in

ms)

MPI (No. of PEs)

(Time in ms)

CUDA-GPU

Block Size of 16 x 16

(Time in ms)

2 8 UnOptimised Optimized

512 x 512 2.91 6.91 2.93 0.39 0.21

1024 x 1024 11.01 27.41 13.87 1.53 0.709

2048 x 2048 42.74 112.25 42.05 5.998 2.780

4096 x 4096 173.39 449.97 159.89 23.86 11.27

Edge Detection : Laplace Edge Detection (*)

Edge Detection : Canny Edge Detection (*)

Courtesy : C-DAC Projects & Wikipedia

(*) = Speedup results were gathered using untuned & unoptimized

 versions of benchmark and NVIDIA Prog. Env on NVIDIA Fermi

Application : Image Processing –

Multi-Core – Many-Core Implementation

308 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 3;

 U(x,y,z,t0)=g on

2
U

2

y
f(x,y,z); + = t[to, tf]

Application : FDM/FEM Computations (Structured/

Unstructured Grids) - HPC GPU Cluster

• Data Re-arrangement Kernels & Jacobi / CG Methods

2
U

 2 x

 U

 t

2
U

 2 z
+

FEM
 Graph Partition

Software METIS

 Each Partition

mapped to each

GPU

Poisson & Parabolic Eq. Solver

Rank 2

Rank 1

Rank 0

FDM

Courtesy : C-DAC HPC-FTE Student Projects

309 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Stencil for Poisson Eq. in 3D

• CUDA - Date Access Dominated, basic

computation kernels, Generic Stencil

Computations

• CUDA - Data Re-arrangement Kernels –

Coalesced Data access and Basic Read/Write

routines Data Reordering routines

Application : FDM/FEM Computations (Structured/

Unstructured Grids) - HPC GPU Cluster

Courtesy : Chaman Singh Verma et. all; & Jall Open source software

Courtesy : C-DAC HPC-FTE Student Projects, 2011-2012

310 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition, with blocks of size - 32x32

• Blocking & Threading

• Use of Shared Memory

• Implicit Handling of

Boundary Conditions -

part of computations

• Tiling for Stencil

Computations

 Access Pattern within a 32 X 32 block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Difference

Computations (Structured Grids)

Type of

Domain

Nodes/

(Partitions/

MPI

Process)

Elapsed time (in seconds)

MPI GPU Cluster
MPI CUDA OpenCL

2D-Structured

grid -FDM

(64X64)

4096

(1/1)

4.28

4096

(2/2)

3.12 0.82 1.28

2D-Structured

grid -FDM

(128X128)

16384

(1/1)

11.22

16384

(4/4)

3.74 0.98 1.42

3D-Structured

grid -FDM

(64X64X64)

262144

(1/1)

32.28

262144

(8/8)

6.64 1.31 2.23
 Performance 4x to 6x for

un-optimised CUDA code
(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

311 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition :Graph Partitioning

• Implicit Handling of

Boundary Conditions -

part of computations

• Graph Partitioning for

Mesh Computations

• Graph Coloring for

solver on a single node

 Access Pattern within a 32 X 32

block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for

un-optimised CUDA code
Courtesy : metis (George Karypis & Vipin Kumar et. all)

C-DAC HPC-FTE Student Projects , 2011-12

Chaman Singh Verma et. all; & Jall Open source software

312 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition

based on Graph Partitioning

• Iterative methods based on Sparse

Matrix Computations

• Tiling – To handle large Mesh

computations

• Graph Partitioning and Graph

Coloring techniques

• Overlapping Comm. & Comps –

CUDA Streams

 Access Pattern within a 32 X 32

block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for un-optimised

CUDA code

Courtesy : Chaman Singh Verma et. all;

 & Jall Open source software

313 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition based on Graph Partitioning

• Implicit Handling of

Boundary Conditions -

part of computations

• Graph Partitioning for

Mesh Computations

• Graph Coloring for

solver on a single node

 Access Pattern within a 32 X 32 block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for

un-optimised CUDA code

Type of

Domain

Elements/

Nodes/

(Partitions/MPI

Process)

Elapsed time (in seconds)

MPI GPU Cluster

MPI CUDA OpenCL

2D-Grid

FEM

14450(7396)

(1/1)

9.72

 14450(7396)

(4/4)

5.64

 14450(7396)

(8/8)

 3.28 0.64 1.12

3D-Grid

Grid-FEM

343 (512)

(1/1)

1.24

 3375 (4096)

(1/1)

8.63 1.46 3.09

 29791(32768)

(1/1)

24.64 3.82 8.04

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

314 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA - NVML APIs : CUDA 5.0

http://www.nvidia.com

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmarks & NVIDIA CUDA Prog. Env - This is C-DAC In-house HPC GPU
Cluster project work in collaboration with NVIDIA

Source : http://www.nvidia.com; NVIDIA CUDA

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

315 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Rate of sampling power usage is very low while
measuring using nvidia-smi or nvml library, so

unless the kernel is running for a long time we

would not notice any change in power.

nvidia provides a high-level utility called nvidia-

smi which can be used to measure power, but its

sample rate is too long to obtain useful

measurements.

NVML (NVIDIA Management Library)

 NVIDIA NVML : Power Measurement

316 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Memory Transfer

to GPU

Kernel Execution

Memory transfer

back to Host

Wait for Some

 seconds

Main

Continuous Probing

Power Consumption in

one Second Interval

End

Thread1 Thread2

 NVIDIA Implementation

NVML (NVIDIA Management Library)

317 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Time
(sec.)

Power in
milliWatt

0 30712

1 47064

2 49537

6 132440

7 163942

8 89673

9 61713

10 52588

11 50209

12 26704

13 19752

29 16797

Matrix Size :

10240 X 10240

CPU + GPU Time

(Sec): 2.575

CBLAS : 834

GFlops

NVML Performance & Watts - for Matrix Comps.

 Information

 Driver etc…

 Device Query

 Data Transfer from

host to Device

 Memory

 Global Memory /

Shared Memory

Constant Memory

 Data Transfer from

Device to host

Experiment Results CBLAS Lib(*)

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

318 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Peak mWatts

Consumed

16392

 Milliwatts

Seconds

 Power mWatts

No Optimisations are

carried to extract

performance

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVML Performance & Watts - for Matrix Comps.

Experiment Results CBLAS Lib(*)

319 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Time
(sec.)

Power in
milliwatt

0 30919

1 46505

4 49729

5 50012

Time
(Sec.)

Power in
milliwatt

6 101504

7 133627

8 135000

10 136574

12 137145

16 137330

17 118776

18 71695

19 56504

Time
(Sec.)

Power in
milliwatt

20 50504

21 48395

23 47540

24 26035

25 19400

27 17656

28 16892

40 16797

Matrix Size :

10240 X 10240

CPU + GPU Time

(Sec): 12.549

CBLAS :

85.6GFlops

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER with NVML

NVML Performance & Watts - for Matrix Comps.

Experiment Results CBLAS Lib(*)

320 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Seconds

 Power mWatts

Peak mWatts

Consumed

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVML Performance & Watts - for Matrix Comps.

Experiment Results User Developed Code (*)

321 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA carma ARM Processor

with CUDA

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmarks (in-house developed) & NVIDIA CUDA Prog. Env - This is C-
DAC In-house HPC GPU Cluster project work in collaboration with NVIDIA

Source : http://www.nvidia.com; NVIDIA CUDA

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

322 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Carma , the board includes the company's
Tegra 3 quad-core ARM A9 processor, a
Quadro 1000M GPU with 96 cores (good for
270 single-precision GFlops), as well as a PCIe
X4 link, one Gigabit Ethernet interface, one
SATA connector, three USB 2.0 interfaces as
well as a Display port and HDMI. 2GB GPU
Memory

 It uses the Tegra 3 chip as the basis and, thus, has four ARM

cores and an NVIDIA GPU.

 In addition, the platform has 2 GB of DDR3 RAM (random access
memory) as well.

 CUDA toolkit and a Ubuntu Linux-based OS

NVIDIA ARM With Carma DevKit

323 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SGEMM Matrix Size :

640 X 1280

CUBLAS

 Time : 0.00834 sec

GFlops : 125.778

CUDA Mat Mat Mult

Time : 0.03627 sec

GFlops : 28.909

Matrix-Matrix Multiplication

CUBLAS (Vendor) User Code (IJK loop)

GFLOPS Time (Sec) (GFLOPS) Time (Sec)

125.7783 0.00834 28.9092 0.03627

125.7004 0.00834 28.9070 0.03627

125.7426 0.00834 28.9085 0.03627

Seconds

 Power Watts

Peak Watts

Consumed

39.5 watts
Using External

Power Off Meter

(*) = Speedup results were gathered using untuned and unoptimized versions

 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVIDIA carma : Performance & Watts - Matrix Comps.

Experiment Results User Developed Code (*)

324 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Login to portal

NVIDIA – carma - Power Meter : System Details

 Create Individual Session

 Portal developed using TOMCAT to accommodate all servers

325 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display reading of Power meter In tabular form

(*) = Speedup results were gathered using untuned and unoptimized versions of

benchmark and NVIDIA Prog. Env on NVIDIA carma with CUDA

NVIDIA – carma - Power Meter : System Details

326 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display reading of Power meter In Graphical format

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmark

and NVIDIA Prog. Env on NVIDIA carma with CUDA

Experiment Results User Developed Code (*)

NVIDIA – carma - Power Meter : System Details

327 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Demo of running particular session in tabular form

NVIDIA – carma - Power Meter : System Details

328 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display user defined session graph

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmark and

NVIDIA Prog. Env on NVIDIA carma with CUDA

Experiment Results User Developed Code (*)

NVIDIA – carma - Power Meter : System Details

329 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Systems Details

Node1: Jaguar.stp.cdac.ernet.in (1 GPU C2070)
CPU : Dual socket Quad core Intel Xeon; RAM : 16 GB
OS : centOS release 5.2 with kernel release 2.6.18-92.el5
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC
nvidia-toolkit: 5.0
MPI : mpich2-1.0.7; Interconnect : Gigabit

Node2: Leopard.stp.cdac.ernet.in (2 GPUs C2050)
CPU : Dual socket Quad core Intel Xeon
RAM : 48 GB
OS : centOS release 5.2 with kernel release 2.6.18-92.el5
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC
nvidia-toolkit: 5.0
MPI : mpich2-1.0.7 Interconnect : Gigabit

NVIDIA – carma - Power Meter : System Details

330 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Kayla DevKit for computing on the ARM architecture – where
supercomputing meets mobile computing.

 The Kayla DevKit hardware is composed of mini-ITX carrier board
and NVIDIA® GeForce® GT640/GDDR5 PCI-e card.

 The mini-ITX carrier board is powered by NVIDIA Tegra 3 Quad-core
ARM processor while GT640/GDDR5 enables Kepler GK208 for the
next generation of CUDA and OpenGL application. Pre-installed with
CUDA 5 and supporting OpenGL 4.3.

 Kayla provides ARM application development across the widest
range of application types.

NVIDIA ARM With KAYLA DevKit(*)

 In Progress

331 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Form Factor Kayla mITX

CPU
NVIDIA® Tegra® 3 ARM Cortex A9
Quad-Core with NEON

GPU
NVIDIA® GeForce® GT640/GDDR5 (TO
BE PURCHASED SEPARATELY) Buy Now

Memory 2GB DRAM

CPU - GPU
Interface

PCI Express x16 / x4

Network 1x Gigabit Ethernet

Storage 1x SATA 2.0 Connector

USB 2x USB 2.0

Software
Linux Ubuntu Derivative OS
CUDA 5 Toolkit

NVIDIA ARM With KAYLA DevKit

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.newegg.com/Product/Product.aspx?Item=N82E16814121771&nm_mc=OTC-Channel&cm_mmc=OTC-channel-_-Video+Card+-+Nvidia-_-ASUS-_-14121771&srccode=cii_7240466&cpncode=26-20938146&DEPA=0&refer=channel&CMP=OTC-

332 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Summary

 Good strategies for extracting high performance from individual
subsystems on the CUDA enabled NVIDIA GPUs

 NVIDIA - CUDA (GPU is good choice)
 NVIDIA – CUDA Plenty of opportunities for further optimizations
 There are many good strategies for extracting high performance

from individual subsystems on CUDA enabled NVIDIA GPU with
CUDA Toolkit 5.0

 HPC GPU Cluster – MPI-CUDA with CUDA 5.0 gives advantages
for Scalability and Performance for applications

 Power Efficient NVIDIA NVML APIs & Performance Issues

Source & Acknowledgements : NVIDIA, References

333 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Good strategies for extracting high performance from individual

subsystems on the CUDA enabled NVIDIA GPUs

 NVIDIA - CUDA (GPU is good choice)

 NVIDIA – CUDA Plenty of opportunities for further optimizations

 There are many good strategies for extracting high performance

from individual subsystems on CUDA enabled NVIDIA GPU with

CUDA Toolkit 5.0

 HPC GPU Cluster – MPI-CUDA with CUDA 5.0 gives advantages

for Scalability and Performance for applications

 Source & Acknowledgements : NVIDIA, References

 Summary

334 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

This page is intentionally kept blank

335 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An Overview of CUDA enabled NVIDIA GPUs:

Prog. based on OpenACC

Part-II(F)

Source & Acknowledgements : NVIDIA, References

336 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Lecture Outline

Following topics will be discussed

 Part-I : An introduction to OpenACC

 Part-II : The OpenACC Pragmas

 Part-III: OpenACC Basic Examples

 Part-IV : Summary

Source : NVIDIA & References given in the presentation

An Overview of OpenACC

Venue : CMSD, UoHYD ; Date : Oct 15-18, 2013

337 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Introduction to OpenACC

 OpenACC: http://www.openacc-standard.org/
 Source : NVIDIA, NVIDIA-PGI & References

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

338 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

3 Ways to Accelerate Applications

Applications

Libraries
Open ACC
Directives

Programming
Languages

“Drop-in”
Acceleration

Easily Accelerate
Applications

Maximum
Flexibility

Source : NVIDIA, PGI, CRAY, CAPS, & References given in the presentation

339 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

“OpenACC will enable programmers to easily develop

portable applications that maximize the performance and

power efficiency benefits of the hybrid CPU/GPU architecture

of Titan.”

 --Buddy Bland, Titan Project Director,

Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought

together by members of the OpenMP Working Group on

Accelerators, as well as many others. We look forward to

releasing a version of this proposal in the next release of

OpenMP.”

 --Michael Wong, CEO

OpenMP Directives Board
Source : NVIDIA & References given in the presentation

OpenACC : Open Prog. Stanadard for Par. Comp.

340 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Easy: Directives are the easy path to accelerate
 compute intensive applications

Open: OpenACC is an open GPU directives standard,
 making GPU programming straightforward and
 portable across parallel and multi-core
 processors

Powerful: GPU Directives allow complete access to the
 massive parallel power of a GPU

OpenACC : The standard for GPU Devices

Source : NVIDIA & References given in the presentation

341 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

OpenACC : High-level, with low-level access

 Compiler directives to specify parallel regions in C, C++,
Fortran
 OpenACC compilers offload parallel regions from host to accelerator
 Portable across OSes, host CPUs, accelerators, and compilers

 Create high-level heterogeneous programs
 Without explicit accelerator initialization,
 Without explicit data or program transfers between host and

accelerator

 Programming model allows programmers to start simple
 Enhance with additional guidance for compiler on loop mappings,

data location, and other performance details

 Compatible with other GPU languages and libraries
 Interoperate between CUDA C/Fortran and GPU libraries
 e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Source : NVIDIA & References given in the presentation

342 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Full OpenACC 1.0 Specification available
online http://www.openacc-standard.org

 Quick reference card also available

 Beta implementations available now from

PGI, Cray, and CAPS

 Information is given in References

OpenACC : High-level, with low-level access

Source : NVIDIA & References given in the presentation

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

343 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Source : NVIDIA & References given in the presentation

OpenACC Basic Concepts

345 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Familiar to OpenACC Programmers

Source : NVIDIA & References given in the presentation

346 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Compile and run

C:

pgcc –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c

Fortran:
pgf90 –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.f90

Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Accelerator kernel generated

 9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

OpenACC Compile & Run

Source : NVIDIA & References given in the presentation

347 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Accelerator programming API standard to program

accelerators

 Portable across operating systems and various types of

host CPUs and GPU accelerators.

 Allows parallel programmers to provide simple hints,

known as “directives,” to the compiler, identifying which

areas of code to accelerate, without requiring

programmers to modify or adapt the underlying code

itself.

 Aimed at incremental development of accelerator code

 Effort driven by vendors with the input from users/

applications

What is OpenACC?

Source : NVIDIA & References given in the presentation

348 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The current vendors support OpenACC are: Cray: High-
Level GPU directives

 PGI: PGI accelerator directives

 CAPS Enterprise: HMPP

 NVIDIA: CUDA, OpenCL

 Others: As this defacto standard gains traction

 Strong interaction with the OpenMP accelerator
subcomittee with input from other institutions

OpenACC Vendor Support

Source : NVIDIA & References given in the presentation

349 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Phase 1: First Standardization of High-Level GPU

directives. [Short-term, Mid-term]

 Heavily influenced by NVIDIA hardware.

 Phase 2: Experiences from OpenACC will drive the

effort of OpenMP for Accelerators

 More general solution

 Might take years to develop

 Better interoperability with OpenMP

Impact of OpenACC

Source : NVIDIA & References given in the presentation

350 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Directives facilitate code development for

accelerators

 Provide the functionality to:

 Initiate accelerator startup/shutdown

 Manage data or program transfers between host

(CPU) and accelerator

 Scope data between accelerator and host (CPU)

 Manage the work between the accelerator and host.

 Map computations (loops) onto accelerators

 Fine-tune code for performance

Overview of the OpenACC directives

Source : NVIDIA & References given in the presentation

351 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Bulk of computations executed in CPU, compute

intensive regions offloaded to accelerators

 Accelerators execute parallel regions:

 Use work-sharing and kernel directives

 Specification of coarse and fine grain parallelization

 The host is responsible for

 Allocation of memory in accelerator

 Initiating data transfer

 Sending the code to the accelerator

 Waiting for completion

 Transfer the results back to host

 De-allocating memory

 Queue sequences of operations executed by the device

Execution Model

Source : NVIDIA & References given in the presentation

352 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Parallelism:

 Support coarse-grain parallelism

⁻ Fully parallel across execution units

⁻ Limited synchronizations across

⁻ coarse-grain parallelism

 Support for fine-grain parallelism

⁻ Often implemented as SIMD

⁻ Vector operations

 Programmer need to understand the differences

between them.

⁻ Efficiently map parallelism to accelerator

⁻ Understand synchronizations available

 Compiler may detect data hazards

⁻ Does not guarantee correctness of the code

 Execution Model

Source : NVIDIA & References given in the presentation

353 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Host + Accelerator memory may have completely
separate memories
 Host may not be able to read/write device memory that

is not mapped to a shared virtual addressed.

 All data transfers must be initiated by host
 Typically using direct memory accesses (DMAs)

 Data movement is implicit and managed by compiler

 Device may implement weak consistency memory model
 Among different execution units

 Within execution unit: memory coherency guaranteed
by barrier

Memory Model

Source : NVIDIA & References given in the presentation

354 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Programmer must be aware of:

 Memory bandwidth affects compute intensity

 Limited device memory

 Assumptions about cache:

• Accelerators may have software or hardware

managed cache

• May be limited to read only data

 Caches are managed by the compiler with hints by the

programmer

 Compiler may auto-scope variables based on static

information or enforce runtime checks.

Memory Model (2)

Source : NVIDIA & References given in the presentation

355 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Accelerator Parallel Region / Kernels Directives

 Loop Directives

 Data Declaration Directives

 Data Regions Directives

 Cache directives

 Wait / update directives

 Runtime Library Routines

 Environment variables

Categories of OpenACC APIs

Source : NVIDIA & References given in the presentation

356 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 C/C++:

#pragma acc directive-name [clause [,clause]…] new-line

 Fortran:

!$acc directive-name [clause [, clause]…]

c$acc directive-name [clause [, clause]…]

*$acc directive-name [clause [, clause]…]

Directives Format

Source : NVIDIA & References given in the presentation

357 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Starts parallel execution on accelerator

 Specified by:

 #pragma acc parallel [clause [,clause]…] new-line

structured block

 When encountered:

 Gangs of workers threads are created to execute on

accelerator

 One worker in each gang begins executing the code

following the structured block

 Number of gangs/workers remains constant in parallel

region

OpenACC Parallel Directive

Source : NVIDIA & References given in the presentation

358 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

CPU

Thread
CPU

Thread

Accelerator Parallel Region

Worker

Threads

W-line

OpenACC Parallel Directive

Source : NVIDIA & References given in the presentation

359 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc parallel directive are:
 if(condition)

 async [(scalar-integer-expression)]

 num_gangs (scalar-integer-expression)

 num_workers (scalar-integer-expression)

 vector_length (scalar-integer-expression)

 reduction (operator:list)

 copy (list)

 copyout (list)

 create (list)

 private (list)

 firstprivate (list)

OpenACC Parallel Directive (2)

Source : NVIDIA & References given in the presentation

360 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc parallel directive are:
 present (list)

 present_or_copy (list)

 present_or_copyin (list)

 present_or_copyout (list)

 present_or_create (list)

 deviceprt (list)

 If async is not present, there is an implicit barrier at
the end of accelerator parallel region.

 present_or_copy default for aggregate types (arrays)

 private or copy default for scalar variables

OpenACC Parallel Directive (3)

Source : NVIDIA & References given in the presentation

361 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Defines a region of a program that is to be

compiled into a sequence of kernels for

execution on the accelerator

 Each loop nest will be a different kernel

 Kernels launched in order in device

 Specified by:
 #pragma acc kernels [clause [,clause]…] new-line

 structured block

OpenACC Kernel Directive

Source : NVIDIA & References given in the presentation

362 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Kernels directive may not contain nested parallel or
kernel directive

 Configuration of gangs and worker thread may be
different for each kernel

 The clauses for the !$acc kernels directive are: if(
condition)
 async [(scalar-integer-expression)]

 copy (list)

 copyin (list)

 copyout (list)

 create (list)

 private (list)

 firstprivate (list)

OpenACC Kernel Directive (2)

Source : NVIDIA & References given in the presentation

363 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc kernels directive are: present
(list)
 present_or_copy (list)

 present_or_copyin (list)

 present_or_copyout (list)

 present_or_create (list)

 deviceprt (list)

 If async is present, kernels or parallel region will
execute asynchronous on accelerator

 present_or_copy default for aggregate types (arrays)

 private or copy default for scalar variables

OpenACC Kernel Directive (3)

Source : NVIDIA & References given in the presentation

364 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 if clause
 Optional clause to decide if code should be executed on

accelerator or host

 async clause
 Specifies that a parallel accelerator or kernels regions should

be executed asynchronously

 The host will evaluate the integer expression of the async
clause to test or wait for completion with the wait directive

 num_gangs clause
 Specifies the number of gangs that will be executed in the

accelerator parallel region

 num_workers clause
 Specifies the number of workers within each gang for a

accelerator parallel region

OpenACC Parallel/Kernel Clauses

Source : NVIDIA & References given in the presentation

365 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 vector_length clause
 Specifies the vector length to use for the vector or SIMD

operations within each worker of a gang

 private clause
 A copy of each item on the list will be created for each gang

 firstprivate clause

 A copy of each item on the list will be created for each gang and
initialized with the value of the item in the host

 reduction clause
 Specifies a reduction operation to be perform across gangs

using a private copy for each gang.

 Support for: +, *, max, min, &, |, &&, ||

 Other operators available in Fortran: .neqv., .eqv.

OpenACC Parallel/Kernel Clauses

Source : NVIDIA & References given in the presentation

366 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The data construct defines scalars, arrays and

subarrays to be allocated in the accelerator

memory for the duration of the region.

 Can be used to control if data should be copied-

in or out from the host

 Specified by:

 #pragma acc data [clause [,clause]…] new-line

 structured block

OpenACC Data Directive

Source : NVIDIA & References given in the presentation

367 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc data directive are:
 if(condition)
 copy (list)
 copyin (list)
 copyout (list)
 create (list)
 present (list)
 present_or_copy (list)
 present_or_copyin (list)
 present_or_copyout (list)
 present_or_create (list)
 deviceptr (list)

OpenACC Data Directive

Source : NVIDIA & References given in the presentation

368 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 copy clause
 Specifies items that need to be copied-in from the host to

accelerator, and then copy-out at the end of the region
 Allocates accelerator memory for the copy items.

 copy-in clause
 Specifies items that need to be copied-in to the accelerator

memory
 Allocates accelerator memory for the copy-in items

 copy-out clause
 Specifies items that need to be copied-out to the accelerator

memory
 Allocates accelerator memory for the copy-out items

OpenACC Data Directive

Source : NVIDIA , PGI & References given in the presentation

369 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 create clause
 Specifies items that need to allocated (created) in the

accelerator memory
 The values of such items are not needed by the host

 copy-in clause
 Specifies items that need to be copied-in to the accelerator

memory
 Allocates accelerator memory for the copy-in items

 present clause
 Specifies items are already present in the accelerator memory
 The items were already allocated on other data, parallel or

kernel regions. (i.e. inter-procedural calls)

OpenACC Data Directive (2)

Source : NVIDIA & References given in the presentation

370 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 present_or_copy clause
 Tests if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-in and out its
value from/to the host

 present_or_copyin clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-in its value from
the host

 present_or_copyout clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-out its value to
the host

 present_or_create clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator (no initialization)

OpenACC Data Directive (3)

Source : NVIDIA & References given in the presentation

371 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used to describe what type of parallelism to use to
execute the loop in the accelerator.

 Can be used to declare loop-private variables,
arrays and reduction operations.

 Specified by:

 #pragma acc loop [clause [,clause]…] new-line for

loop

OpenACC Loop Directive

Source : NVIDIA & References given in the presentation

372 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc loop directive are:
 collapse (n)
 gang [(scalar-integer-expression)]
 worker [(scalar-integer-expression)]
 vector [(scalar-integer-expression)]
 seq
 independent
 private (list)
 reduction (operator : list)

 collapse directive
 Specifies how many tightly nested loops are associated

with the loop construct

OpenACC Loop Directive (2)

Source : NVIDIA & References given in the presentation

373 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 gang clause
 Within a parallel region: it specifies that the loop iteration need to

be distributed among gangs.
 Within a kernel region: that the loop iteration need to be

distributed among gangs. It can also be used to specify how many
gangs will execute the iteration of a loop

 worker clause
 Within a parallel region: it specifies that the loop iteration need to

be distributed among workers of a gang.
 Within a kernel region: that the loop iteration need to be

distributed among workers of a gang. It can also be used to

specify how many workers of a gang will execute the iteration of a
loop

 seq clause
 Specifies that a loop needs to be executed sequentially by the

accelerator

 OpenACC Loop Clauses

Source : NVIDIA & References given in the presentation

374 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 vector clause
 Within a parallel region: specifies that the loop iterations need to

be in vector or SIMD mode. It will use the vector length specified
by the parallel region

 Within a kernel region: specifies that the loop iterations need to
be in vector or SIMD mode. If an argument is specified, the
iterations will be processed in vector strips of that length.

 independent clause
 Specifies that there are no data dependences in the loop

 private clause
 Specifies that a copy of each item on the list will be created for

each iterations of the loop.

 reduction clause
 Specifies that a reduction need to be perform associated to a

gang, worker or vector

OpenACC Loop Clauses

Source : NVIDIA & References given in the presentation

375 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Specifies array elements or subarrays that should
be fetched into the highest level of the cache for
the body of the loop.

 Specified by:
 #pragma acc cache(list) new-line

OpenACC Cache Directive

Source : NVIDIA & References given in the presentation

376 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Some directives can be combined into a single
one

 Combined directives are specified by:

 #pragma acc parallel loop [clause [,clause]…] new-line
 for loop
 #pragma acc kernels loop [clause [,clause]…] new-line
 for loop

OpenACC Combined Directive

Source : NVIDIA & References given in the presentation

377 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used in the variable declaration section of program
to specify that a variable should be allocated, copy-
in/out in an implicit data region of a function,
subroutine or program .

 If specified within a Fortran Module, the implicit
data region is valid for the whole program.

 Specified by:
 #pragma acc declare [clause [,clause]…] new-line

OpenACC Declare Directive

Source : NVIDIA & References given in the presentation

378 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc data directive are: copy
(list)
 copyin (list)
 copyout (list)
 create (list)
 present (list)
 present_or_copy (list)
 present_or_copyin (list)
 present_or_copyout (list)
 present_or_create (list)
 deviceptr (list)
 device_resident (list)

OpenACC Declare Directive (2)

Source : NVIDIA & References given in the presentation

379 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used within a data region to update / synchronize

the values of the arrays on both the host or

accelerator

 Specified by:
 #pragma acc update[clause[,clause]…]new-line

 The clauses for the !$acc update directive are:
 host (list)

 device (list)

 if (condition)

 async [(scalar-integer-expression)]

OpenACC Update Directive

Source : NVIDIA & References given in the presentation

380 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 It causes the program to wait for completion of an

asynchronous activity such as an accelerator

parallel, kernel region or update directive

 Specified by:
 #pragma acc wait [(scalar-integer-expression)] new-

line

 It will test and evaluate the integer expression for

completion

 If no argument is specified, the host process will

wait until all asynchronous activities have

completed

 Can be specified per CPU/Thread basis.

OpenACC Wait Directive

Source : NVIDIA & References given in the presentation

381 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 int acc_get_num_devices(acc_device_t)
 void acc_set_device_type(acc_device_t)
 acc_device_t acc_get_device_type()
 acc_set_device_num(int, acc_device_t)
 int acc_get_device_num(acc_device_t)
 int acc_async_test(int)
 int acc_async_test_all()
 void acc_async_wait(int)
 void acc_async_wait_all()
 void acc_init(acc_device_t)
 void acc_shutdown (acc_device_t)
 int acc_on_device(acc_device_t)
 void* acc_malloc(size_t)
 void acc_free(void*)

OpenACC runtime calls

setenv ACC_DEVICE_TYPE
NVIDIA setenv
ACC_DEVUCE_NUM 1
Environment Variables

Source : NVIDIA & References given in the presentation

382 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Some vendors will provide implementations of
OpenACC at the end of this year.

 The OpenACC Cray implementation is available

 Use OpenACC as the standard GPU programming

directives

 applications users are starting to use

 Visit References for runtime calls

OpenACC runtime calls

Source : NVIDIA & References given in the presentation

383 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

This page is intentionally kept blank

384 An Overview of OpenCL C-DAC hyPACK-2013

Introduction to Heterogeneous Computing

Why OpenCL ?

Part-III

385 An Overview of OpenCL C-DAC hyPACK-2013

Lecture Outline

Following topics will be discussed
 Part-I : An introduction to Heterogeneous comp. -

OpenCL

 Part-II : The OpencL Specification - Kernels

 Part-III : OpenCL Device Architectures

 Part-IV : OpenCL Basic Examples

 Part-V : Understanding OpenCL’s Concurrency

 and Execution Model

Source : References given in the presentation

Heterogeneous Computing with OpenCL

Source : NVIDIA, Khronos AMD, References

386 An Overview of OpenCL C-DAC hyPACK-2013

GPU Computing drives new applications

• Reducing“TimetoDiscovery”

• 100 x Speedup changes science &

research methods

New applications drive the future of GPUs

• Drives new GPU capabilities

• Drives hunger for more performance

Performance =

 parallel hardware + scalable parallel program

Application

CPU GPU

Software in Many-core world

GPU Computing : Think in Parallel - Some Design Goals

Source : NVIDIA, Khronos, AMD, References

387 An Overview of OpenCL C-DAC hyPACK-2013

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one/ a few threads to load/computer data
shared by all threads

Use it to avoid non-coalesced access

• Stage loads and stores in shared memory to
re-order non-coalesceable addressing

• Matrix transpose example later

GPU Computing : Think in Parallel

GPU Computing: Take Advantage of Shared Memory

Application

CPU GPU

Source : NVIDIA, Khronos AMD, References

388 An Overview of OpenCL C-DAC hyPACK-2013

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

• GPU spends its translators on ALUs, not memory

Do more computation on the GPU to avoid costly data
transfers

• Even low parallelism computations can sometimes be
faster than transferring back and forth to host

GPU Computing : Think in Parallel

GPU Computing: Optimise Algorithms for the GPU

Source : NVIDIA, Khronos AMD, References

389 An Overview of OpenCL C-DAC hyPACK-2013

High Level Abstraction that hide complexity of hardware

A heterogeneous programming language exposes

heterogeneity

• Trend towards increasing abstraction

• One language does’nt have to address the needs of

every community of programmers

• High level frame works - High level languages and map

to a low-level hardware abstraction layer for portability

OpenCL is hardware-abstraction layer

Software in Many-core world

Source : NVIDIA, Khronos AMD, References

390 An Overview of OpenCL C-DAC hyPACK-2013

Introduction to OpenCL

Standardization

Part-III(A)

391 An Overview of OpenCL C-DAC hyPACK-2013

To standardize general purpose

parallel programming for any

application

Suitable for Heterogeneous

systems – different

Mircoprocessor Architectures

(Ex : PCs - X86; PCs with

discrete or integrated GPUs,

Cell Phones, Embedded

Systems

OpenCL tries to Standardize Parallel Programming

Khronos OpenCL working group making aggressive progress

(www.khronos.org)
Source : NVIDIA, Khronos AMD, References

http://www.khronos.org/

392 An Overview of OpenCL C-DAC hyPACK-2013

What Does OpenCL Mean ? : Challenging Objectives :

Standardize framework and language for multiple
heterogeneous processors

Developed in collaboration with industry leaders

Software Developers

OpenCL enabled you to write parallel programs that will run
portably on many devices

Royalty free – with no cost to use the API

End-User Benefits

A wide range of innovative applications will be enabled and
accelerated by unleashing the parallel computing
capabilities of their systems and devices

OpenCL tries to Standardize Parallel Programming

Source : NVIDIA, Khronos AMD, References

393 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Processor Parallelism : Processor Parallelism

Source : NVIDIA, Khronos AMD, References

394 An Overview of OpenCL C-DAC hyPACK-2013

Why OpenCL

OpenCL tries to Standardize Parallel Programming

Source : Khronos, OpenCL Prog, Guide by Aaftab Munshi etc. &References

ICH

CPU GPU

GPU GMCH

DRAM

The future belongs to heterogeneous many-core platforms

Need Hybrid Programming on Heterogeneous Comp. Platforms

395 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

OpenCL Specification working group :

3DLabs, Activation Blizzard, AMD, Apples, ARM, Barco, Broadcom,
Codeplay, Electronic Arts, Ericsson, Freescale, Hi, IBM, Intel,
Imagine technologies, Motorla, Movid, Nokia, Nvidia, QNX,
RapidMind Samsung, Seaweed,Takuni, Texas Instruments,
University (Sweden), Microsoft

Source : NVIDIA, Khronos AMD, References

396 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL and the Khronos EcoSystem

Source : NVIDIA, Khronos AMD, References

397 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Why OpenCL

Co-existence of Accelerators

Intel Xeon (Phi) RC-FPGA, & GPGPUs

How our software should adapt to these platforms ?

Capacitance = 2.2 C

Voltage = 0.6V

Frequency = 0.5f

Power = 0.396 CV2f

Hybrid Programming on

Heterogeneous Comp.

Platforms

Heterogeneous Comp.

Platforms – Power &

Energy Efficiency

Source : NVIDIA, Khronos AMD, References

398 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Background & Challenging Objectives :

 OpenGL: Open Graphics Library

 Widely supported application programming interface
(API) for graphics ONLY

 OpenCL: "CL" Stands for Computing Language

 providing an API library

 Modifies C and C++ parallel programming

 New Initiatives for other programming
languages(Fortran)

Aim: to standardize general purpose parallel programming
 for any application Source : NVIDIA, Khronos AMD, References

399 An Overview of OpenCL C-DAC hyPACK-2013

 Diverse Industry Participation

• Processor vendors, System OEMS, Middleware

vendors, Application Developers

 Many Industry-leadingexpertsinvolvedinOpenCL’s

design

• A healthy diversity of industry perspectives

 Apple initially proposed the working group

• And served as specification editor

OpenCL Working Group : Challenging Objectives

The OpenCL Standard

Source : NVIDIA, Khronos AMD, References

400 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 Arrive at a common set of programming standards that are
acceptable to a range of competing needs and requirements

 The Khronos consortium – manages the OpenCL standard

• Developed an applications programming interface (API)
that is general enough to run on significantly different
architectures while being adaptable enough that each
hardware platforms can still obtain high performance.

• Using the core language and correctly following the
specification, any program designed for one-vendor can
execute on another’s hardware.

Source : NVIDIA, Khronos AMD, References

401 An Overview of OpenCL C-DAC hyPACK-2013

Challenging Objectives :

 Diverse Industry Participation

 Processor vendors, System OEMS, Middleware vendors,
Application Developers

 Many Industry-leading experts involved in OpenCL’s design

 A healthy diversity of industry perspectives

 Apple initially proposed the working group

 And served as specification editor

The OpenCL Standard

Source : NVIDIA, Khronos AMD, References

402 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 OpenCL C is a restricted version of the C99 language with
extension appropriate for executing data-parallel code on a
variety of heterogeneous devices.

 Aimed for full support for the IEEE 754 formats

 Programming language, well suited to the capabilities of
current heterogeneous platforms

Source : NVIDIA, Khronos AMD, References

403 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 The model set forth by OpenCL creates portable, vendor-
and device-independent programs that are capable of
being accelerated on many different platforms.

• The OpenCL API is C wit h a C++ Wrapper API that is
defined in terms of the C-API.

• There are third-party bindings for many languages,
including Java, Python, and .NET

• The code that executes on an OpenCL device, which in
general is not the same device as the host-CPU, is
written in the OpenCL C language.

Source : NVIDIA, Khronos AMD, References

404 An Overview of OpenCL C-DAC hyPACK-2013

 Threading in Model for data level parallelism OpenCL

 Closely resembles the models in AMD-ATI Stream, CUDA
& RapidMind

 OpenCL threading is largely implicit

 OpenCL allows programmers to manage threads more
explicitly if programmers wish

 Task-level parallelism

 Concurrently execute multiple kernels on multiple kernels
on multiple CPUs, GPUs or systems with mixed
architecture

OpenCL : Standardize Parallel Programming

Source : NVIDIA, Khronos AMD, References

405 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Use all computational resources in system

 Program GPUs, CPUs and other processors as peers

 Support both data- and task- parallel compute models

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience” functions

 Implementation on a range of embedded, desktop, and server systems

 HPC desktop, and handheld profiles in on specification

 Drive future hardware requirements

 Floating point precision requirements

 Application to both consumer and HPC applications

Source : NVIDIA, Khronos AMD, References

406 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

Source : Khronous, References

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience”
functions

407 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Implementation on a range of embedded, desktop, and server
systems

 HPC desktop, and handheld profiles in on specification

 Drive future hardware requirements

 Floating point precision requirements

 Application to both consumer and HPC applications

Source : NVIDIA, Khronos AMD, References

408 An Overview of OpenCL C-DAC hyPACK-2013

 Use all computational resources in system

 GPUs and CPUs as peers

 Data- and task- parallel compute model

 Efficient parallel programming model

 Based on C

 Abstract the specifics of underlying hardware

 Specify accuracy of floating-point computations

 IEEE 754 compliant rounding behaviour

 Define maximum allowable error of math functions

Design Goals of OpenCL

Source : NVIDIA, Khronos AMD, References

409 An Overview of OpenCL C-DAC hyPACK-2013

 Data-parallel execution model must be implemented by all OpenCL compute
devices

 Some computer devices such as CPUs can also execute task parallel
compute kernels

 Executes as a single work-item

 A compute kernel written in OpenCL

 A native C / C++ function

OpenCL Task Parallel Execution Model

Source : NVIDIA, Khronos AMD, References

410 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL – Models

Part-III(B)

411 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

412 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

413 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

414 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

415 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification – Models

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

Source : NVIDIA, Khronos AMD, References

416 An Overview of OpenCL C-DAC hyPACK-2013

• Platform Layer

 Query and select computer devices in the system

 Initialize a compute device(s)

 Create compute contexts and work-queues

• Runtime

 Resource management

 Execute compute kernels

• Compiler

 A subset of ISO C99 with appropriate language additions

 Compile and build compute program executable

 Online or offline

The OpenCL Specification – Models

 OpenCL Software Stack

Source : NVIDIA, Khronos AMD, References

417 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

• High Level description of the heterogeneous

system

 Execution Model

• An abstract representation of how stream of

instructions execute on the heterogeneous

system

The OpenCL Specification – Models

Source : NVIDIA, Khronos AMD, References

418 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Memory Models

• The Collection of memory regions within

OpenCL and how they interact during at

OpenCL computation

 Programming Model

• The high-level abstractions a programmer uses

when designing algorithms to implement an

application

The OpenCL Specification – Models

Source : NVIDIA, Khronos AMD, References

419 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

Source : NVIDIA, Khronos AMD, References

420 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification

Platform Model

(In brief)

Part-III(C)

421 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Specifies that there is one processor coordinating the execution
(the host) and one or more processors capable of executing
OpenCL C Code (the devices).

 It defines an abstract hardware model that is used by programmers
when writing OpenCL functions (Called Kernels) that execute on the
devices.

 The platform model defines the relation between the host an
device.

• i.e., OpenCL implementation executing on a host x86 GPU,
which is using a GPU device as an accelerator

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

422 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Platforms can be thought of a vendor – specific
implementations of the OpenCL API.

 The platform model also presents an abstract device
architecture that programmers target writing OpenCL C code.

 Vendors map this abstraction architecture to the physical
hardware.

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

423 An Overview of OpenCL C-DAC hyPACK-2013

Host-Device Interaction

 Platform Model

• Provides an abstract hardware model for devices

• Present an abstract device architecture that programmers target
when writing OpenCL C code.

• Vendor-specific implementation of the OpenCL API.

OpenCL PLATFROM AND DEVICES

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing elements

• OpenCL device schedule execution of instructions.

424 An Overview of OpenCL C-DAC hyPACK-2013

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

Host

The platform model defines an abstract architecture for devices.

• The host is connected to one or more devices

• Device is where the stream of instructions (or kernels) execute (an

OpenCL device is often referred to as a compute device

• A device can be a CPU, GPU, DSP, or any other processor

provided by Hardware and supported by the OpenCL Vendor

OpenCL Platform Model

OpenCL

Device Compute Unit

425 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Platform Model

 One Host + one or more compute Devices

 Each compute Device is connected to one or more

Compute Units.

• Each compute Unit is further divided into one or more

Processing Elements

Source : NVIDIA, Khronos AMD, References

426 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system ?

cl_int

ClGetPlatformIds(cl_unit num_entries,

 cl_platform_Id *platforms,

 cl_unit *num_platforms)

OpenCL PLATFROM Model

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing
elements

• OpenCL device schedule execution of instructions.
Source : NVIDIA, Khronos AMD, References

427 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system.

 Application calls ClGetPlatformIds() twice

• The first call passes an unsigned int pointer as the
num_platforms argument and NULL is passes as the
platform argument.

‾ The programmer can then allocate space to hold the
platform information.

• The second call, a cl_platform_id pointer is passed to
the implementation with enough space allocated for
num_entries platforms.

OpenCL PLATFORM Model

Source : NVIDIA, Khronos AMD, References

428 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The ClGetPlatformInfo()call determines implementation

The clGetDeviceIDs()call works very similar to
ClGetPlatformId()

How to use device_type argument ?

 GPUs : cl_DEVICE_TYPE_GPU

 CPUs : cl_DEVICE_TYPE_CPU

 All devices : cl_DEVICE_TYPE_ALL & other options

Cl_GetDeviceinfo() is called to retrieve information such as name,
type, and vendor from each device.

OpenCL PLATFROM AND DEVICES

Source : NVIDIA, Khronos AMD, References

429 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The clGetDeviceIDs()

cl_int

clGetDeviceIDs(cl_platform_id platform,

 cl_DEVICE_TYPE_GPU device_type,

 cl_unit num_entries,

 cl_device_id *devices,

 cl_uint *num_devices)

OpenCL PLATFROM Model

430 An Overview of OpenCL C-DAC hyPACK-2013

How to get printed information about the OpenCL, supported

platforms and devices in a system ?

CLinfo prorgam in the AMD APP SDK

•Uses clGetplatforminfo()and clGetDeviceInfo()

•Hardware details such as memory size and bas widths are

available using the commands

• $./CLinfo program gives complete information

OpenCL PLATFORM Model

431 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Number of platforms : 1

Platform Profiles : FULL_PROFILE

Platform Version : OpenCL 1.1 AMD SDK –v2.4

Platform Name : AMD Accelerated Parallel Processing

Platform Vendor : Advanced Micro Devices, Inc.

Number of Devices : 2

Device Type : CL_DEVICE_TYPE_GPU

Name : Cypress

Max Compute Units : 20

Address bits 32

$./CLinfo

432 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Max Memory Allocation: 268435456

Global Memory size : 1073741824

Constant buffer size : 65536

Local Memory type : Scratchpad

Local Memory size : 32768

Device endianess : little

Device Type : CL_DEVICE_TYPE_CPU

Max Compute units : 16

Name : AMD Phenom™ 11 X4 945
Processor

$./CLinfo

Source : NVIDIA, Khronos AMD, References

433 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification

Execution Model

(In brief)

Part-III(D)

434 An Overview of OpenCL C-DAC hyPACK-2013

 Execution model :

 Defines

• How the OpenCL environment is configured on the host

• How kernels are executed on device

 This includes

• Setting up an OpenCL context on the host,

• Providing mechanism for host-device interaction, &

• defining a concurrency model used for kernel execution on
device

• The host sets up a kernel for the GPU to run and instantiates
it with some special degree of parallelism.

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

435 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model

 Application consists of two distinct parts

 The host program

• Runs on the host

• OpenCL does not define the details of how the host

progrma works, only how it interacts with objects

defined in OpenCL

 A Collection of Kernels

• The Kernel execute on the OpenCL device

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

436 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Execution Model - Kernels

 A Collection of Kernels

• Execute on the OpenCL device

• Do the real work of an OpenCL application

• Simple functions transform input memory objects into

output memory objects

Execution Model - Kernels

 OpenCL defines two types of Kernels

• OpenCL Kernels & Native Kernels

The OpenCL Execution Model

437 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model : Defines how the kernels execute

 Several Steps Exist.

• FIRST : How an individual kernel runs on an

OpenCL device ?

• Second: How the host defines the context for

kenrel execution

• THIRD: How the kernels are enqueued for

execution

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

438 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model - Kernels

 OpenCL Kernels

• Written in OpenCL C programming language and

compiled with the OpenCL Compiler

• All OpenCL implementations must support OpenCL

Kernels

 Native Kernels

• Functions created outside of OpenCL and accessed

within OpenCL through a function pointer. (An

Optional functionality within in OpenCL exist)

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

439 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL Execution Environment defines the

following how the kernel execute

 Contexts

 Command Queues

 Events

 Memory Objects (Buffers -large array /images

• Buffers (allocate buffer & return memory object)

• Image (2D & 3D)

 Flush & Finish

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

440 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

How a Kernel Execute on an OpeCL Device

(In brief)

Part-III(E)

441 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Execution Model

Source : Khronous, & References

 OpenCL Program :

 Kernels

• Basic unit of executable – similar to a C function’

• Data-parallel or task parallel

 Host Program

• Collection of computer kernels and internal functions

• Analogous to a dynamic library

442 An Overview of OpenCL C-DAC hyPACK-2013

 Compute kernel

 Basic unit of executable code – similar to a C function

 Data-parallel or task-parallel

 Compute Program

 Collection of computer kernels and internal functions

 Analogous to a dynamic library

 Applications queue compute kernel execution instances

 Queued in-order

 Executed in-order or out-of-order

 Events are used to implement appropriate synchronization of execution
instances

OpenCL Execution Model

443 An Overview of OpenCL C-DAC hyPACK-2013

1. A kernel defined on the Host

2. Issues a command : The host program issues a

command that submits the kernel for execution on an OpenCL

device.

3. Creation of Integer index space : The OpenCL runtime

system creates an integer index space

4. Work-item : An instance of the Kernel executes for each

point in this index space and each such instance of an

executing a kernel a work-item

 Work-item is identified by its coordinates in the index space

& these coordinates are the global ID for the work-item.

The OpenCL Execution Model

 How a Kernel Execute on an OpeCL Device ?

444 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Approach :

 The unit of concurrent execution in OpenCL is a work-

item

 Map a single iteration of the loop to a work-item

 Tell the OpenCL runtime to generate as many work-

items as elements in the input and output arrays

 Allow the runtime to map those work-items to the

underlying hardware i.e. CPU or GPU Cores in

whatever way it views appropriate.

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

445 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL implements hierarchy concurrent model

 OpenCL describes execution in fine-grained work-items

and can dispatch vast number of work-items on

architecture with hardware support for fine-grained

threading

When a kernel is executed, the programmer specifies the

number of work-items

• Work-items have unique global IDs from the index

space

Work-items are organized into work-groups. Work-

groups have a unique work-group ID

Work-items have a unique local ID within a work-group

Kernel Execution on an OpenCL Device

446 An Overview of OpenCL C-DAC hyPACK-2013

Define N-Dimensional computation domain

Work-items should be created as an n-dimensional range

(NDRange)

Each independent element of execution in N-D domain is

called a work-item

The N-D domain defines the total number of work-items that

execute in parallel – global work size.

The host program involves a kernel over an index space

called an NDRange

• NDRange = “N-dimensional Range” & it can be a 1, 2 or

3-dimensional Range

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

447 An Overview of OpenCL C-DAC hyPACK-2013

 Work-items can be grouped together – work-group

Work-items in work-group can communicate with each

other

 Can synchronize executing among work-items in group to

coordinate memory access

 Execute multiple work-groups in parallel –

 Provide more coarse grained decomposition of index

space

 Mapping of global work-size to work-groups

 Implicit or explicit

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

448 An Overview of OpenCL C-DAC hyPACK-2013

work-item

Work-items are created as an NDRange and grouped in workgroups.

WG

<0,0>

WG

<1,0>
. . .

WG

<K,0>

WG

<0,1>

.

.

.

WG

<i,j>

WG

<0,L>

WG

<K,L>

WI

<0,0>

WI

<1,0>
. . .

WI

<M,0>

WI

<0,1>

.

.

.

WI

<0,N>

WI

<M,N>

NDRange Work-group(i, j)

An index space with N dimensions require work-groups to be

specified using the same N dimensions : thus, a three

dimensional index space requires three-dimensional work-groups.

Work-groups & Work-items

Scalability : Divide work-items of an NDRange into smaller, equally

sized workgroups.

Kernel Execution on an OpenCL Device

449 An Overview of OpenCL C-DAC hyPACK-2013

More about workgroups & work-items

An NDRange is a one-, two-, or three- dimensional index

space of work-items that will often map to the dimensions of

either the input or the output data.

The dimensions of the NDRange are specified as an N-

element array of type size_t where N represents the number

of dimensions used to described the work-items being

created.

Kernel Execution on an OpenCL Device

450 An Overview of OpenCL C-DAC hyPACK-2013

 Kernels are the part of an OpenCL program that actually execute

on a device. The OpenCL API

 Enables an application to create a context for management of

the execution of OpenCL commands, including those

• describing the movement of data between and OpenCL

memory structures and

• the execution of kernel code that process this data to

perform some meaningful task.

 The goal is often to represent parallelism programmability at the

finest granularity.

 The generalization of the OpenCL interface and the lowest level

kernel language allows efficient mapping to a wide range of

hardware

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

451 An Overview of OpenCL C-DAC hyPACK-2013

Work-groups & work-items

 Note that OpenCL requires that the index space sizes are

evenly divisible by the work-group sizes in each dimension.

 For hardware efficiency, the work-group size is usually fixed

to a favorable size

• To satisfy the divisibility requirement, round-up the index

space size in each dimension is required.

• Specify the extra work-items in each dimension in such way

that these extra items return immediately without outputting

any data

• Developercanpass“NULL”(implementationtakescare-off)

Kernels and the OpenCL Execution Model

452 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

Context

(In brief)

Part-III(F)

453 An Overview of OpenCL C-DAC hyPACK-2013

 Kernels are defined on the host and host the establishes

the context for the kernels.

 Hostdefinesthe“NDRange”

 Hostdefinesthe“queues “thatcontrolthedetails of how

and when the kernels execute

 (Important functions are defined in APIs within OpenCL’s

 definition.)

Task : Host Defines the Context for the OpenCL Application

 The context defines the environment within which the

kernels are defined and execute

OpenCL Execution Model : Contexts

454 An Overview of OpenCL C-DAC hyPACK-2013

 How to co-ordinate the mechanisms for host-device

interaction ?

 How to manages the memory objects that are available on

the device ?

 How to keep track of the programs and kernels that are

created for each device ?

 Support of APIs

 Before a host can request that a kernel be executed on a

device, a context must be configured on the host.

• Enables it to pass commands and data to the device

OpenCL Execution Model : Contexts

455 An Overview of OpenCL C-DAC hyPACK-2013

 The API function to create a context is clCreateContext()

 The context is an abstract container that exists on the host.

 A context

• Coordinates the mechanisms for host-device interaction,

• Manages the memory objects that are available to the

devices

• Keeps track of the programs and kernels that are created for

each device.

 The properties argument is used to restrict the scope of the

context

• Context may provide a specific platform ,enable graphics

interoperability, or enable other parameters in the future.

OpenCL Execution Model : Contexts

456 An Overview of OpenCL C-DAC hyPACK-2013

 A context

• The number and IDs of the devices that the

programmer wants to associate with the context must

be supplied.

Remark : In OpenCL, the process of discovering platforms

and devices and setting up a context is tedious. However,

after the code to perform these steps is written once, it can

be reused or almost any project.

OpenCL Execution Model : Contexts

457 An Overview of OpenCL C-DAC hyPACK-2013

 A context is defined in terms of the following resources :

• Devices : the collection of OpenCL devices to be used by

the host

• Kernels : the OpenCL functions that run on the OpenCL

device.

• Program Objects : the program source code and

executable that implement the kernels

• Memory Objects : : a set of objects in memory that are

visible to OpenCL devices and contain values that can be

operated on by instances of a kernel.

OpenCL Execution Model : Contexts

 How context includes OpenCL Devices and a program

object from which the kernels are pulled for execution ?

458 An Overview of OpenCL C-DAC hyPACK-2013

 The context is created and manipulated by host using the

functions from the OpenCL API

• On Heterogeneous platform, the host may choose the

GPU, other cores on the CPU, or combination of these.

• Once the choice made, the choice defines the OpenCL

devices within the current context

• Program Objects : One of more program objects that

contain the code for the kernels.

• Thesecanbethoughtasa“Dynamiclibraryfromwhich

the functions used by a kernel are pulled.

OpenCL Execution Model : Contexts

459 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 The program object is built at runtime within the host

program

• Which target platform will be standard to OpeCL

Specification ?

• How de we specify this information in host program ?

 Built the program object from the source at runtime.

• Compile the program source code to create the code for

kernel. (The host program defines devices within the

context)

OpenCL Execution Model : Contexts

460 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 More about Source Code :

 Regular String either statistically defined in the host

program

 Loaded from a file at runtime

 Dynamically generated inside the host program

OpenCL Execution Model : Contexts

 Context includes OpenCL Devices and a program object

from which the kernels are pulled for execution

461 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 More about Source Code :

 Regular String either statistically defined in the host

program

 Loaded from a file at runtime

 Dynamically generated inside the host program

OpenCL Execution Model : Contexts

 Context includes OpenCL Devices and a program object

from which the kernels are pulled for execution

462 An Overview of OpenCL C-DAC hyPACK-2013

clCreateContext(

 const cl_context_properties *properties,

 cl_unit num_devices,

 const cl_Device_id *devices,

 void (CL_CALLBACK *pfn_notify) (

 const char *errinfo,

 const void *private_info

 size_t cb,

 void *user_data)

 void *user_data,

 cl_int *errcode_ret}

OpenCL Execution Model : Contexts

463 An Overview of OpenCL C-DAC hyPACK-2013

 “Context”; How the OPenCL Kernels works with memory

?

 What is needed for Command queue ?

 Detailed memory model needs to be understand and How the

openCL memory works at higher level ?

 About Heterogeneous Systems :

• Multiple Address Spaces to manage

 OpenCL introduced the concept of Memory Object

• Explicitly defined on the host

• Explicitly moved between the host and the OpenCL

devices

OpenCL Execution Model : Context

464 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification also provides an API call tat alleviates the
need to build a list of devices.

• clCreateContextFromType() allows a programmer to

create a context that automatially includes all devices of the
specified type (e.g., CPUS, GPUs, and all devices)

• After a creating a context, the function
clGetContextinfo() can be used to query information

such as the number of devices present and device structures.

 In OpenCL, the process of discovering platforms and devices and
setting up a context is tedious. However, after the code to

perform these steps is written once, it can be reused or almost any
project.

OpenCL Execution Model : Contexts

465 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Context is the

OpenCL Devices

Program Objects

Kernels

Memory Object

that a kernel uses when it executes

OpenCL Execution Model : Context

Command-Queues :

How the host program issues commands to the

OpenCL devices ?

466 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Context is the heart of any OpenCL application

 Context provide a container for

associating devices,

Memory Objects (e.g., buffers and images),

command-queue (providing interface between the

context and an individual object)

 Context drives the communication with, and between, specific

drives and OpenCL defines it memory model in terms of these

OpenCL Execution Model : Context

467 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Example : A memory object is allocated with a context but

can be updated by a particular device, and OpenCL/memory

guarantees that all devices, within the same context, will see

these updates as well defined synchronizing points

 Context – update as the program progresses, allocating or

deleting memory objects and so on.

associating devices,

Memory Objects (e.g., buffers and images),

command-queue (providing interface between the

context and an individual object)

OpenCL Execution Model : Context

468 An Overview of OpenCL C-DAC hyPACK-2013

In general, an application’s OpenCL Usage look similar to

this Context

1. Query which platforms are present

2. Query the set of devices supported by each platform

a. Choose the select devices, using clGetDeviceInfo(),

on specific capabilities

3. Create contexts from a selection of devices (each context

must be created with devices from a single platform), then

with a context you can

OpenCL Execution Model : Context

469 An Overview of OpenCL C-DAC hyPACK-2013

In general, an application’s OpenCL Usage look similar to this Context

3. Create contexts from a selection of devices (each context must be

created with devices from a single platform), then with a context you can

a. Create one or more command-queues

b. Create programs to run on one or more associated

devices

c. Create a kernel from those programs

d. Allocate memory buffer and images either on the host or

on the device

e. Write or copy data to and from a particular device

f. Submit kernels (setting the appropriate arguments to a

command-queue for execution

OpenCL Execution Model : Context

470 An Overview of OpenCL C-DAC hyPACK-2013

Context

Platform 1

CPU GPU

Context

GPU

Platform 1 Platform 2

OpenCL Execution Model : Context

 Given a platform and a list of associated devices, an

OpenCL context is created with the command

ClCreateContext(), and with a

platform and device type

ClCreateContexFromType()

can be used,

OpenCL Platform,

Devices and Contexts

Source : NVIDIA, Khronos AMD, References

471 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

Command-Queues

(In brief)

Source : NVIDIA, Khronos AMD, References

Part-III(G)

472 An Overview of OpenCL C-DAC hyPACK-2013

What is command-queues ?

 The interaction between the host and the OpenCL

devices occurs through commands posted by a host to the

command-queue.

 These commands wait in the command-queue until they

execute on the OpenCL device

 Checkforsuccessfulcompletionof“definition of the

context” A command-queue is created by the host and

attached to a single OpenCL device after the context has

been defined.

OpenCL Execution Model : Command-Queues

473 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

 The host places commands into the command-queue, and

commands are then scheduled for execution on the

associated device. OpenCL supports three types of

commands :

 Kernel Execution commands : executes a kernel on the

processing elements of an OpenCL device

Memory commands : transfer data between the host and

different memory objects move data between memory

objects, or map and unmap memory objects from the host

address space.

 Synchronization commands : put constraints on the

order in which commands execute.

OpenCL Execution Model : Command-Queues

474 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

Mechanism that the host uses to request action by the

devices.

Communication with a device occurs by submitting

commands to a command-queue.

Each command-queue is associated with only one device

• Step 1 : Host decides which device to work with

• Step 2 : A context is created

• Step 3 : One command-queue needs to be created per

device

Whenever the host needs an action to be performance by

a device, it will submit commands to the proper command

queue.

OpenCL Execution Model : Command-Queues

475 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

 The API clCreateCommandQueue() is used to create a

command queue and associate it with a device.

 Cl_Command_queue

 clCreateCommandQueue(

 cl_context context,

 cl_device_id device,

 cl_command_queue_properties properties

 cl_int* errcode_ret)

 OpenCL uses default in-order command queue

 If out-of-order queues are used, it is up to the user to specify

dependencies that enforce a correct execution order.

OpenCL Execution Model : Command-Queues

476 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queue

 Any API that specifies host-device interaction will always

begin with clEnqueue and require a command queue as

a parameter.

 For ex :

• the ClEnqueueReadBuffer()command requests that

the device send data to the host and

• clEngueueNDRangeKernel() requests that a kernel is

executed on the device.

OpenCL Execution Model : Command-Queue

477 An Overview of OpenCL C-DAC hyPACK-2013

 Remarks : context & command-queue

 First Step - Context : The programmer defines the

context and the command-queues, defines memory and

the program objects

 The programmer builds any data structures needed on

the host to support the application

 Next Step - Command queue :

• Memory objects are moved from host onto the devices

• Kernel arguments are attached to memory objects

and then submitted the command-queue for execution

OpenCL Execution Model : Command-Queues

478 An Overview of OpenCL C-DAC hyPACK-2013

 Remarks : context & command-queue

 Next Step - Command queue :

• When the kernel has completed its work, memory

objects produced in the computation may be copied

back on the host.

Other Information : command-queue

 What is the order in which the commands execute ?

 How the commands execution relates to the execution of

the host program. ?

OpenCL Execution Model : Command-Queues

479 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

The commands always execute asynchronously to the host

program

The host program submits commands to the command-

queue and then continue without waiting for a commands to

finish

 If necessary, for the host to wait on a command, this can

be explicitly established with a synchronization

Commands within a single queue execute relative to each

other in one of the two modes :

 In-order execution & Out-or-order execution

OpenCL Execution Model : Command-Queue

480 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

 Errors : Multiple executions occurring in-side an application

may lead to potential disaster i.e. abnormal exist with error

messages

• Data may be accidently used before it has been written

or kernels may be execute in an order that leads to

wrong answers.

 The programmer needs some way to manager any

constraints on the commands.

 Synchronization commands can be used to tell set of

kernels to wait until an earlier set finishes.

OpenCL Execution Model : Command-Queues

481 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

 To support custom synchronization protocols, commands

submitted the command-queue generate event objects.

 A command can be told to wait until certain conditions on

the event object exists.

 It is possible to associate multiple queues with a single

queues with a single context for any of the OpenCL

devices within that context,

• These two queues rub concurrently and independently

with no explicit mechanism within OpenCL to

synchronize between them.

OpenCL Execution Model : Command-Queue

Source : NVIDIA, Khronos AMD, References

482 An Overview of OpenCL C-DAC hyPACK-2013

What is an event ?

 Any operation that enqueues a command into a command queue

– that is any API call the begins with clEnqueue – produces an

event. Events have two main roles to OpenCL

1. Representing dependencies

2. Providing a mechanism for profiling

 API Calls the begin with clEnqueue also take a “wait list” of

events as a parameter.

 By generating an event for one API call and passing it as an argument
to a successive call, OpenCL allows us to represent dependencies.

 A ClEnqueue call will block until all events in its wait list have

completed.

OpenCL PLATFORM AND DEVICES: Events

483 An Overview of OpenCL C-DAC hyPACK-2013

 The Execution Environment

 Contexts

 Command Queues

 Events

 Memory Objects (Buffers -large array /images

• Buffers (allocate buffer & return memory object)

• Image (2D & 3D)

 Flush & Finish

OpenCL : Specification : Heterogeneous Prog.

484 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :

Memory Model

Part-III(H)

485 An Overview of OpenCL C-DAC hyPACK-2013

Memory model :

 Defines the abstract memory hierarchy that kernels use,
regardless of the actual underlying memory architecture

 The memory model closely resembles current GPU memory

hierarchies. Other accelerators has no limited adoptability.

 To support code portability, OpenCL’s approach is to define an
abstract memory model that programmers can target when
writing code and vendors can map to their actual memory
hardware

 The memory spaces (global memory, constant memory, local
memory, private memory) defined by OpenCL are used and are
relevant within OpenCL programs.

 The memory spaces of OpenCL closley model those of modern
GPUs

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

486 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Memory Model defines five distinct memory-
regions

 Host memory

 Global memory

 Constant Memory

 Local Memory

 Private Memory

OpenCL : Specification : Heterogeneous Prog.

 OpenCL Writing kernels

 Kernels begin with the keyword _kernel and must have a
return type of void.

Source : NVIDIA, Khronos AMD, References

487 An Overview of OpenCL C-DAC hyPACK-2013

 The Execution model tells

 How the kernel executes ?

 How they interact with other kernels ?

OpenCL : Specification : Execution Model

 Used “Memory Objects” for an associated command-

queue

 How safe these memory objects can be used ?

 OpenCL defines two types of memory objects

 Buffer Object

 Image Object

 OpenCL – specify sub regions of memory objects as

distinct memory objects

488 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Memory Model defines five distinct memory-
regions

 Host memory

 Global memory

 Constant Memory

 Local Memory

 Private Memory

OpenCL : Specification : Heterogeneous Prog.

 OpenCL Writing kernels

 Kernels begin with the keyword _kernel and must

have a return type of void.

489 An Overview of OpenCL C-DAC hyPACK-2013

 Host Memory

A summary of memory model to OpenCL

Compute unit 1

Private

memory 1

Private

memory M

PE 1 PE M

. . .

Local

memory 1

Compute unit N

Private

memory 1

Private

memory M

PE 1 PE M

. . .

Local

memory N

Global/Constant memory data cache

OpenCL Device

Global /constant memory

OpenCL Device Memory

 ...

Host

490 An Overview of OpenCL C-DAC hyPACK-2013

 Implements a relaxed consistency,
shared memory model

Multiple distinct address spaces

 Address spaces can be collapsed
depending on the device’s memory
subsystem

 Address qualifiers

 _private

 _local

 _constant and_global

 Example:

• _global float4 *p;

OpenCL Memory Model

Source : Khronos, References

491 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL’S approach is to define an abstract memory model

 Programmers can target when writing code
 Vendors can map to their actual memory hardware
 The memory spaces defined by OpenCL :

• Global Memory
• Constant Memory
• Local Memory
• Private Memory

 The key words associated with each space can be used to
specify where a variable should be created or where the data
that it points to resides.

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

Source : NVIDIA, Khronos AMD, References

492 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Global Memory :

 Visible to all compute units on the device.
 Whenever the data is transferred from the host to device, the

data will resides in global memory.
 And data transfer from the device to host must also reside in

global memory :

• The key-word __global is added to a pointer
declaration to specify that data retrenched by the pointer,
resides in global memory,

493 An Overview of OpenCL C-DAC hyPACK-2013

The abstract memory model defined by OpenCL.

Kernel-wide

scope

Workgroup

scope

Work-item

scope

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Private Private Private

Work-

item

Workgroup

Work-

item

Work-

item

Kernel

Global memory
Constant memory

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

• Global Memory
• Constant Memory
• Local Memory
• Private Memory

Usually, the memory
spaces of openCL
closely model those
of modern GPUs.

Source : NVIDIA, Khronos AMD, References

494 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Constant Memory :

 Not specifically designed for every type of read-only data but,

rather, for data where each element is accessed
simultaneously by all work-items.

 Variables whose values never change also fall in the category.
 Constant memory is modeled as apart of global memory, so

memory objects that are transferred to global memory can be
specified as constant.
• Data is mapped to constant memory by using the key-

word __constant.

Source : NVIDIA, Khronos AMD, References

495 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Local Memory :
 Scratchpad memory whose address space is unique to each

compute device :
 Local memory is modeled as being shared by a workgroup.
 Variables whose values never change also fall in the category.

• Calling clSetKernelArg() with a size, but no
argument allows local memory to be allocated at runtime, where a
kernel parameter is defined as a __local pointer.

• Data is mapped to constant memory by using the key-word
__constant.

Arrays can also be declared statically in local memory by
appending the keyword _local, although this require
specifying that array size at compile time.

496 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Private Memory :

Memory unique to an individual work-item.

 Local variables and non-pointer kernel arguments are private by
default.

• These variable are mapped to registers.

Source : NVIDIA, Khronos AMD, References

497 An Overview of OpenCL C-DAC hyPACK-2013

AMD RadeonTM HD6970

Global memory
Constant memory

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private Private

Work-

item

Workgroup

Kernel

Global memory
Constant memory

Local

Memory

Work-

item

Private

Work-

item

Private

SIMD core 23

Local

Memory

Work-

item

Private

Work-

item

Private

SIMD core 1

Local Memory

SIMD core 0

Register file (256KB)

Mapping from the memory model defined by OpenCL to the architecture of an AMD Radeon 6970
GPU. Simple private memory will be stored in registers; complex addressing or excessive use will
be stored in DRAM.

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

498 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : Writing Kernels

 OpenCL C kernels are similar to C functions and will be executed
once for every work-item that is created. :

 Buffers can be declared in global memory (_global) or

constant memory (_constant) memory.
 Images are assigned to global memory. Access qualifiers

(_read_only, _write_only, and _read_write) can
also be optimally specified

 The __local qualifier is used to declare memory that is
shared between all work-items in a workgroup.

 Declare local memory allocations can be done differently
using kernel-scope level..

499 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : Writing Kernels

 OpenCL devices, particularly GPUs, performance vary increase by
using local memory to cache data that will be used multiple times
by a work-item or by multiple work-items in the same
workgroup.

When developing a kernel, we can achieve this with an explicit

assignment from a global memory pointer to a local memory
pointer.

 Once work-item completes its execution, none of its state
information or local memory storage is persistent.

 Any results that need to be kept must be transferred to global
memory.

500 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :

Memory Objects

Source : NVIDIA, Khronos AMD, References

Part-III(I)

501 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects

 OpenCL applications often work with large arrays on multi-
dimensional matrices. This data needs to be physically present on a
device before execution can begin

1. First Step : Data must be encapsulated as a memory object

2. Second Step : transfer the data to a device

 OpenCL define two types of memory objects

 clEnqueue also take a “wait list” of events as a parameter.

1. Buffers : equivalent to arrays in C, created using malloc(), where
data elements are stored contiguously in memory.

2. Images : Designed as opaque objects, allowing data for padding
and other optimizations that may improve performance on
devices.

OpenCL PLATFORM AND DEVICES: Memory Objects

502 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects :

 Memory object is valid only within a simple context, after creation of
memory object.

1. To satisfy, the data Dependencies, OpenCL runtime manages
movement to and from specific devices.

 Memory Objects : Buffers

 Buffers may help to visualize a memory object as a pointer that is
valid on a device. (similar to call to malloc, in C or C++’s a new
pointer

 The function clCreateBuffer() allocates the buffer and

returns a memory object

OpenCL PLATFORM AND DEVICES: Memory Objects

503 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Buffers

 Buffers may help to visualize a memory object as a pointer that is
valid on a device. (similar to call to malloc, in C or C++’s a new
pointer

 The function clCreateBuffer() allocates the buffer and

returns a memory object

 Creating a buffer requires supplying the size of the buffer and a
context in which the buffer will be allocated

 Buffer is visible for all devices associated with the context.

 Supply flags : Optionally, the caller can supply flags that specify that
the data is read-only, write-only or read-write.

OpenCL PLATFORM AND DEVICES: Memory Objects

504 An Overview of OpenCL C-DAC hyPACK-2013

Cl_memclCreateBuffer(

cl_context context,

cl_mem_flags flags,

Size_t size,

void *host_ptr,

cl_int *errcode_ret)

 Memory Objects : Buffers

 Supply flags : Creating and initializing a buffer with other flags (simple
option is to supply a host pointer with data used to initialize the
buffer)

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Buffers

505 An Overview of OpenCL C-DAC hyPACK-2013

 Run-time determines the precise time the data is moved.

• The buffer is linked to a context, not a device

• If a kernel that is dependent on such a buffer is executed
on a discrete accelerator device such as a GPU, the buffer
may be transferred to the device.

 Memory Objects : Buffers

 Data contained in host-memory is transferred to and from an
OpenCL buffer using the command

• ClEnqueueWriteBuffer() and

• ClEnqueueReadBuffer()

OpenCL PLATFORM AND DEVICES: Memory Objects

506 An Overview of OpenCL C-DAC hyPACK-2013

Cl_int

clEnqueueWriteBuffer(

cl_command_queue command_queue,

cl_mem buffer,

Cl_bool blocking_write,

size_t offset,

Size_t cb

const void *ptr,

cl_unit num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Buffers

507 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Buffers

 Similar to other enqueue operations, reading or writing a buffer

requires a command queue to manage the execution schedule.

 The enqueue function requires the buffer, the number of bytes to
transfer, and an offset within the buffer.

 The block_write option should be set to CL_TRUE if the

transfer into an openCL buffer until the operation has completed.

 Setting the block_write option to CL_FALSE allows

clEnqueue-WriteBuffer to return before the write to
CL_FALSE allows clEnqueueWriteBuffer() to return before

the write operation has completed.

OpenCL PLATFORM AND DEVICES: Memory Objects

508 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Images are type of OpenCL memory object that abstract the storage of
physical data to allow for devices-specific optimization

 Use clGetDeviceInfo() to check the support of all OpenCL

Devices.

 Purpose of using Images : to allow the hardware to take advantage of
spatial locality and to utilize the hardware acceleration available on
many devices.

 Unlike buffers, images cannot be directly referenced as if they were
arrays.

OpenCL PLATFORM AND DEVICES: Memory Objects

Source : NVIDIA, Khronos AMD, References

509 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Images are type of OpenCL memory object that abstract the Images are
an example of the OpenCL standard being dependent on the underlying
hardware of a particular device.

 The elements of an image are represented by a format descriptor
(cl_image_format).

 The format descriptor specifies how the image elements are stored in
memory based on the concepts of channels

• The channels order specifies the number of elements that make up
an image element (up to four elements, based on the traditional use
of RGBA pixels), and the channel type specifies the size of each
element.

• These elements can be sized from 1 to 4 bytes and in various
different formats (e.g., integer or floating point)

OpenCL PLATFORM AND DEVICES: Memory Objects

510 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Creating an OpenCL image is done using the command
(clCreateImage2D() or clCreateImage3D()

 Additional arguments are required when creating an image object
versus those specified for creating a buffer.

• First, the height and the width of the image must be given (and a
depth for the three-dimensional case)

• Image pitch (number of bytes between the start of one image and the
start of the next.) may be specified if initialization data is provided.

 Additional parameters are required when reading or writing an image.

Within a kernel, images are accessed with built-in functions specific to
data type.

OpenCL PLATFORM AND DEVICES: Memory Objects

511 An Overview of OpenCL C-DAC hyPACK-2013

Cl_mem

clCreateImage2D(

cl_context context,

cl_mem_flags flags,

const cl_image_format *image_format

size_t image_width,

Size_t image_height,

const image_row_pitch,

void *host_ptr

cl_int *errcode_ret,

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Images

512 An Overview of OpenCL C-DAC hyPACK-2013

 Creating an OpenCL Program Object

 Process of creating a kernel (Character string, Character
array, Program object

 Intermediate OpenCL –ICD; NVIDIA –PTX, AMD-IL

 Final and Intermediate representations

OpenCL : Specification : Heterogeneous Prog.

513 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Kernel

 Get kernel object

 Execute kernels on a device

 Extract a kernel from a program

• To request from the compiled program object

OpenCL : Specification : Heterogeneous Prog.

Source : NVIDIA, Khronos AMD, References

514 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :

Details on…. on Programming Model

Part-III(J)

515 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification

Source : Khronous, & References

 The OpenCL specification is defined in four parts, called
models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

516 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 Defines how the concurrency model is mapped to physical hardware.
The hardware thread contexts that execute the kernel must be
created and mapped to actual GPU hardware units.

 OpenCL C code (Written to run on an OpenCL device) called a
program. A program is a collection of functions called kernels, where
kernels are units of execution that can be scheduled to run on a
device

 OpenCL software links only to a common runtime layer (called the
ICD); & uses dynamic library interface at runtime

 Compiled at runtime through a series of API calls (The source code is
turned into a program object (OpenCL program object) & then
compiled to the generate the OpenCL Kernel object that can be used
to execute kernels on a device.

The OpenCL Specification

517 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 The data within the kernel is allocated by the programmer to
specific parts of an abstract memory hierarchy.

 The runtime and driver will map these abstract memory space to
the physical memory.

 The hardware threads contexts that execute the kernel must be
created and mapped to actual GPU hardware units

 Executing a kernel requires dispatching it through an enqueue
function.

The OpenCL Specification

518 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 The process of creating kernel involves three steps.

• Step 1 : The OpenCL source code is stored in a character string. If the
source code is stored in a file on a disk, it must be read into the
memory and stored as a character array.

• Step 2 : The source code is turned into a object, cl_program, by
calling clCreateProgramWithSource().

• Step 3 : The program object is then compiled, for one or more
OpenCL devices, with clBuildPorgram(), If there are compile
errors, they will be reported here.

 OpenCL provides APIs which takes a list of binaries that matches the
device list.

The OpenCL Specification

519 An Overview of OpenCL C-DAC hyPACK-2013

Important Steps in OpenCL Implementation

Source : NVIDIA, Khronos AMD, References

520 An Overview of OpenCL C-DAC hyPACK-2013

Query platform

Query devices

Command queue

Create buffers

Compile program

Compile kernel

Set arguments

Executive kernel

C
o
m

p
ile

r

P
la

tf
o

rm
 l
a
y
e

r
R

u
n

ti
m

e
 l
a
y
e

r

Figure 4.2 Programming steps to writing a complete OpenCL applications

OpenCL Implementation Steps

521 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the platforms

Step 2 : Discover and initialize the devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

Step 7 : Create and compile the program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items structure

Step 11 : Enqueue the kernel for execution

Step 12 : Read the output buffer back to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

522 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the

platforms

Step 2 : Discover and initialize the

devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

523 An Overview of OpenCL C-DAC hyPACK-2013

Step 7 : Create and compile the

program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items

structure

Step 11 : Enqueue the kernel for

execution

Step 12 : Read the output buffer back

to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

524 An Overview of OpenCL C-DAC hyPACK-2013

• Create an OpenCL context on the first available device

• Create a command –queue on the first available device

• Load a kernel file (hello-world.cl) and build it into a

program object

• Create a kernel object for the kernel function

hello_world()

• Query the kernel for execution

• Read the results of the kernel back into the result

buffer

 OpenCL Important Steps – Implementation

525 An Overview of OpenCL C-DAC hyPACK-2013

_kernel void hello_kernel(_global *, *,)

{

 int gid = get_global_id(0);

 ………

 }

int main (int argc, char** argv)

{

// Create an OpencL context on first available platform

// Create an command-queue on the first device

// available on the created context

 OpenCL Important Steps – Implementation

526 An Overview of OpenCL C-DAC hyPACK-2013

// Create OpenCL kernel

// Create memory objects that will be used as

// arguments to kernel.

// First create Host memory arrays that will be used to

// store the arguments to the kernel

// Set the kernel arguments

//Queue the kernel up for execution across the array

//Read the output buffer back to the Host

//Output the result buffer

 OpenCL Important Steps – Implementation

527 An Overview of OpenCL C-DAC hyPACK-2013

 The flush and finish commands are two different types of barrier
operations for a command queue.

 The clFinish() function blocks until all of the commands in a

command queue have completed.

 The clFlush() function blocks until all of the commands in a

command queue have been removed from the queue.

cl_int clFlush(cl_command_queue command_queue)

cl_int clFinish(cl_command_queue command_queue)

OpenCL PLATFORM AND DEVICES: Flush & Finish

528 An Overview of OpenCL C-DAC hyPACK-2013

 What is an OpenCL C Code ?

 OpenCL C Code (Written to run on an OpenCL device) is called a
program.

 A program is a collection of functions called kernels, where kernels are
units of execution that can be scheduled to run a device.

 There is no need for an OpenCL application to have been prebuilt
against the AMD, NVIDIA, or Intel runtime.

 OpenCL software links to a command runtime layer (called the ICD); all
platform-specific SDK activity is delegated to a vendor runtime through
a dynamic library interface.

• ICD: Installable Client Driver for OpenCL

Creating an OpenCL Program Object

OpenCL : The Execution Environment

529 An Overview of OpenCL C-DAC hyPACK-2013

 What is an OpenCLTM ICD ?

 The OpenCL ICD (Installable Client Driver) is a means of allowing
multiple OpenCL implementations to co-exist and applications to select
between them at runtime.

 User application is responsible for selecting which of the OpenCL
platforms present on a system it wishes to use, instead of just requesting
system default.

 Using

 clGetPlatfromIDs() & ClGetPlatfromInfo()

functions to examine the list of available OpenCL implementations and
selecting the one which best suites user requirements.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

530 An Overview of OpenCL C-DAC hyPACK-2013

 About OpenCLTM ICD - Vendor Platform

 At this point, OpenCL Studio selects either the NVIDIA or AMD
platform.

 There is no support for multiple platforms yet, but that will likely be
another abstraction to manage multiple platforms and devices.

 The AMD driver lets you choose between the CPU and the GPU

 NVIDIA however only supports the “CUDA enabled NVIDIA GPU”

Creating an OpenCL Program Object

OpenCL : The Execution Environment

531 An Overview of OpenCL C-DAC hyPACK-2013

 About OpenCLTM ICD - Vendor Platform

 At this point, OpenCL Studio selects either the NVIDIA or AMD
platform.

 There is no support for multiple platforms yet, but that will likely be
another abstraction to manage multiple platforms and devices

 The AMD driver lets you choose between the CPU and the GPU

 NVIDIA however only supports the “CUDA enabled NVIDIA GPU”

Creating an OpenCL Program Object

OpenCL : The Execution Environment

Source : NVIDIA, Khronos AMD, References

532 An Overview of OpenCL C-DAC hyPACK-2013

 How to create OpenCL Kernel ?

What is the process of creating a kernel ?

1. The OpenCL C source code is stored in a character string. If the source
code is stored in a file on a disk, it must be read into memory and
stored as a character array.

2. The source code is turned into a program object cl_program, by

calling clCreateProgramWithSource().

3. The program object is then compiled, for one or more OpenCL
devices, with clBuildProgram(), If there are compile errors,

they will be reported here.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

533 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 AMD: In the AMD runtime, there are two main classes of devices : x86
CPUs and GPUs

• X86 CPUs clBuildProgram() generates x86 instructions that

can be directly executed on the device.

• For the GPUs, it will create AMD’s GPU intermediate language (IL), a
high-level intermediate language that represents a single work-

item & compiled for a specific GPU’s architecture later.

(Generating ISA -code specific instruction set architecture)

 The advantage of using such an IL is to allow the GPU ISA itself to
change from one device or generation to another in what is still a very
rapidly developing architectural space

Creating an OpenCL Program Object

OpenCL : The Execution Environment

534 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 Additional Feature : Build process is the ability to generate both the
final binary format and various intermediate representations

 Serialize these binaries (Write them to out to disk)

 OpenCL provides a function to return information about program
objects, clGetPrograminfo()

• Flags to this function : cl_PROGRAM_BINARIES, which

returns a vendor-specific set of binary objects generated by

clBuildProgram()

 OpenCL provides clCreateProgramWithBinary(), which

takes a list of binaries that matches its device list.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

535 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 NVIDIA: calling its intermediate representation PTX (PTX is an
intermediate assembly language for NVIDIA GPUs) NVCC is the
NVIDIA compiler driver

 PTX: a low-level parallel thread execution virtual machine and
instruction set architecture (ISA). PTX exposes the GPU as a data-
parallel computing device.

 PTX defines a virtual machine and ISA for general purpose
parallel thread execution. . (ISA - code specific instruction set
architecture)

Binary Representation on GPUs

OpenCL : The Execution Environment

536 An Overview of OpenCL C-DAC hyPACK-2013

• PTX programs are translated at install time to the target
hardware instruction set.

• PTX-to-GPU translator and driver enable NVIDIA GPUs to be

used as programmable parallel computers.

• Provide a stable ISA that spans multiple GPU generations.

• Achieve performance in compiled applications comparable to

native GPU performance.

 Is “Binary Representation “ very vendor specific ?

NVIDIA :

Binary Representation on GPUs

OpenCL : The Execution Environment

537 An Overview of OpenCL C-DAC hyPACK-2013

 Extract kernel from the cl_program
 Similar to obtaining an exported function from a dynamic Lib.

• The name of the kernel that the program exports is used to
request it from the compiled program object.

• The name of the kernel is passed to clCreateKernel(),

along with the program object, and the kernel object will be
returned if the program object was valid and the particular
kernel is found.

 A few more steps are required before the kernel can actually be
executed.

 How to obtain “cl_kernel” object that can be used to
execute kernels on a device ?

The OpenCL Kernel

OpenCL : The Execution Environment

538 An Overview of OpenCL C-DAC hyPACK-2013

 Executing a kernel requires dispatching it through an enqueue
function

 Specify each kernel argument individually using the function

clSetKernelArg()

• This function takes kernel object, an index specifying the
argument number, the size of the argument, and a pointer to
the argument..

What are the steps required before the kernel can actually be
executed ?

The OpenCL Kernel

OpenCL : The Execution Environment

539 An Overview of OpenCL C-DAC hyPACK-2013

 When a kernel is executed, this information is used to transfer
arguments to the device

 After any required memory objects are transferred to the device
and the kernel arguments are set, the kernel is ready to be
executed.

 Requesting that a device begin executing a kernel is done with a
call to clEngueueNDRangeKernel()

What are the steps required before the kernel can actually be
executed ?

The OpenCL Kernel

OpenCL : The Execution Environment

540 An Overview of OpenCL C-DAC hyPACK-2013

cl_int

clEngueueNDRangeKernel(

cl_command_queue command_queue

cl_kernel kernel,

cl_uint work_dim

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_unit num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

OpenCL : The Execution Environment

541 An Overview of OpenCL C-DAC hyPACK-2013

 A command queue should be specified so that the target device is
known

 The clEngueueNDRangeKernel() call is asynchronous

• It will return immediately after the command is enqueued in
the command queue and likely before the kernel has even
started exeuction.

• Either clWaitForEvent() or clFinfish() can be
used to block execution on the host until the kernel completes.

The OpenCL Kernel : clEngueueNDRangeKernel()

OpenCL : The Execution Environment

542 An Overview of OpenCL C-DAC hyPACK-2013

 At this point, we have presented all the required host API
commands needed to enable the reader to run a complete
OpenCL Program

The OpenCL Kernel : clEngueueNDRangeKernel()

OpenCL : The Execution Environment

543 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Example Programs

Part-III(K)

Example Program -1

544 An Overview of OpenCL C-DAC hyPACK-2013

Addition of two vectors : How to define workgroups & work-items

 work-items within a workgroup can perform “barrier synchronization”

 work-items within a workgroup can access to a shared memory address space.
(Does not affect the scalability of a large concurrent dispatch)

 Example Program : Addition of two vectors of size 1024

• The workgroup size might be specified as

 size_t workGroupSize(3) = (64,1,1);

- Total number of work-items for array : 1024

- Total number of workgroups : 1024/64 = 64 workgroups

Kernels and the OpenCL Execution Model

545 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Example Program : Addition of two vectors (Sequential)

 Algorithm executes a loop with as many iterations as there are
elements to compute.

 Each loop iterations adds the corresponding locations in the input
arrays together and stores the result into the output array.

Kernels and the OpenCL Execution Model

//Perform element-wise addition of A & B and

//Stores in C – There are N elements per array

void vecadd(int *C, int *A, int *B, int N)

{

 for(int =0; i < n; i++)

 {

 C[i] = A[i] + B[i];

 }

}

546 An Overview of OpenCL C-DAC hyPACK-2013

 Example Program : Addition of two vectors (Multi-Core Device)

 Use low level coarse-grained threading API (POSIX threads) (One
can use Data Parallel model such as OpenMP).

• Divide the work (i.e., loop iterations) between the threads

• Work per iteration is (loop counter) may be small or large.
Use Strip mining to chunk the loop iterations into a large
granularity.

Kernels and the OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

547 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Example Program : Addition of two vectors (Multi-Core Device)

Kernels and the OpenCL Execution Model

//Perform element-wise addition of A & B and

//Stores in C – There are N elements per array

//and NP CPU Cores

void vecadd(int *C, int *A, int *B, int N,int NP,int tid)

{

 int Elept = N/NP; // elements per thread

 for(int = tid*Elept; i < (tid+1)*Elept; i++)

 {

 C[i] = A[i] + B[i];

 }

}

548 An Overview of OpenCL C-DAC hyPACK-2013

 When an OpenCL device begins executing a kernel, it provides intrinsic
function that allow a work-item to identify itself

• Current work-item position is given by OpenCL Intrinsic function
get_global_id(0)

Kernels and the OpenCL Execution Model

Example Program : Addition of two vectors (OpenCL)

// Perform element-wise addition of A & B & Stores in C

// N work items will be created to execute this kernel.

__kernel

void vecadd(_global int *C,

 _global int *A,

 _global int *B)

{

 int tid = get_global_id(0);

 C[tid] = A[tid] + B[tid];

}

Source : NVIDIA, Khronos AMD, References

549 An Overview of OpenCL C-DAC hyPACK-2013

Example Program -2

550 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 Simple Matrix Multiplication Example:

OpenCL host programs can be written in either C or using the

OpenCL, C++ Wrapper API.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A

by Matrix B and storing the result in Matrix C.
• The two outer loops are used to iterative over each element of the

output matrix
• The innermost loop will iterate over the individual elements of the

input elements of the input matrices to calculate the result of each
output location.

551 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 Simple Matrix Multiplication Example:

OpenCL host programs can be written in either C or using the

OpenCL, C++ Wrapper API.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A

by Matrix B and storing the result in Matrix C.
• The two outer loops are used to iterative over each element of the

output matrix
• The innermost loop will iterate over the individual elements of the

input elements of the input matrices to calculate the result of each
output location.

552 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Serial Implementation

// Iteration over the rows of Matrix A

for (int i = 0; i< heightA; i++)

{

 // Iteration over the columns of MatrixB

 for (int j = 0; j< widthB; j++) {

 C[i][j] = 0;

 // Multiply and accumulate over values in the current row

 // of A and column of B

 for (int k = 0; k< widthA; k++) {

 C[i][j] += A[i][k] * B[k][j];

 }

 }

}

553 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 OpenCL Simple Implementation : Matrix Multiplication

 Two outer loops work independently of each other

 Separate work-item can be created for each output element of
the matrix

 The two outer for-loops are mapped to the two dimensional
range of work-item for the kernel.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A
by Matrix B and storing the result in Matrix C.

• The two outer loops are used to iterative over each element of the
output matrix

• The innermost loop will iterate over the individual elements of the
input elements of the input matrices to calculate the result of each
output location.

554 An Overview of OpenCL C-DAC hyPACK-2013

Each output value in a matrix multiplication is
generated independently of all others.

wb

Hb

Ha

Wa Wb

Ha

A C

B

row

OpenCL : to write data-parallel programs

 Each work-item reads in
its own row of Matrix A
and its column of Matrix
B.

 The data being read is
multiplied and written at
the appropriate location
of the output Matrix C

OpenCL Simple Implementation : Matrix Multiplication

555 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Data Parallel Kernel Implementation

// Iteration over the rows of Matrix A

for (int i = 0; i< heightA; i++)

{

 // Iteration over the columns of MatrixB

 for (int j = 0; j< widthB; j++) {

 C[i][j] = 0;

 // Multiply and accumulate over values in the current row

 // of A and column of B

 for (int k = 0; k< widthA; k++) {

 C[i][j] += A[i][k] * B[k][j];

 }

 }

}

556 An Overview of OpenCL C-DAC hyPACK-2013

Work-group

(0,W/16-1)

Work-group

(0,0)

Work-group

(0, 1)

Work-group

(1,0)

Work-group

(W/16-1,0)

16

W

H

16

Input image workgroup configuration

W

16
Workgroups

H

16
Workgroups

Each element of the input image is handled by one work-item. Each work-item
calculates its data’s coordinates and writes image out.

OpenCL : Work-items & work-Groups

557 An Overview of OpenCL C-DAC hyPACK-2013

Step 1: Set Up Environment
In this step, we declare a context, choose a device type, and create the context
and a command queue. Throughout this example, the ci ErrNum variable
should always be checked to see if an error code is returned by the
implementation.

cl_int ciErrNum;

//Use the first platform

cl_platform_i d platform;

ci ErrNum = clGet PIatformlDs (1, &platform, NULL);

//Use the first device

cl_device_id device;

ciErrNum = clGetDevice IDs(

 piatform,

 CL_DEVICE_TYPE_ALL,

 1,

 &device,

 NULL);

 Simple Matrix Multiplication Example

Source : NVIDIA, Khronos AMD, References

558 An Overview of OpenCL C-DAC hyPACK-2013

context_properties cps[3]={;

 CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0};

//Create the context

cl_context ctx = clCreateContext(

 cps,

 1,

 &device,

 NULL,

 NULL,

 &ciErrNum);

//Create the command queue

cl_command_queue myqueue = clCreateCommandQueue{

 ctx,

 device,

 0,

 &ciErrNum0;

 Simple Matrix Multiplication Example

Source : NVIDIA, Khronos AMD, References

559 An Overview of OpenCL C-DAC hyPACK-2013

Step 2: Declare Buffers and Move Data
Declare buffers on the device and enqueue copies of input matrices to the
device. Also declare the output buffer.

 // We assume that A, B, C are float arrays which

 // have been declared and initialized

 // Allocate space for Matrix A on the device

 cl_mem buf ferA = cl CreateBuf fer(

 ctx,

 CL_MEM_READ_ONLY,

 wA*hA*si zeof(float),

 NULL,

 &ci ErrNum);

// Copy Matrix A to the device

 ci ErrNum = clEnqueueWriteBuffe-(

 myqueue,

 bufferA,

 CL_TRUE, 0,

 wA*hA*sizeof(float), (void *)A, 0.

 NULL, NULL);

 Simple Matrix Multiplication Example

560 An Overview of OpenCL C-DAC hyPACK-2013

// Copy Matrix A to the device

 ci ErrNum = clEnqueueWriteBuffe-(

 myqueue,

 bufferA,

 CL_TRUE,

 0,

 wA*hA*sizeof(float),

 (void *)A,

 0.

 NULL,

 NULL);

// Allocate space for Matrix B on the device

 cl_mem bufferB = clCreateBuffer(

 ctx,

 CL_MEM_READ_ONLY,

 wB*hB*si zeof(float),

 NULL,

 &ci ErrNum);

 Simple Matrix Multiplication Example

561 An Overview of OpenCL C-DAC hyPACK-2013

// Copy Matrix B to the device

cl ErrNum = clEnqueueWri teBuffer(

 myqueue,

 bufferB,

 CL_TRUE,

 0,

 wB*hB*si zeof(float),

 (void *)B,

 0,

 NULL,

 NULL);

// A1 locate space for Matrix C on the device

 cl_mem bufferC = cl CreateBuffer(

 ctx,

 CL_MEM_READ_ONLY,

 hA*wB*sizeof(float),

 NULL.

 &ci ErrNum);

 Simple Matrix Multiplication Example

562 An Overview of OpenCL C-DAC hyPACK-2013

Step 3: Runtime Kernel Compilation
Compile the program from the kernel array, build the program, and define
the kernel.

 // We assume that the program source is stored in the variable

 // 'source' and is NULL terminated

cl_programiriyprog = clCreateProgramWithSource (

 ctx,

 1,

 (const char**)&source,

 NULL,

 &ci ErrNum);

// Compi 1 p the program. Passing NULL for the 'devi ce_]1st'

// argume.it targets all devices in the context ciErrNum=clBuildProgram(myprog, 0,

NULL, NULL, NULL, NULL);

// Create, the kernel

cl_kernel mykernel = clCreateKernel(

 myprog,

 "simpleMulti ply",

 &ci ErrNum);

Simple Matrix Multiplication Example

563 An Overview of OpenCL C-DAC hyPACK-2013

Step 4: Run the Program
Set kernel arguments and the workgroup size. We can then enqueue kernel
onto the command queue to execute on the device.

//Set the kernel arguments

clSetKernelArg(my kernel, 0, si zeof(cl_mem), (void *)&d_C); clSetKernelArg(mykernel, 1,

sizeof(cl_int), (void *)&wA);

cl Set Kernel Arg(my kernel , 2 , sizeof(cl_int), (void *)&hA); clSetKerne1Arg(my kernel, 3,

sizeof(cl_int), (void *)&wB); clSetKernelArg(my kernel, 4. si zeof(cl_i nt), (void*)&hB);

cl SetKernel Arg(mykernel , 5, sizeof (cl__mem), (void *)&d_A);

cl Set Kernel Arg(my kerne 1 , 6, sizeof(cl__mem) , (void *)&d_B);

// Set local and global workgroup sizes

//We assume the matrix dimensions are divisible by 16

size_t1ocalws[2] = 116 ,161 ;

size„tglobalws[2]=iwC,hC};

 Simple Matrix Multiplication Example

564 An Overview of OpenCL C-DAC hyPACK-2013

// Execute the kernel

ciErrNum = clEnqueueNDRangeKernel(

 myqueue,

 mykernel ,

 2,

 NULL,

 globalws,

 1ocalws,

 0,

 NULL,

 NULL);

 Simple Matrix Multiplication Example

565 An Overview of OpenCL C-DAC hyPACK-2013

Step 5: Obtain Results to Host
After the program has run, we enqueue a read back of the result matrix
from the device buffer to host memory.

// Read the output data back to the host

ciErrNum = cl EnqueueReadBuffer(

 myqueue,

 d_C,

 CL_TRUE,

 0,

 wC*hC*si zeof(float),

 (void *)C, 0,

 NULL,

 NULL);

The steps outlined here show an OpenCL implementation of matrix
multiplication that can be used as a baseline. In later chapters, we use
our understanding of data-parallel architectures to improve the
performance of particular data-parallel algorithms.

 Simple Matrix Multiplication Example

566 An Overview of OpenCL C-DAC hyPACK-2013

 History of OpenCL

Easing cross-platform development with major enhancements

for stream software strategy

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

Aggressively expanding stream strategy to consumer segment

OpenCL Summary

567 An Overview of OpenCL C-DAC hyPACK-2013

A new computer language that works across GPUs and CPUs

 C /C++ with extensions

Familiar to developers

 Includes a rich set of built-in functions

Makes it easy to develop data- and task- parallel compute

programs

Defines hardware and numerical precision requirements

Open standard for heterogeneous parallel computing

OpenCL Summary

568 An Overview of OpenCL C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. RAPIDMIND http://www.rapidmind.net
6. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
7. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
8. AMD http:www.amd.com
9. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
10. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
11. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
12. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl
13. OpenCL - The open standard for parallel programming of heterogeneous systems URL :

http://www.khronos.org/opencl

14. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan
& VVR Talk

15. David B Kirk, Wen-mei W. Hwu nvidia corporation, 2010, Elsevier, Morgan Kaufmann
Publishers, 2011

16. Benedict R Gaster, Lee Howes, David R Kaeli, Perhadd Mistry Dana Schaa,
Heterogeneous Computing with OpenCL, Elsevier, Moran Kaufmann Publishers, 2011

17. The OpenCL 1.2 Specification (Document Revision 15) Last Released November 15, 2011
Editor : Aaftab Munshi Khronos OpenCL Working Group

18. The OpenCL 1.1 Quick Reference card

References

http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://en.wikipedia.org/wiki/GPGPU
http://www.khronos.org/opencl
http://www.khronos.org/opencl

569 An Overview of OpenCL C-DAC hyPACK-2013

19. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx AMD APP
SDK with OpenCL 1.2 Support

20. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#oneAMD-
APP-SDKv2.7 (Linux) with OpenCL 1.2 Support

21. http://icl.cs.utk.edu/magma/software/ MAGMA OpenCL
22. http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx Getting

Started with OpenCL
23. http://developer.amd.com/openclforum AMD Developer OpenCL FORUM
24. http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopencl

performance.aspx AMD Developer Central - Programming in OpenCL - Benchmarks
performance

25. http://developer.amd.com/sdks/AMDAPPSDK/assets/opencl-1.2.pdf OpenCL 1.2 (pdf
file)

26. http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx AMD OpenCL
Emulator-Debugger

27. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf The OpenCL 1.2 Specification
(Document Revision 15) Last Released November 15, 201 Editor : Aaftab Munshi <I>
Khronos OpenCL Working Group

28. http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/ OpenCL1.1 Reference
Pages

References

Source : NVIDIA, Khronos AMD, References

http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

570 An Overview of OpenCL C-DAC hyPACK-2013

Any Questions ?

Thank you

Source : NVIDIA, Khronos AMD, References

571 An Overview of OpenCL C-DAC hyPACK-2013

1. OpenACC: www.openacc-standard.org/

2. GPU Computing with OpenACC Directives Presented by John Urbanic,

Pittsburgh Supercomputing Center Authored by Mark Harris NVIDIA Corporation

3. Cray OpenACC http://www.openacc-standard.org/content/cray-even

4. CAPS – OpenACC : http://www.caps-entreprise.com/index.php

5. http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36 CAPS

OpenACC COMPILER

6. PGI OpenACC : www.pgroup.com/resources/accel.htm
7. http://www.opengpu.net/EN/attachments/154_HiPEAC2012_OpenGPU_nVidia.pdf

OPENACC DIRECTIVES FOR ACCELERATORS –NVIDIA

8. http://www.pgroup.com/doc/openACC_gs.pdf PGI OpenACC Compilers Getting Started

Guide Version 12.3

9. Introduction to OpenACC; Oscar Hernandez, Richard Graham, Computer Science and

Mathematics (CSM), Application Performance Tools Group,Oak Ridge National

Laboratories, U.S Dept. of Energy

10. GPU Programming with CUDA and OpenACC; Axel Koehler – NVIDIA

11. http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf TheOpenACC™APIQUICKRE

FEREN CE GUIDE

12. http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf TheOpenACC™Application

Programming Interface Version 1.0 November, 2011

References Acknowledgement s

References :

Source : NVIDIA & References given in the presentation

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.pgroup.com/resources/accel.htm
http://www.opengpu.net/EN/attachments/154_HiPEAC2012_OpenGPU_nVidia.pdf
http://www.pgroup.com/doc/openACC_gs.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

572 An Overview of OpenCL C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. NVIDIA CUDA Reference http://www.nvidia.com/object/cuda_home.html
6. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html
7. List of NVIDIA GPUs compatible with CUDA: The href://www.nvidia.com/object/cuda_learn_products.html
8. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html
9. Specifications of nVIDIA GeForce 8800 GPUs:
10. RAPIDMIND http://www.rapidmind.net
11. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
12. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
13. AMD http:www.amd.com
14. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
15. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
16. Merrimac - Stream Architecture Standford Brook for GPUs

http://www-graphics.stanford.edu/projects/brookgpu/

17. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/
18. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/
19. ATI & AMD - Technology Products http://ati.amd.com/products/index.html
20. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....
21. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).
22. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).
23. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp
917-924 Graphic Hardware (2007).

24. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide - Version 1.1 November 2007

References

http://www-graphics.stanford.edu/projects/brookgpu/

573 An Overview of OpenCL C-DAC hyPACK-2013

25. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com

26. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

27. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008)

28. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ;
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008

29. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in :
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.

30. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003)

31. Tutorial SC 2007 SC05 : High Performance Computing with CUDA
32. FASTRA http://www.fastra.ua.ac.bc/en/faq.html
33. AMD Stream Computing software Stack ; http://www.amd.com
34. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html
35. FFT – Fast Fourier Transform www.fftw.org
36. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas
37. LAPACK : Linear Algebra Package – www.netlib.org/lapack
38. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual

computing, Intel Deverloper FORUM 2008
39. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable Many core Processor Reaches

Beyond Graphics, Microprocessor Report September 29, 2008
40. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches

More Systems, Microprocessor Report December 2008
41. AMD’s ATI Stream Platform http://www.amd.com/stream
42. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
43. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl

References

http://www.amd.com/stream

574 An Overview of OpenCL C-DAC hyPACK-2013

44. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

45. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
46. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0
47. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
48. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
49. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf

50. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf

51. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

52. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
53. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf
54. NVIDA CUDA C Programming Guide Version V5.0, May 2012 (5/6/2012)
55. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf
56. Programming Massively Parallel Processors - A Hands-on Approach, David B Kirk, Wen-mei W. Hwu,

Nvidia corporation, 2010, Elsevier, Morgan Kaufmann Publishers, 2011
57. Aftab Munshi Benedict R Gaster, timothy F Mattson, James Fung, Dan Cinsburg, Addison Wesley,

OpenCL Progrmamin Guide, Pearson Education, 2012
58. The OpenCL 1.2 Specification Khronos OpenCL Working Group
59. http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf“ The OpenCL 1.2 Quick-reference-

card ; Khronos OpenCL Working Group

References

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

575 An Overview of OpenCL C-DAC hyPACK-2013

60. Mary Fetcher and Vivek Sarkar, Introduction to GPGPUS – Seminar on Heterogeneous Processors, Dept. of computer Science,

Rice University, October 2007

61. OpenCL - The open standard for parallel programming of heterogeneous systems URL : http://www.khronos.org/opencl

62. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses Massive Multithreading

; Microprocessors, Volume 22, Archive 1, January 2008 http://www.mdronline.com

63. Matt Pharr (Author), Randima Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-

Purpose Computation ,Addison Wesley , August 2007

64. NVIDIA GPU Programming Guide http://www.nvidia.com

65. Perry H. Wang1, Jamison D. Collins1, Gautham N. Chinya1, Hong Jiang2, Xinmin Tian3 , EXOCHI: Architecture and

Programming Environment for A Heterogeneous Multi-core Multithreaded System, PLDI’07

66. Karl E. Hillesland, Anselmo Lastra GPU Floating-Point Paranoia, University of North Carolina at Chapel Hill

67. KARPINSKI, R. 1985. Paranoia: A floating-point benchmark. Byte Magazine 10, 2 (Feb.), 223–235.

68. GPGPU Web site : http://www.ggpu.org

69. Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce - 6800 GPU, Ajit Datar, Apurva Padhye

Computer Architecture

70. Nvidia 6800 chapter from GPU Gems 2 http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

71. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

72. OpenGL programming guide (ISBN: 0201604582)

73. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

74. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

75. GPU Programming “Languages http://www.cis.upenn.edu/~suvenkat/700/

76. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk

77. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel Computing Simula Research

Laboratory October 24, 2007

78. Daniel Weiskopf, Basics of GPU-Based Programming, Institute of Visualization and Interactive Systems, Interactive

Visualization of Volumetric Data on Consumer PC Hardware: Basics of Hardware-Based Programming University of Stuttgart,

VIS 2003

References

Source & Acknowledgements : NVIDIA, References

http://www.cis.upenn.edu/~suvenkat/700/

576 An Overview of OpenCL C-DAC hyPACK-2013

79. http://www.nvidia.com/object/nvidia-kepler.html NVIDIA Kepler Architecture 2012
80. http://developer.nvidia.com/cuda-toolkit NVIDIA CUDA toolkit 5.0 Preview Release April 2012
81. http://developer.nvidia.com/category/zone/cuda-zone NVIDIA Developer Zone
82. http://developer.nvidia.com/gpudirect RDMA for NVIDIA GPUDirect coming in CUDA 5.0 Preview

Release, April 2012
83. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf NVIDIA CUDA C Programming Guide Version 4.2 dated 4/16/2012 (April 2012)
84. http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Paralleli

sm_in_CUDA.pdf Dynamic Parallelism in CUDA Tesla K20 Kepler GPUs - Prelease of NVIDIA CUDA 5.0
85. http://developer.nvidia.com/cuda-downloads NVIDIA Developer ZONE - CUDA Downloads CUDA

TOOLKIT 4.2
86. http://developer.nvidia.com/gpudirect NVIDIA Developer ZONE – GPUDirect
87. http://developer.nvidia.com/openacct OpenACC - NVIDIA
88. http://developer.nvidia.com/cuda-toolkit Nsight, Eclipse Edition Pre-release of CUDA 5.0, April 2012
89. The OpenCL Specification, Version 1.1, Published by Khronos OpenCL Working Group, Aaftab

Munshi (ed.), 2010.
90. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

91. http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf The OpenCL 1.1 Quick Reference
card.

92. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
93. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0

References

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/openacct
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0

577 An Overview of OpenCL C-DAC hyPACK-2013

94. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
95. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
96. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_
Guide.pdf

97. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices
_Guide.pdf

98. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

99. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
100. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guid

e.pdf
101. NVIDA CUDA C Programming Guide Version V5.0, May 2012 (5/6/2012)
102. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide

.pdf

References

Source & Acknowledgements : NVIDIA, References

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

578 An Overview of OpenCL C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. NVIDIA CUDA Reference http://www.nvidia.com/object/cuda_home.html
6. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html
7. List of NVIDIA GPUs compatible with CUDA: The href://www.nvidia.com/object/cuda_learn_products.html
8. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html
9. Specifications of nVIDIA GeForce 8800 GPUs:
10. RAPIDMIND http://www.rapidmind.net
11. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
12. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
13. AMD http:www.amd.com
14. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
15. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
16. Merrimac - Stream Architecture Standford Brook for GPUs

http://www-graphics.stanford.edu/projects/brookgpu/

17. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/
18. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/
19. ATI & AMD - Technology Products http://ati.amd.com/products/index.html
20. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....
21. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).
22. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).
23. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp
917-924 Graphic Hardware (2007).

24. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide - Version 1.1 November 2007

References

http://www-graphics.stanford.edu/projects/brookgpu/

579 An Overview of OpenCL C-DAC hyPACK-2013

25. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com

26. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

27. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008)

28. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ;
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008

29. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in :
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.

30. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003)

31. Tutorial SC 2007 SC05 : High Performance Computing with CUDA
32. FASTRA http://www.fastra.ua.ac.bc/en/faq.html
33. AMD Stream Computing software Stack ; http://www.amd.com
34. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html
35. FFT – Fast Fourier Transform www.fftw.org
36. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas
37. LAPACK : Linear Algebra Package – www.netlib.org/lapack
38. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual

computing, Intel Deverloper FORUM 2008
39. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable Many core Processor Reaches

Beyond Graphics, Microprocessor Report September 29, 2008
40. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches

More Systems, Microprocessor Report December 2008
41. AMD’s ATI Stream Platform http://www.amd.com/stream
42. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
43. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl

References

http://www.amd.com/stream

580 An Overview of OpenCL C-DAC hyPACK-2013

44. Mary Fetcher and Vivek Sarkar, Introduction to GPGPUS – Seminar on Heterogeneous Processors,
Dept. of computer Science, Rice University, October 2007

45. OpenCL - The open standard for parallel programming of heterogeneous systems URL :
http://www.khronos.org/opencl

46. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

47. Matt Pharr (Author), Randima Fernando, GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation ,Addison Wesley , August 2007

48. NVIDIA GPU Programming Guide http://www.nvidia.com

49. Perry H. Wang1, Jamison D. Collins1, Gautham N. Chinya1, Hong Jiang2, Xinmin Tian3 , EXOCHI: Architecture and

Programming Environment for A Heterogeneous Multi-coreMultithreadedSystem,PLDI’07

50. Karl E. Hillesland, Anselmo Lastra GPU Floating-Point Paranoia, University of North Carolina at Chapel Hill

51. KARPINSKI, R. 1985. Paranoia: A floating-point benchmark. Byte Magazine 10, 2 (Feb.), 223–235.

52. GPGPU Web site : http://www.ggpu.org

53. Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce - 6800 GPU, Ajit Datar, Apurva

Padhye Computer Architecture

54. Nvidia 6800 chapter from GPU Gems 2

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

55. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

56. OpenGL programming guide (ISBN: 0201604582)

57. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

58. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

59. GPUProgramming“Languageshttp://www.cis.upenn.edu/~suvenkat/700/

60. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk
61. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel

Computing Simula Research Laboratory October 24, 2007
62. Daniel Weiskopf, Basics of GPU-Based Programming, Institute of Visualization and Interactive Systems,

Interactive Visualization of Volumetric Data on Consumer PC Hardware: Basics of Hardware-Based Programming

University of Stuttgart, VIS 2003

References

581 An Overview of OpenCL C-DAC hyPACK-2013

1. AMD Accelerated Parallel Processing (APP) SDK (formerly ATI Stream) with OpenCL 1.1 Support
http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx

2. AMD Accelerated Parallel Processing (APP) SDK (formerly ATI Stream) with AMD APP Math Libraries
(APPML); AMD Core Math Library (ACML); AMD Core Math Library for Graphic Processors (ACML-GPU)
http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx

3. AMD Accelerated Parallel Processing (AMD APP) Programming Guide OpenCL : August 2012
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming_Guide.pdf

4. AMD Developer Central - OpenCL Zone,
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx

5. AMD Developer Central - Programming in OpenCL
 http://developer.amd.com/zones/OpenCLZone/programming/Pages/default.aspx
6. AMD Developer Central - Programming in OpenCL - Benchmarks performance

http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance
.aspx

7. The open standard for parallel programming of heterogeneous systems URL :
http://www.khronos.org/opencl

8. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

9. OpenGL programming guide (ISBN: 0201604582)

10. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

11. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

12. GPUProgramming“Languageshttp://www.cis.upenn.edu/~suvenkat/700/

13. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk
14. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel

Computing Simula Research Laboratory October 24, 2007

References

http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx
http://developer.amd.com/zones/OpenCLZone/programming/Pages/default.aspx

582 An Overview of OpenCL C-DAC hyPACK-2013

1. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

2. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
3. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0
4. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
5. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
6. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf

7. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf

8. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

9. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
10. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf
11. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)

12.http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming
_Guide.pdf

References

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

