
Xeon-Phi Coprocessors : An Overview 1 C-DAC hyPACK-2013

Lecture Notes :

Intel Xeon Phi Coprocessor - An Overview

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Application Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

Mode 3 : Intel Xeon Phi Coprocessors

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Xeon-Phi Coprocessors : An Overview 2 C-DAC hyPACK-2013

 Understanding of Intel Xeon-Phi Coprocessor Architecture

 Programming on Intel Xeon-Phi Coprocessor

 Performance Issues on Intel Xeon-Phi Coprocessor

Lecture Outline

Following topics will be discussed

An Overview of Prog. Env on Intel Xeon-Phi

Xeon-Phi Coprocessors : An Overview 3 C-DAC hyPACK-2013

Intel Xeon Host : An Overview of Xeon - Multi-Core

and Systems with Devices

Background : Xeon Host - Multi-Core
& Devices

Part-I

Xeon-Phi Coprocessors : An Overview 4 C-DAC hyPACK-2013

Sequential Computing

 Fetch/Store

 Compute

How to run Programs faster ?

 Fast Access of data

 Fast Processor

 More Memory to Manage data

Trends Computing - Observations How to run Programs faster ?

You require Super Computer

Era of Single - Multi-to-Many Core - Heterogeneous

Computing

Programming paradigms-Challenges
Large scale data Computing – Current trends

Xeon-Phi Coprocessors : An Overview 5 C-DAC hyPACK-2013

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

Thread Pool

Multithreading

CPU

T0 T1 T2 T3 T4 T5 CPU

Time

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

Thread Pool

Hyper-threading Technology

CPU

T2 T0 T4

T1 T3 T5

LP0

LP1

CPU

2 Threads per
Processor

Time

Multi-threaded Processing using Hyper-Threading Technology

 Time taken to process n threads on a single processor is significantly

more than a single processor system with HT technology enabled.

Source : http://www.intel.com ;

Reference : [6], [29], [31]

P/C : Microprocessor and cache;

SM : Shared memory

http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 6 C-DAC hyPACK-2013

Processors

Processes

Threads T1

µPi

OP1 OP2
. . . OPn

T2 Tm
. . .

Processors

Map to MMU

Map to

Processors

µPi : Processor OP1 : Process T1 : Thread MMU : Main Memory Unit

Relationship among Processors, Processes, &Threads

Source : Reference [4],[6], [7]

Xeon-Phi Coprocessors : An Overview 7 C-DAC hyPACK-2013

System View of Threads

 Understand the problems - Face using the
threads – Runtime Environment

Flow of Threads in an Execution Environment

Defining and

Preparing

Threads

Operating

Threads

Executing

Threads

Performed by

Programming

Environment

and Compiler

Performed by

OS using

Processes

Performed by

Processors

Showing return trip to represent that after

execution operations get pass to user space

Threads Above the Operating System

Source : Reference [4],[6], [7]

Xeon-Phi Coprocessors : An Overview 8 C-DAC hyPACK-2013

0

5

10

15

20

25

30

1 2 4 8 16 32 64

Baseline

New instructions
Cache improvements

HW thread scheduling

Number of cores

S
p

e
e
d

u
p

 v
s
.

B
e
s
t

s
e
r
ia

l
c
o

d
e

Architecture-Algorithm Co-Design

Source : http://www.intel.com

http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 9 C-DAC hyPACK-2013

System 1 : Intel Sandy Bridge Server

 Intel Software Development Platform (Intel SDP) MAK F1 Family.

 Platform : Intel (r) Many Integrated Core Architecture

 Platform Code Name : Knights Ferry

 CPU Chipset Codename : Westmere EP/ Tylersburg UP

 Board Codename : Sandy Core.

 CPU : Intel Xeon X5680 Westmere 3.33GHz 12MB L3 Cache
LGA 1366 130W Six-Core Server Processor BX80614X5680

Intel Xeon-Host : system configuration

Source : www.cdac.in/ Intel

http://www.cdac.in/

Xeon-Phi Coprocessors : An Overview 10 C-DAC hyPACK-2013

System 2 : Super Micro SYS-7047GR-TPRF Server
 Chipset : Intel C602 Chipset,

 Mother board : Super X9DRG-QF,

 CPU : Intel Xeon processor E5-2643 (quad core) (up to 150W TDP),
Support for Xeon Phi - 5110P.

 Memory : 32 GB DDR3 ECC Registered memory(1600 MHz ECC
supported DDR3 SDRAM 72-bit, 240-pin gold-plated DIMMs),

 Expansion slot : with 4x PCI-E 3.0 x16 (double-width), 2x PCI-E x8),

 IPMI : Support for IPMI (Support for Intelligent Platform Management
Interface v.2.0, IPMI 2.0 with virtual media over LAN and KVM-over-LAN
support),

 Power : 1620W high-efficiency redundant power supply w/PMBus.

 Storage : SATA 3.0 6Gbps with RAID 0,1 support ,1 TB SATA Hard Disk,

 Network : Intel i350 Dual Port Gigabit Ethernet withsupport of Supports
10BASE-T, 100BASE-TX, and1000BASE-T, RJ45 output and 1x Realtek
RTL8201N\PHY (dedicated IPMI port)

Intel Xeon-Host : system configuration

Xeon-Phi Coprocessors : An Overview 11 C-DAC hyPACK-2013

Intel Xeon-Host : Benchmarks Performance

Systems 3 : Host : Xeon (Memory Bandwidth (BW) - Xeon: 8
bytes/channel * 4 channels * 2 sockets * 1.6 GHz = 102.4 GB/s)

• Node : Intel-R2208GZ; Intel Xeon E52670;

• Core Frequency : 2.6GHz;

• Cores per Node : 16 ;

• Peak Performance /Node : 2.35 TF;

• Memory : 64 GB;

PARAM YUVA-II Intel Xeon- Node

Source : www.cdac.in/ Intel

http://www.cdac.in/

Xeon-Phi Coprocessors : An Overview 12 C-DAC hyPACK-2013

Xeon Node Memory Bandwidth :
8 bytes/channel * 4 channels * 2 sockets * 1.6 GHz = 102.4 GB/s)
Experiment Results : Achieved Bandwidth : 70 % ~75 % Effective bandwidth
can be improved in the range of 10% to 15% with some optimizations

Data Size
(MegaBytes)

No. of Cores
(OpenMP)

Sustained Bandwidth
(GB/sec)

1024 16 72.64

(*) = Bandwidth results were gathered using untuned and unoptimized
versions of benchmark (In-house developed) and Intel Prog. Env

Source : http://www.intel.com; Intel Xeon-Phi books, conferences, Web sites,
Xeon-Phi Technical Reports http://www.cdac.in/

PARAM YUVA-II Intel Xeon- Node Benchmarks(*)

http://www.intel.in/content/dam/www/public/us/en/documents/perfo
rmance-briefs/xeon-phi-product-family-performance-brief.pdf

PARAM YUVA Node : Intel-R2208GZ; Intel Xeon E52670; Core Frequency : 2.6GHz; Cores per
Node : 16 ; Peak Performance /Node : 2.35 TF; Memory : 64 GB;

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/

Xeon-Phi Coprocessors : An Overview 13 C-DAC hyPACK-2013

Computing drives new applications

Reducing “Time to Discovery”

 100 x Speedup changes science &
research methods

Performance = parallel hardware + scalable parallel prog.

Source : NVIDIA, AMD,References

Application

 CPU Coprocessor

Computing on Coprocessors : Think in Parallel

New applications drive the future of Co-processors & GPUs

Drives new GPU /Coprocessor capabilities

Drives hunger for more performance

Xeon-Phi Coprocessors : An Overview 14 C-DAC hyPACK-2013

A set (one or more) of very simple execution units that can

perform few operations (with respect to standard CPU) with very

high efficiency. When combined with full featured CPU (CISC or

RISC) can accelerate the “nominal” speed of a system.

CPU ACC

CPU ACC. Physical integration

CPU & ACC

Architectural integration

Single thread perf.
throughput

Systems with Accelerators

CPU : Control Path & Data Path

ALU : Arithmetic and logic units

ACC: Accumulator

PC : Program counter

Micro-Instructions (Register transfer)

Source : NVIDIA, AMD, SGI, Intel, IBM Alter, Xilinux References

Conceptual diagram

of a dual-core CPU,

with CPU-local Level

1 caches, and Shared,

on-chip Level 2

caches

Xeon-Phi Coprocessors : An Overview 15 C-DAC hyPACK-2013

Multi-Core Systems with Accelerator Types

 FPGA

Xilinx, Alter

 GPU

Nvidia (Kepler),

 AMD Trinity APU

 MIC (Intel Xeon-Phi)

 Intel Xeon-Phi (MIC)

Source : NVIDIA, AMD, SGI, Intel, IBM Alter, Xilinux References

Xeon-Phi Coprocessors : An Overview 16 C-DAC hyPACK-2013

Efficient, Deterministic, Declarative, Restrictive
Expressiveness based language

Parallel Prog. Languages (OpenMP, PGAS,
Intel TBB, Cilk Plus, OpenACC, CUDA)

Low-level APIs (MPI, Pthreads, OpenCL, Verilog)

Machine code, Assembly

Computation
al Science

Data
Informatics

Information
Technology

Very-high
level

High level

Low-level

Very
low-level

Applications

 Heterogeneous
Hardware M

u
lt

i-
to

-M
ay

-C
o

re
 S

ys
te

m
s
–

U
M

A
 &

 N
U

M
A

 S
ys

te
m

s

S
o

ft
w

ar
e

T
h

re
ad

in
g

Source : NVIDIA, AMD, SGI, Intel, IBM Alter, Xilinux & References

H
yb

ri
d

 C
o

m
p

u
ti

n
g

GPUs Coprocessors FPGAs

Prog.API - Multi-Core Systems with Devices

Typical UMA /NUMA Computing Systems

 Processes

Threads

 Cores

Memory

Data Parallel

Compilers

 Affinity

Performance

System updates & Performance

Improvements
Quantify impacts prior to implementation

Small prototype available
What will be the performance of system ?

System available for measurement
What will be performance for App

Shared

Memory

Resources Availability
Application Scaling – Resources Available

High Level APIs : HParallel Prog.
Languages (OpenMP, PGAS,
Intel TBB, Cilk Plus, OpenACC,
CUDA)

Low-level APIs : MPI, Pthreads,
OpenCL, FPGA-Verilog:

Prog.API - Multi-Core Systems with Devices

Xeon-Phi Coprocessors : An Overview 18 C-DAC hyPACK-2013

Programming with High Level APIs

Source : NVIDIA, AMD, SGI, Intel, IBM Alter, Xilinux References

FPGA (Xilinx, Alter)

GPU - Nvidia (Kepler),
AMD Trinity APU

MIC (Intel Xeon-Phi)

Host : Multi-Core Systems OR ARM Multi-core Systems

CPU- Multi-Core Sys

With

Parallel Prog. Languages (OpenMP, PGAS,
Intel TBB, Cilk Plus, OpenACC, CUDA)

Prog.API - Multi-Core Systems with Devices

DO Parallel

DO Synchronize

Get Maximum of all values

 Give to Compiler

Use as Linux OS

DO TRANSFER from Host to Device

DO TRANSFER from Host to Device

Perform C omp. On Device

Xeon-Phi Coprocessors : An Overview 19 C-DAC hyPACK-2013

Xeon Phi Architecture & system
Software

Part-I

Intel Xeon Host : An Overview of Xeon - Multi-Core

and Systems with Devices

Xeon-Phi Coprocessors : An Overview 20 C-DAC hyPACK-2013

Xeon Centric MIC Centric

Xeon
Hosted

Scalar
Co-processing

Symmetric Parallel
Co-processing

MIC
Hosted

General purpose
serial and parallel

computing

Codes with
balanced needs

Highly-parallel
codes

Highly parallel
codes with scalar

phases

Codes with highly-
parallel phases

Source : References & Intel Xeon-Phi; http://www.intel.com/

Prog.- Multi-Core Systems with Coprocessors

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 21 C-DAC hyPACK-2013

Intel® Xeon Phi™ Architecture Overview

Cores: 61 core s, at 1.1 GHz

in-order, support 4 threads

512 bit Vector Processing Unit

32 native registers

Reliability Features
 Parity on L1 Cache, ECC

on memory CRC on memory IO,

CAP on memory IO

High-speed bi-directional

ring interconnect

Fully Coherent L2 Cache

8 memory controllers

16 Channel GDDR5 MC

PCIe GEN2

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 22 C-DAC hyPACK-2013

Intel Xeon Phi Core Architecture Overview

 60+ in-order, low power IA cores in a ring
interconnect

 Two pipelines

 Scalar Unit based on Pentium® processors

 Dual issue with scalar instructions

 Pipelined one-per-clock scalar throughput

 SIMD Vector Processing Engine

 4 hardware threads per core

 4 clock latency, hidden by round-robin scheduling
of threads

 Cannot issue back to back inst in same thread

 Coherent 512KB L2 Cache per core

Ring

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar
Unit

Copyright © 2013 Intel Corporation. All rights reserved.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 23 C-DAC hyPACK-2013

 MIC : Many Integrated Core

 Knight Corner co-processor

 Intel Xeon Phi co-processor

 22 nm technology

 > 50 Intel Architecture cores

 connected by a high performance on-die bi-
directional interconnect.

 I/O Bus: PCIe

 Memory Type: GDDR5 and >2x bandwidth of KNF

 Memory size: 8 GB GDDR5 memory technology

 Peak performance: >1 TFLOP (DP)

 Single Linux image per chip

 23

 MIC (Xeon Phi) Architecture

Source : References & Intel Xeon-Phi;
http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 24 C-DAC hyPACK-2013

 X16 PCIe 2.0 card in Xeon host system

 Up to 60 cores, bi-directional ring bus

 1-2GB GDDR5 main memory

 CPU cores

 1.2GHz, 4-way threading

 512-bit SIMD vector unit

 32KB L1, 256KB L2

 Xeon-Phi coprocessor capacity 8GB;

 processor :Xeon Phi 5110P; memory channel interface speed:
5.0 Giga Transfer/ Sec (GT/s); 8 memory controllers, each
accessing two memory channels, used on co-processor

 (Xeon Phi Hardware)

Source : References & Intel Xeon-Phi;
http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 25 C-DAC hyPACK-2013

 Knights Ferry-SW Dev Platform

 Up to 32 cores

 1.2 GB of GDDRs RAM

 512-bit wide SIMD registers

 L1/L2 cahces

 Multiple threads (up to 4) per core

 Slow operation in double precision

 Xeon PHI (Was Knights Corener)

 Firsr product

 Used in Stampede

 50+cores

 Increased amount of RAM

 Details are under NDA

 22nm technology

 Mnay cores on the die

 L1 and L2 cache

 Bidirectional ring network

 Memory and PCIe connection

 MIC Architecture

 MIC Many Integrated Core Architecture

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 26 C-DAC hyPACK-2013

 Each microprocessor core is a
fully functional, in-order core
capable of running IA
instructions independently of
the other cores.

 Hardware multi-threaded cores

 Each core can concurrently run
instructions from four processes
or threads.

 The Ring Interconnect
connecting all the components
together on the chip

 MIC Intel Xeon Phi Ring

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 27 C-DAC hyPACK-2013

The Processor Core

27

Memory controllers (which access external memory devices to
read and write data)

 PCI Express client: is the system interface to the host CPU or PCI
Express switch,

 Fetches and decodes instructions
from four hardware thread
execution contexts

 Executes the x86 ISA, and Knights
Corner vector instructions

 The core can execute 2 instructions
per clock cycle, one per pipe -
32KB, 8-Way set associative L1
Icache & Dcache

 Core Ring Interface (CRI)

 L2 Cache

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 28 C-DAC hyPACK-2013

The L2 Cache

 Each core has a 512 KB L2 cache

 The L2 cache is part of the Core-Ring Interface block

 The L2 cache is private to the core: each core acts as a
stand-alone core with 512 KB of total L2 cache space

 Other cores can not directly use them as a cache

 512 KB x > 50 cores > 25 MB L2 on Knight Corner

 Tag Directory (TD) on each core, not private to the core

 A simplified way to view the many cores in Knights Corner is
as a chip-level symmetric multiprocessor (SMP) and > 50
such cores share a high-speed interconnect on-die.

28

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi :Coprocessor - Cache Overview

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 29 C-DAC hyPACK-2013

The vector processing unit

 Vector processing unit
(VPU) associated with each
core.

 This is primarily a sixteen-
element wide SIMD engine,
operating on 512-bit vector
registers.

 Gather / Scatter Unit

 Vector Mask

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 30 C-DAC hyPACK-2013

 Vector processing unit (VPU) associated
with each core.

 This is primarily a sixteen-element wide
SIMD engine, operating on 512-bit vector
registers.

 Gather / Scatter Unit

 Vector Mask

 Xeon Phi : The Vector Processing Unit

 Fetches and decodes instructions fr four
hardware thread execution contexts

 Executes the x86 ISA, and Knights Corner
vector instructions

 The core can execute 2 instructions per
clock cycle, one per pipe - 32KB, 8-Way
set associative L1 Icache & Dcache

 Core Ring Interface (CRI)

 L2 Cache

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 31 C-DAC hyPACK-2013

 The System SW Stack

 Card OS

 Symmetric Communications Interface (SCIF)

 Compiler Runtimes

 Coprocessor Offload Infrastructure (COI)

 Coprocessor Communication Link (CCL)

 IB-SCIF

 MPI Dual-DAPL

Intel Xeon Phi - Software

Xeon-Phi Coprocessors : An Overview 32 C-DAC hyPACK-2013

32

Intel Xeon Phi : SCIF Introduction

 Primary goal: Simple, efficient communications interface between
“nodes”

 Symmetric across Xeon host and Xeon Phi™ Coprocessor
cards

 User mode (ring 3) and kernel mode (ring 0) APIs

• Each has several mode specific functions

• Otherwise virtually identical

 Expose/leverage architectural capabilities to map host/card
mapped memory and DMA engines

 Support a range of programming models

 Identical APIs on Linux and Windows

Xeon-Phi Coprocessors : An Overview 33 C-DAC hyPACK-2013

 Fully connected network of SCIF nodes

 Each SCIF node communicates directly with
each other node through the PCIe root
complex

 Nodes are physical endpoints in the network
 Xeon host and Xeon Phi™ Coprocessor cards

are SCIF nodes

 SCIF communication is intra-platform

 Key concepts:
 SCIF drivers communicate through dedicated

queue pairs
 one “ring0 QP” for each pair of nodes
 A receive queue (Qij) in each node is directly

written to from the other node.
 Interrupt driven, relatively low latency

N0

N
1

N
2

Q20

Q10

Q
0

1
Q

2
1

Q
12

Q
02

Q00

Q
22

Q
1

1

Intel Xeon Phi : SCIF Introduction(2)

Xeon-Phi Coprocessors : An Overview 34 C-DAC hyPACK-2013

34

source

sink

Xeon

Xeon Phi™
Coprocessor

forward
offload

 COI allows commands to be sent from a “source” to a “sink”

 Commands are asynchronous function invocations (“run functions”)

 “Source” is where “run functions” are initiated

 “Sink” is where “run functions” are executed

 A typical COI application is comprised of a
source application and a sink offload binary

 The sink binary is a complete executable

 Not just a shared library

 Starts executing from main when it is loaded

 COI automatically loads dependent libraries prior
to starting the offload binary on the sink

 COI has a coi_daemon that spawns sink
processes and waits for them to exit

Coprocessor Offload Infrastructure (COI)

Intel Xeon Phi : COI Terminology

Xeon-Phi Coprocessors : An Overview 35 C-DAC hyPACK-2013

 COI exposes four major abstractions:

 Use the simplest layer or add additional capabilities with more layers as needed

 Each layer intended to interoperate with other available lower layers (e.g. SCIF)

 Enumeration: COIEngine, COISysInfo

 Enumerate HW info; cards, APIC, cores, threads, caches, dynamic utilization

 Process Management: COIProcess (requires COIEngine)

 Create remote processes; loads code and libraries, start/stop

 Execution Flow: COIPipeline (requires COIProcess)

 COIPipelines are the RPC-like mechanism for flow control and remote execution

 Can pass up to 32K of data with local pointers

 Data and Dependency Management: COIBuffer, COIEvent (requires
COIPipeline)

 COIBuffers are the basic unit of data movement and dependence managment

 COIEvent optionally used to help manage dependences

 COIBuffers and COIEvents are typically used with Run Functions executing on
COIPipelines

Intel Xeon Phi : COI APIs

Xeon-Phi Coprocessors : An Overview 36 C-DAC hyPACK-2013

36

 OFED is the industry standard code used for messaging on high-end
HPC clusters

 Supports Intel MPI and all open source MPIs

 Is in Linux and all the various Linux distributions

 RDMA over SCIF (IB-SCIF) – RDMA within the platform between the
host and KNC or multiple KNCs

 Intel ® Xeon Phi ™ Coprocessor Communication Link (CCL) Direct

 Direct access to InfiniBand HCA from Intel® Xeon Phi ™

 Lowest latency data path

 Intel ® Xeon Phi ™ Coprocessor Communication Link (CCL) Proxy

 Pipeline data through host memory to InfiniBand network

 Higher bandwidth data path for some platform configurations

 Intel MPI dual-DAPL support

 Uses best data path, direct path for small messages, and proxy path for
large messages for best overall MPI performance

Source : References & Intel Xeon-Phi; http://www.intel.com/

An Overview

Intel Xeon Phi : Coprocessor Communication Link (CCL)

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 37 C-DAC hyPACK-2013

37

Intel® Xeon Phi Coprocessor : CCL Direct Software

 CCL-Direct

 Allows access to an HCA directly from the Xeon Phi™ Coprocessor using
standard OFED interfaces using PCI-E peer-to-peer transactions

 Provides the lowest latency data path

 For each hardware HCA, a unique vendor driver has to be developed.

 e.g., mlx4, mthca, Intel® True Scale ™ hca etc

 Currently support for Mellanox HCAs (mlx4) exists and is shipping in
MPSS

 Support for Intel® TrueScale™ InfiniBand NICs via PSM is under
development, expected release in early 2013

 Implementation Limitations

 Intel® Xeon Phi™ Coprocessor CCL Direct only supports user space
clients, e.g. MPI

 Peak bandwidth is limited on some platforms and configurations

 CCL-Direct 1 byte latency is in the 2.5us range for Host-KNC, and 3.5-
4us range for KNC-KNC across an InfiniBand HCA, peak BW varies
depending on the Xeon platform

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 38 C-DAC hyPACK-2013

Intel Xeon Phi : RDMA over IB-SCIF

OFED for Intel® Xeon Phi™ Coprocessor uses
the core OFA software modules from the Open
Fabrics Alliance

IB-SCIF is a new hardware specific driver and
library that plugs into the OFED core mid-layer

 SCIF is the lowest level in the SW stack as we
saw earlier

 Provides standard RDMA verbs interfaces within
the platform, i.e., between the Intel® Xeon™
and Intel® Xeon Phi ™ Coprocessor cards within
the same system.

 IBSCIF 1 byte latency is in the 13us range,
(host-KNC), peak BW is in the 6GB/s per sec.
range

IB uverbs

IB core

IB Verbs Library

IB-SCIF driver

SCIF

User / Kernel Mode

MPI Application

uDAPL

Host / KNF / KNC

IB-SCIF Library

Xeon Host /Xeon Phi

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 39 C-DAC hyPACK-2013

 Large SMP UMA machine – a set of x86 cores to manage
 4 threads and 32KB L1I/D, 512KB L2 per core

 Supports loadable kernel modules – we’ll talk about one today

 Standard Linux kernel from kernel.org
 2.6.38 in the most recent release

 Completely Fair Scheduler (CFS), VM subsystem, File I/O

 Virtual Ethernet driver– supports NFS mounts from Intel® Xeon
Phi™ Coprocessor

 New vector register state per thread for Intel® IMCI
 Supports “Device Not Available” for Lazy save/restore

 Different ABI – uses vector registers for passing floats
 Still uses the x86_64 ABI for non-float parameter passing (rdi, rsi, rdx ..)

Intel Xeon Phi Coprocessor – System SW Perspective

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 40 C-DAC hyPACK-2013

Intel Xeon Phi :Coprocessor Offload Programming

__declspec(target(mic)) int numFloats = 100;

__declspec(target(mic)) float input1[100], input2[100];

__declspec(target(mic)) float output[100];

pragma offload target(mic) \

in(input1, input2, numFloats) out (output) {

for(int j=0; j<numFloats; j++) {

 output[j] = input1[j] + input2[j];

 }

}

COIProcessCreateFromFile(…);

COIBufferCreate(…);

…

COIPipelineRunFunction (…);

Offload Compiler
(compiler assisted offload)

COI Runtime

SCIF

 scif_vwriteto(…);
 scif_send(…);
 scif_recv(…);
 scif_vreadfrom(…);

Xeon-Phi Coprocessors : An Overview 41 C-DAC hyPACK-2013

Execution Modes

main()

Intel ® Xeon Phi™
Coprocessor

Intel® Xeon

main()

Native Offload

 Card is an SMP machine running Linux

 Separate executables run on both MIC
and Xeon
 e.g. Standalone MPI applications

 No source code modifications most of
the time
 Recompile code for Xeon Phi™

Coprocessor

 Autonomous Compute Node (ACN)

 “main” runs on Xeon

 Parts of code are offloaded to MIC

 Code that can be
 Multi-threaded, highly parallel

 Vectorizable

 Benefit from large memory BW

 Compiler Assisted vs. Automatic
 #pragma offload (…)

foo()

Intel® Xeon

main()

Intel® Xeon Phi™
Coprocessor

 Xeon Phi : Programming Environment

Xeon-Phi Coprocessors : An Overview 42 C-DAC hyPACK-2013

 Shared Address Space Programming (Offload, Native,
Host)

 OpenMP, Inetl TBB, Cilk Plus, Pthreads

 Message Passing Programming

 (Offload – MIC Offload /Host Offload)
 (Symmetric & Coprocessor /Host)

 Hybrid Programming
 (MPI – OpenMP, MPI Cilk Plus MPI-Intel TBB)

 Xeon Phi : Programming Environment

Source : References & Intel Xeon-Phi; http://www.intel.com/

Execution Modes

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 43 C-DAC hyPACK-2013

Data Access Semantics

Explicit Offloading

Implicit Offloading

Complier Data Transfer Overview

The host CPU and the Intel Xeon Phi coprocessor

do not share physical or virtual memory in

hardware

Two offload transfer models are : Explicit Copy

and Implicit Copy

Xeon Phi : Data Access Semantics

Xeon-Phi Coprocessors : An Overview 44 C-DAC hyPACK-2013

Two offload transfer models are : Explicit Copy and

Implicit Copy

 Explicit Copy :

• Programmer designates variables that need to

be copied between host and card in the offload

directive

• Syntax: Pragma/directive-based

• C/C++ Example: #pragma offload target(mic)

in(data:length(size)) (OpenMP, Pthreads, Intel

TBB, MPI with OpenMP/Pthreads/Intel TBB)

Xeon Phi : Data Access Semantics

Xeon-Phi Coprocessors : An Overview 45 C-DAC hyPACK-2013

Compiler : Offload using Explicit Copies – Data movement

HOST

pA
Allocate

Free

MIC

5

1

Copy back
4

Copy over
2

Pragma offload inout(pA:length(n))

{…}
3

 Default treatment of in/out variables in a #pragma
offload statement

Xeon-Phi Coprocessors : An Overview 46 C-DAC hyPACK-2013

 Default treatment of in/out variables in a #pragma
offload statement

 At the start of an offload:

• Space is allocated on the coprocessor

• in variables are transferred to the coprocessor

 At the end of an offload:

• out variables are transferred from the coprocessor

• Space for both types (as well as inout) is deallocated

on the coprocessor

Compiler : Offload using Explicit Copies – Data movement

Xeon-Phi Coprocessors : An Overview 47 C-DAC hyPACK-2013

C/CC+ Syntax Semantics
Offload pragma #pragma offload <clauses>

<statement block>
Allow next statement block to
execute on Intel MIC Arch or
host CPU

Keyword for
variable & function
definitions

attribute((target(mic))) Compile for, or allocate variable
on, both CPU and Intel MIC Arch.

Entire Blocks of
Code

#pragma
offload_attribute(push,
target(mic))

Mark entire files or large
blocks of code for generation
on both host CPU

Data Transfer #pragma offload_transfer
target(mic)

Initiates asynchronous data
transfer, or initiates and
completes synchronous data

Synchronization

#pragma offload_wait
signal(signal_slot)

Wait asynchronous offload
processes to complete

Compiler : Offload using Explicit Copies

Xeon-Phi Coprocessors : An Overview 48 C-DAC hyPACK-2013

Fortran Semantics
Offload directive Offload directive

!dir$ omp offload <clause>
<OpenMP construct>

Execute next
OpenMP* parallel construct
on Intel® MIC Architecture

!dir$ offload <clauses>
<statement>

Execute next statement
(function call) on Intel® MIC
Architecture

Keyword for
variable/function
definitions

!dir$ attributes
offload:<MIC> :: <rtn-name>

Compile function or variable
for CPU and Intel® MIC
Architecture

Data Transfer #pragma offload_transfer
target(mic)

Initiates asynchronous data
transfer, or initiates and
completes synchronous data

Compiler : Offload using Explicit Copies

Xeon-Phi Coprocessors : An Overview 49 C-DAC hyPACK-2013

Data Access Semantics

Implicit Offloading

Section of memory maintained at the same virtual

address on both the host and Intel MIC Architecture

coprocessor

Reserving same address range on both devices allows

• Seamless sharing of complex pointer-containing data

structures

• Elimination of user marshaling and data management

• Use of simple language extensions to C/C++

Xeon Phi : Data Access Semantics

Xeon-Phi Coprocessors : An Overview 50 C-DAC hyPACK-2013

Compiler : Offload using Explicit Copies – Data movement

HOST

Offload

C/C++ Executable

Same Address
Range

MIC

Memory

HOST

Memory

Intel MIC

Xeon-Phi Coprocessors : An Overview 51 C-DAC hyPACK-2013

 When “shared” memory is synchronized

 Automatically done around offloads (so memory is only synchronized
on entry to, or exit from, an offload call)

 Only modified data is transferred between CPU and coprocessor

 Dynamic memory you wish to share must be allocated with special
functions: _Offload_shared_malloc,

_Offload_shared_aligned_malloc, _Offload_shared_free,

_Offload_shared_aligned_free

 Allows transfer of C++ objects

 Pointers are no longer an issue when they point to “shared” data

 Well-known methods can be used to synchronize access to shared data
and prevent data races within offloaded code

 – E.g., locks, critical sections, etc.

 This model is integrated with the Intel Cilk Plus Parallel Extensions

 Supported in C /C++ Languages Only

Heterogeneous Compiler : Offload using Implicit Copies

Xeon-Phi Coprocessors : An Overview 52 C-DAC hyPACK-2013

Two offload transfer models are : Explicit Copy and

Implicit Copy

 Implicit Copy :

• Programmer makes variables that need to be

shared between host and mic card

• The same variable can be used in both host and

coprocessor code

• Runtime automatically maintains coherence at

the beginning and end of offload statements

• Syntax: keyword extensions based

• Example: _Cilk_shared double foo;

 _Offload func(y);

Compiler : Data Transfer Overview Compiler

Xeon-Phi Coprocessors : An Overview 53 C-DAC hyPACK-2013

Intel Xeon Phi Coprocessors :

Compilation and Vectorization

Vectorization Methodlogy
Part-2

Xeon-Phi Coprocessors : An Overview 54 C-DAC hyPACK-2013

What is meant by Vectorization ?

Vectorization is the process of converting an algorithm
from a scalar implementation to a vector process.

Scalar : an operation one pair of operands at a time

Vector : A process in which a single instruction can
refer to a vector (series of adjacent values)

 it adds a form of parallelism to software in which
one instruction or operation is applied to multiple
pieces of data.

 Efficient Processing of Data Movement is required
to get improvement in performance.

Xeon-Phi Coprocessors : An Overview 55 C-DAC hyPACK-2013

What is meant by Vectorization ?

Many general-purpose microprocessors support SIMD
(single-instruction-multiple-data) parallelism

When the hardware is coupled with C/ C++ compilers
that support it, developers have an easier time
delivering more efficient, better performing software

 Types of Vector Computations in Applications

Multi-media Applications

Scientific and Engineering Applications

Graphic Computations

Computational Finance

 Information Science Applications

Xeon-Phi Coprocessors : An Overview 56 C-DAC hyPACK-2013

What is meant by Vectorization ?

Compilers :

 Performance or efficiency benefits from vectorization
depend on the code structure.

 Automatic & near automatic techniques (Auto-Vectorization
feature) introduced below are most productive in delivering
improved performance or efficiency.

 SIMD Support

Intel C++ Compilers

Intel Fortran 90 Compilers

Compliers supporting SIMD Instructions

 Intel Compilers supporting the Intel Streaming SIMD
Extensions (Intel SSE) & Intel Advanced Vector Extensions
(Intel AVX) on both IA-32 and Intel 64 processors.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 57 C-DAC hyPACK-2013

What is meant by Vectorization ?

Compilers :

 Auto-vectorization : Performance or efficiency benefits from
vectorization depend on the both compilers do auto-
vectorization, generating Intel SIMD code to automatically
vectorize parts of application software when certain
conditions are met.

 Portability Problems : Because no source code changes
are required to use auto-vectorization, there is no impact on
the portability of your application.

 To take advantage of auto-vectorization, applications must be
built at default optimization settings (-O2) or higher. No
additional or special switch setting is needed using packed
SIMD instructions

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 58 C-DAC hyPACK-2013

What is meant by Vectorization ?

Advantage of Intel MKL and Intel IPP

 Intel Math Kernel Library (MKL)

 Intel® Integrated Performance Primitives (IPP) is another
library for C and C++ developers,

 Another easy way to take advantage of vectorization is to
make calls in your applications to the vectorized forms of
functions in the Intel® Math Kernel Library. Much of Intel
MKL is threaded and supports auto-vectorization to help you
get the most of today’s multi-core processors. Intel MKL
functions are also fully thread-safe, so multiple calls for
different threads will not conflict with one another.

 Intel IPP offers libraries that can be called for multimedia,
data processing, and communications applications

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 59 C-DAC hyPACK-2013

Whenever possible, instructions on data arrays are
processed in an assembly line manner, where several
pieces of data are undergoing different parts of an
operation simultaneously

Vector Registers

 The vector computers get most of their speed through
vector operations. This means that a single type of
instruction on multiple data. This is uniquely
accomplished through the use of vector registers.

Vector Chaining

 Vector chaining is a way to decrease vector start-up
time. On the C90 a functional unit can begin processing
data as soon as the first elements are in the registers.

 About Vectorization

Xeon-Phi Coprocessors : An Overview 60 C-DAC hyPACK-2013

 About Vectorization

 About Vectorization :

 High performance is dependent on the vectorization of long

loops. Poor performance can result from the inhibition of this
vectorization.

 Types of Computation in Applications

 Loop Not Innermost

 Vector Dependencies

 Other Not Vectorizable Constructs

 Memory Conflicts

 I/O Optimization

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 61 C-DAC hyPACK-2013

 About Vectorization

Loop No nnermost

Problem

 Only innermost loop can be vectorized at the machine instruction
level. However, it may be more efficient to vectorize the operations
in the outer loops instead. This could be the case if:
 The inner loop is inhibited from vectorization
 The outer loop has a longer vector length than the inner loop
 The outer loop does more work than the inner loop

Solution

 The solution is to make the outer loop innermost. Depending on the
structure of the loops, there are three ways to do this:
 Swap the loops
 Split the outer loop
 Unwind the inner loop

Xeon-Phi Coprocessors : An Overview 62 C-DAC hyPACK-2013

About Vectorization

Problem : Dependencies occur when each iteration of a loop is
dependent on the result of previous iterations.

 There are three kinds of dependency:
(1) Result not ready (recurrence or recursion)
(2) Value destroyed (3) Ambiguous subscript

Solution :

Result Not Ready

 The solution is to restructure the loop to remove the dependency.
Sometimes, this is difficult and requires rethinking the algorithm. Often,
however, you can do it by:
 Swapping loops OR Splitting the dependent work out of the loop

Value Destroyed

 You generally do not have to worry about this kind of dependency. The
compiler handles it by saving the values in a temporary array.

Ambiguous Subscript

 The solution is to use an IVDEP directive to tell the compiler that there is
not dependency (if that is in fact the case!)

Vector Dependencies

Xeon-Phi Coprocessors : An Overview 63 C-DAC hyPACK-2013

Source : References & Intel Xeon-Phi; http://www.intel.com/

Problem

 There are a number of other constructs that prevent vectorization.
These include:
 I/O statements (These generate calls no library subroutines)
 CHARACTER data and functions
 STOP and PAUSE
 Assigned GOTO (obsolete, anyway)

Solution

 The only solution is to move these constructs out of the loop, either
by splitting or by recording so that the constructs are unnecessary

Other Non-vectorizable Constructs

 About Vectorization

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 64 C-DAC hyPACK-2013

 About Vectorization

 Fast Clock Speed.

 Segmented, Vector Functional Units

 Independent Functional Units

 Register-to-Register Operations

 Shared, Banked Memory

 No Virtual Memory Fast I/O

Typical Vector Computer Features

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 65 C-DAC hyPACK-2013

Vectorization and SIMD Execution

 SIMD

 Flynn’s Taxonomy: Single Instruction, Multiple Data

 CPU perform the same operation on multiple data elements

 SISD

 Single Instruction, Single Data

 Vectorization

 In the context of Intel® Architecture Processors, the process of
transforming a scalar operation (SISD), that acts on a single
data element to the vector operation that that act on multiple
data elements at once(SIMD).

 Assuming that setup code does not tip the balance, this can
result in more compact and efficient generated code

 For loops in ”normal” or ”unvectorized” code, each assembly
instruction deals with the data from only a single loop iteration

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 66 C-DAC hyPACK-2013

Understand floating point arithmetic Unit
 Vector Processing Unit executing vector FP instruction

 X87 unit also exist can execute FP Instruction as well

 Compiler choose which place to use for FP operation

 VPU is preferred place because of its speed
 VPU can make the FP results reproducible as well

 Use X87 should be used for two reasons
 Reproduce the same results 15 years ago, right or wrong
 Need generate FP exceptions for debugging purpose

 Intel Compiler default to VPU the user can override with
–fp-model strict

 Vectorized, high precision of division, square root and transcendental
functions from libsvml
-fp-model-precise –no-prec-div –no-prec-sqrt –
fast-transcendentals –fimf-precision=high

66
Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Vector Unit

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 67 C-DAC hyPACK-2013

Core Architecture Overview

 60+ in-order, low power IA cores in a ring
interconnect

 Two pipelines

 Scalar Unit based on Pentium® processors

 Dual issue with scalar instructions

 Pipelined one-per-clock scalar throughput

 SIMD Vector Processing Engine

 4 hardware threads per core

 4 clock latency, hidden by round-robin scheduling
of threads

 Cannot issue back to back inst in same thread

 Coherent 512KB L2 Cache per core

Ring

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector

Unit

Scalar
Unit

Copyright © 2013 Intel Corporation. All rights reserved.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 68 C-DAC hyPACK-2013

Vector Processing Unit Extends the Scalar IA Core

Pipe 0 (u-pipe) Pipe 1 (v-pipe)

Decoder uCode

 L1 TLB and

L1 instruction
cache 32KB

X87 RF Scalar RF VPU RF

VPU

512b SIMD

L1 TLB and L1 Data Cache

32 KB

X87 ALU 0 ALU 1

TLB Miss

Handler

L2 TLB

L2

CRI

512KB

L2 Cache

HWP

Thread 0 IP

Thread 1 IP

Thread 2 IP

Thread 3 IP

D2 PPF PF D0 D1 WB E

On-Die Interconnect

Instruction Cache Miss

TLB miss

16B/cycle (2 IPC)

TLB miss

Data Cache Miss

4 threads in-order

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 69 C-DAC hyPACK-2013

D2 E VC1 VC2 V1 V2 V3 V4

D2 E VC1 VC2 V1-V4 WB

D1 D2 E PPF PF D0

Core extension Vector Processing Unit

Vector ALUs

16 X 32-bit Wide

8 X 64-bit Wide

Fuse Multiply Add

LD

EMU

ST

VPU

RF

3R,1W

Scatter

Gather

DEC

Mask

RF

WB

Copyright © 2013 Intel Corporation. All rights reserved.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 70 C-DAC hyPACK-2013

Vector Processing Unit and Intel® IMCI

 Vector Processing Unit Execute Intel® IMCI

 Intel® Initial Many Core Instructions

 512-bit Vector Execution Engine

 16 lanes of 32-bit single precision and integer operations

 8 lanes of 64-bit double precision and integer operations

 32 512-bit general purpose vector registers in 4 thread

 8 16-bit mask registers in 4 thread for predicated execution

 Read/Write

 One vector length (512-bits) per cycle from/to Vector Registers

 One operand can be from the memory free

 IEEE 754 Standard Compliance

 4 rounding Model, even, 0, +∞, -∞

 Hardware support for SP/DP denormal handling

 Sets status register VXCSR flags but not hardware traps

 Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 71 C-DAC hyPACK-2013

 Vector processing unit (VPU) associated
with each core.

 This is primarily a sixteen-element wide
SIMD engine, operating on 512-bit vector
registers.

 Gather / Scatter Unit

 Vector Mask

 Xeon Phi : The Vector Processing Unit

 Fetches and decodes instructions fr four
hardware thread execution contexts

 Executes the x86 ISA, and Knights Corner
vector instructions

 The core can execute 2 instructions per
clock cycle, one per pipe - 32KB, 8-Way
set associative L1 Icache & Dcache

 Core Ring Interface (CRI)

 L2 Cache

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 72 C-DAC hyPACK-2013

Vector processing

 do i = 1, N

 A(i) = B(i)+C(i)

 end do B(2)

C(2)

B(1)

C(1)

B(3)

C(3)

B(1)

C(1)

B(2)

C(2)

B(4)

C(4)

B(1)

C(1)

B(2)

C(2)

B(3)

C(3)

B(5)

C(5)

B(1)

C(1)

B(2)

C(2)

B(3)

C(3)

B(4)

C(4)

B(6)

C(6)

B(1)

C(1)

B(2)

C(2)

B(3)

C(3)

B(4)

C(4)

B(5)

C(5)

B(7)

C(7)
B(1) C(1)+

B(2)
C(2)

B(3)

C(3)

B(4)
C(4)

B(5)

C(5)

B(6)

C(6)

B(1)

C(1)

.... B(3) B(2) B(1)

.... C(3) C(2) C(1)

.... C(4) C(3) C(2)

.... C(8) C(7) C(6)

.... C(5) C(4) C(3)

.... C(6) C(5) C(4)

.... C(7) C(6) C(5)

.... C(9) C(8) C(7)

.... C(10) C(9) C(8)

.... B(4) B(3) B(2)

.... B(5) B(4) B(3)

.... B(6) B(5) B(4)

.... B(7) B(6) B(5)

.... B(8) B(7) B(6)

.... B(9) B(8) B(7)

.... B(10) B(9) B(8)

CP 0

CP 1

CP 2

CP 3

CP 4

CP 5

CP 7

CP 6

V0 V1 + V2

Functional Unit Add Floating Point

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Vector Instruction Performance

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 73 C-DAC hyPACK-2013

Intel Xeon Phi : Vector Instruction Performance

 VPU contains 16 SP ALUs, 8 DP ALUs,

 Most VPU instructions have a latency of 4 cycles and TPT 1
cycle
 Load/Store/Scatter have 7-cycle latency

 Convert/Shuffle have 6-cycle latency

 VPU instruction are issued in u-pipe

 Certain instructions can go to v-pipe also
 Vector Mask, Vector Store, Vector Packstore, Vector Prefetch, Scalar

Copyright © 2013 Intel Corporation. All rights reserved.

Xeon-Phi Coprocessors : An Overview 74 C-DAC hyPACK-2013

 Vectorization is key for performance

Sandybridge, MIC, etc.

Compiler hints

Code restructuring

 Many-core nodes present scalability
challenges

Memory contention

Memory size limitations

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Vector Instruction Performance

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 75 C-DAC hyPACK-2013
75

Clause Semantics

No clause Enforce vectorization of innermost loops; ignore dependencies etc

vectorlength (n1[, n2]…) Select one or more vector lengths (range: 2, 4, 8, 16) for the
vectorizer to use.

private (var1, var2, …, varN) Scalars private to each iteration. Initial value broadcast to all
instances. Last value copied out from the last loop iteration
instance.

linear (var1:step1, …, varN:stepN) Declare induction variables and corresponding positive integer
step sizes (in multiples of vector length)

reduction (operator:var1, var2,…,
varN)

Declare the private scalars to be combined at the end of the loop
using the specified reduction operator

[no]assert Direct compiler to assert when the vectorization fails. Default is to
assert for SIMD pragma.

Demand vectorization by annotation - #pragma simd

 Syntax: #pragma simd [<clause-list>]

 Mechanism to force vectorization of a loop

 Programmer: asserts a loop ought to be vectorized

 Compiler: vectorizes the loop or gives an error

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 76 C-DAC hyPACK-2013

v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1

v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0

vcmppi_lt k7, v5, v6

k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

v3 = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

v1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

vaddpi v1{k7}, v1, v3

v1 = 6 1 8 1 1 1 8 9 1 1 1 1 6 1 8 1

SIMD Abstraction – Vectorization/SIMD

76

for (i = 0; i < 15; i++)

 if (v5[i] < v6[i])

 v1[i] += v3[i];

SIMD can simplify your code and reduce the jumps, breaks in
program flow control

Note the lack of jumps or conditional code branches

Xeon-Phi Coprocessors : An Overview 77 C-DAC hyPACK-2013

SIMD Abstraction – Options Compared

77

Vector intrinsics (mm_add_ps, addps)

C/C++ Vector Classes (F32vec16, F64vec8)

Intel® Cilk™ Plus technology

Elemental Functions and Array Notation:

Compiler-based autovectorization annotation #pragma
vector, #pragma ivdep,#pragma simd

Programmer control

Ease of use / code
maintainability

(depends on problem)

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 78 C-DAC hyPACK-2013

Clause Semantics

No clause Enforce vectorization of innermost loops; ignore dependencies etc

vectorlength (n1[, n2]…) Select one or more vector lengths (range: 2, 4, 8, 16) for the
vectorizer to use.

private (var1, var2, …, varN) Scalars private to each iteration. Initial value broadcast to all
instances. Last value copied out from the last loop iteration
instance.

linear (var1:step1, …, varN:stepN) Declare induction variables and corresponding positive integer
step sizes (in multiples of vector length)

reduction (operator:var1, var2,…,
varN)

Declare the private scalars to be combined at the end of the loop
using the specified reduction operator

[no]assert Direct compiler to assert when the vectorization fails. Default is to
assert for SIMD pragma.

Demand vectorization by annotation
 - #pragma simd

 Syntax: #pragma simd [<clause-list>]
 Mechanism to force vectorization of a loop
 Programmer: asserts a loop ought to be vectorized
 Compiler: vectorizes the loop or gives an error

78

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 79 C-DAC hyPACK-2013

Software Behind the Vectorization

float *restrict A, *B, *C;

for(i=0;i<n;i++){

 A[i] = B[i] + C[i];

}

 [SSE2] 4 elems at a time
addps xmm1, xmm2

 [AVX] 8 elems at a time
vaddps ymm1, ymm2, ymm3

 [IMCI] 16 elems at a time
vaddps zmm1, zmm2, zmm3

79

Vector (or SIMD) Code computes more
than one element at a time.

X3

Y3

X3opY3

0 127

X2

Y2

X2opY2

X1

Y1

X1opY1

X0

Y0

X0opY0

X7

Y7

X7opY7

128 255

X6

Y6

X6opY6

X5

Y5

X5opY5

X4

Y4

X4opY4

X11

Y11

X11opY11

256 383

X10

Y10

X10opY10

X9

Y9

X9opY9

X8

Y8

X8opY8

X15

Y15

X15opY15

384 512

X14

Y14

X14opY14

X13

Y13

X13opY13

X12

Y12

X12opY12

X87 SSE 2 AVX IMIC

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 80 C-DAC hyPACK-2013

Hardware resources behind Vectorization

 CPU has lot of computation
power in form of SIMD unit.

 XMM (128bit) can operate

 16x chars

 8x shorts

 4x dwords/floats

 2x qwords/doubles/float
complex

 YMM (256bit) can operate

 32x chars

 16x shorts

 8x dwords/floats

 4x qwords/doubles/float complex

 2x double complex

 Intel® Xeon Phi™ Coprocessor (512bit)
can operate

 16x chars/shorts (converted to int)

 16x dwords/floats

 8x qwords/doubles/float complex

 4x double complex

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 81 C-DAC hyPACK-2013

Compilation

Intel Xeon Phi Coprocessors :

Compilation and Vectorization

Part-2

Xeon-Phi Coprocessors : An Overview 82 C-DAC hyPACK-2013

Quick Glance:

 In native mode an application is compiled on the host using
the compiler switch -mmic to generate code for the MIC
architecture. The binary can then be copied to the
coprocessor and has to be started there.

 Vector-Vector-Multiplication

[hypack01@mic-0]$ icc -O3 -mmic vv.c -o vv

[hypack01@mic-0]$ scp vv mic0:

 program 100% 10KB 10.2KB/s 00:00

[hypack01@mic-0]$ ssh mic0 ~/run

 vector-vector Multiplication = 16.00

Intel Xeon-Phi Coprocessor System Access

Xeon-Phi Coprocessors : An Overview 83 C-DAC hyPACK-2013

Quick Glance:

In native mode an application is compiled on the host using
the compiler switch -mmic to generate code for

the MIC architecture. The binary can then be copied to the
coprocessor and has to be started there.

[hypack01@mic-0]$ icc -O3 -mmic test.c -o test

[hypack01@mic-0]$ scp test mic0:

 program 100% 10KB 10.2KB/s 00:00

[hypack01@mic-0]$ ssh mic0 ~/test

hello world

Intel Xeon-Phi Coprocessor System Access

Xeon-Phi Coprocessors : An Overview 84 C-DAC hyPACK-2013

 Data should be aligned to 64 Bytes (512 Bits) for the
MIC architecture, in contrast to 32 Bytes (256 Bits) for
AVX and 16 Bytes (128 Bits) for SSE.

 Due to the large SIMD width of 64 Bytes vectorization is
even more important for the MIC architecture than for
Intel Xeon!

 The MIC architecture offers new instructions like

 gather/scatter,

 fused multiply-add,

 masked vector instructions etc.

which allow more loops to be parallelized on the
coprocessor than on an Intel Xeon based host.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 85 C-DAC hyPACK-2013

Intel Xeon Phi Coprocessor : Native Compilation

Use pragmas like

#pragma ivdep,

#pragma vector always,

#pragma vector aligned,

#pragma simd

etc. to achieve autovectorization.

Autovectorization is enabled at default optimization level -O2.
Requirements for vectorizable loops can be found references.

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 86 C-DAC hyPACK-2013

 Let the compiler generate vectorization reports
using the compiler option -vecreport2 to see if
loops were vectorized for MIC (Message "*MIC*
Loop was vectorized" etc).

 The options -opt-report-phase hlo (High
Level Optimizer Report) or

 -opt-report-phase ipo_inl (Inlining
report) may also be useful.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 87 C-DAC hyPACK-2013

 Explicit vector programming is also possible via Intel
Cilk Plus language extensions (C/C++ array notation,
vector elemental functions, ...) or the new SIMD
constructs from OpenMP 4.0 RC1.

 Vector elemental functions can be declared by
using __attributes__((vector)). The
compiler then generates a vectorized version of a
scalar function which can be called from a
vectorized loop.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 88 C-DAC hyPACK-2013

 One can use intrinsics to have full control over the vector
registers and the instruction set.

 Include <immintrin.h> for using intrinsics.

 Hardware prefetching from the L2 cache is enabled per
default.

 In addition, software prefetching is on by default at
compiler optimization level -O2 and above. Since Intel
Xeon Phi is an inorder architecture, care about
prefetching is more important than on out-of-order
architectures.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 89 C-DAC hyPACK-2013

 The compiler prefetching can be influenced by setting
the compiler switch -opt-prefetch = n.

 Manual prefetching can be done by using intrinsics
(_mm_prefetch()) or

 pragmas (#pragma prefetch var).

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Xeon-Phi Coprocessors : An Overview 90 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

 Simply add OpenMP-like pragmas to C/C++ or Fortran
code to mark regions of code that should be offloaded to
the Intel Xeon Phi Coprocessor and be run there.

 This approach is quite similar to the accelerator pragmas
introduced by the

 NVIDIA - PGI compiler,

 CAPS HMPP or

 OpenACC to offload code to GPGPUs.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 91 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Work done – Compiler’s Offload

1. When the Intelcompiler encounters an offload
pragma, it generates code for both the coprocessor
and the host.

2. Code to transfer the data to the coprocessor is
automatically created by the compiler,

3. The programmer can influence the data transfer
by adding data clauses to the offload pragma.

Details can be found under "Offload Using a
Pragma“ in the Intel compiler documentation.

Xeon-Phi Coprocessors : An Overview 92 C-DAC hyPACK-2013

main(){

 double *a, *b, *c;

 int i,j,k, ok, n=100;

 // allocated memory on the heap aligned to 64 byte boundary

 ok = posix_memalign((void**)&a, 64, n*n*sizeof(double));

 ok = posix_memalign((void**)&b, 64, n*n*sizeof(double));

 ok = posix_memalign((void**)&c, 64, n*n*sizeof(double));

// initialize matrices

 ...

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

A simple example how to offload a matrix-matrix computation
to the coprocessor. (No function or subroutine) is included

Code “ Simple example for matrix-matrix computation” – may
not give good performance on all cores

Xeon-Phi Coprocessors : An Overview 93 C-DAC hyPACK-2013

//offload code

#pragma offload target(mic) in(a,b:length(n*n))

inout(c:length(n*n))

{

//parallelize via OpenMP on MIC

#pragma omp parallel for

 for(i = 0; i < n; i++) {

 for(k = 0; k < n; k++) {

#pragma vector aligned

#pragma ivdep

 for(j = 0; j < n; j++) {

 //c[i][j] = c[i][j] + a[i][k]*b[k][j];

 c[i*n+j] = c[i*n+j] + a[i*n+k]*b[k*n+j];

 }

 }

 }

 }

}

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Code “ Simple example for matrix-matrix computation” – may
not give good performance on all cores

Xeon-Phi Coprocessors : An Overview 94 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Summary of Example Program
1. Shows how to offload the matrix computation to the

coprocessor using the #pragma offload target(mic).

2. One could also specify the specific coprocessor num in a
system with multiple coprocessors by using #pragma
offload target(mic:num)

3. Matrices have been dynamically allocated using

posix_memalign(), their sizes must be specified via the
length() clause.

 It is recommended that for Intel Xeon Phi data is 64-byte
aligned

Xeon-Phi Coprocessors : An Overview 95 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Summary of Example Program
1. Shows how to offload the matrix computation to the

coprocessor using the #pragma offload target(mic).

1. #pragma vector aligned tells the compiler that all
array data accessed in the loop is properly aligned.

2. #pragma ivdep discards any data dependencies
assumed by the compiler

Offloading is enabled per default for the Intel compiler. Use
-no-offload to disable the generation of offload code.

Xeon-Phi Coprocessors : An Overview 96 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Obtain Offload Information about the following
Using the compiler option -vec-report2, one can see which
loops have been vectorized on the host & the MIC coprocessor:
[hypack01@mic-0]$ icc -vec-report2 -openmp offload.c

offload.c(57): (col. 2) remark: loop was not vectorized:

 vectorization possible but seems inefficient.

...

offload.c(57):(col. 2) remark: *MIC* LOOP WAS VECTORIZED.

offload.c(54):(col. 7) remark: *MIC* loop was not

 vectorized: not inner loop.

offload.c(53): (col. 5) remark: *MIC* loop was not

 vectorized: not inner loop.

Mind the C99 restrict keyword that specifies that the vectors
do not overlap. (Compile with -std=c99)

Xeon-Phi Coprocessors : An Overview 97 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Obtain Offload Information about the following
By setting the environment variable OFFLOAD_REPORT one
can obtain information about per.& data transfers at runtime:
[hypack01@mic-0]$ export OFFLOAD_REPORT=2

[hypack01@mic-0]$./a.out

[Offload] [MIC 0] [File] offload2.c

[Offload] [MIC 0] [Line] 50

[Offload] [MIC 0] [CPU Time] 12.853562 (seconds)

[Offload] [MIC 0] [CPU->MIC Data] 9830416 (bytes)

[Offload] [MIC 0] [MIC Time] 12.208636 (seconds)

[Offload] [MIC 0] [MIC->CPU Data] 3276816 (bytes)

offload.c(53): (col. 5) remark: *MIC* loop was not

 vectorized: not inner loop.

Xeon-Phi Coprocessors : An Overview 98 C-DAC hyPACK-2013

If a function is called within the offloaded code block, this
function has to be declared with

__attribute__((target(mic)))

to disable the generation of offload code.

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Code “ Simple example for matrix-matrix computation” – may
not give good performance on all cores

A simple example how to offload a matrix-matrix computation
to the coprocessor. (No function or subroutine) is included

Xeon-Phi Coprocessors : An Overview 99 C-DAC hyPACK-2013

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

attribute__((target(mic))) void mxm(int n, \

 double *restrict a, double * restrict b, \

 double *restrict c){

 int i,j,k;

 for(i = 0; i < n; i++) {

 ...

}

main(){

...

#pragma offload target(mic) \

 in(a,b:length(n*n)) inout(c:length(n*n))

 {

 mxm(n,a,b,c);

 }

}

A simple example how to offload a matrix-matrix computation a
subroutine and call that routine within an offloaded block region:

Xeon-Phi Coprocessors : An Overview 100 C-DAC hyPACK-2013

Pragma Syntax Semantic
C++

Offload pragma #pragma offload

<clauses> <statement>
Allow next statement to
execute on coprocessor or
host CPU

Variable/function offload
properties

_attribute__

((target(mic)))
Compile function for, or
allocate variable on, both
host CPU and coprocessor

Entire blocks of
data/code defs

#pragma

offload_attribute(pus

h,
target(mic))
...
#pragma

offload_attribute(pop

)

Mark entire files or large
blocks of code to compile
for both host CPU and
coprocessor

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Syntax of Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 101 C-DAC hyPACK-2013

Pragma Syntax Semantic
Fortran

Offload directive !dir$ omp offload

<clauses> <statement>
Execute OpenMP parallel
block on coprocessor

Variable/function offload
properties

!dir$ attributes

offload:<mic> ::
<ret-name> OR

<var1,var2,…>

Compile function or variable
for CPU and coprocessor

Entire code blocks !dir$ offload begin

<clauses>
...
!dir$ end offload

Mark entire files or large
blocks of code to compile
for both host CPU and coprocessor

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Syntax of Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 102 C-DAC hyPACK-2013

The following clauses can be used to control data transfers:

Clause Syntax Semantic

Multiple coprocessors target(mic[:unit]) Select specific coprocessors

Inputs in(var-list

modifiers)
Copy from host to coprocessor

Outputs out(var-list

modifiers)
Copy from coprocessor to
host

Inputs & Outputs inout(var-list

modifiers)
Copy host to coprocessor
and back when offload
completes

Non-copied data nocopy(var-list

modifiers)
Data is local to target

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Syntax of Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 103 C-DAC hyPACK-2013

The following (optional) modifiers are specified:

Modifier Syntax Semantic
Specify copy length length(N) Copy N elements of

pointer’s type
Coprocessor memory
allocation

alloc_if (bool) Allocate coprocessor space
on this offload (default:
TRUE)

Coprocessor memory
release

free_if (bool) Free coprocessor space at
the end of this offload (default:
TRUE)

Control target data
alignment

align (N bytes) Specify minimum memory
alignment on coprocessor

Array partial allocation
& variable relocation

alloc (array-slice)

into (var-expr)
Enables partial array allocation
and data copy into
other vars & ranges

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Syntax of Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 104 C-DAC hyPACK-2013

#pragma omp parallel

 {

#pragma omp sections

 {

#pragma omp section

 {

//section running on the coprocessor

#pragma offload target(mic) in(a,b:length(n*n)) inout(c:length(n*n))

 {

 mxm(n,a,b,c);

 }

 }

#pragma omp section

 {

//section running on the host

mxm(n,d,e,f);

 }

 }

}

Explicit Worksharing

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Xeon-Phi Coprocessors : An Overview 105 C-DAC hyPACK-2013

 The main bottleneck of accelerator based programming
are data transfers over the slow PCIe bus from the host
to the accelerator and vice versa.

 To increase the performance one should minimize data
transfers as much as possible and keep the data on the
coprocessor between computations using the same data.

 Defining the following macros

#define ALLOC alloc_if(1)

#define FREE free_if(1)

#define RETAIN free_if(0)

#define REUSE alloc_if(0)

Persistent data on the coprocessor

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 106 C-DAC hyPACK-2013

 The main bottleneck of accelerator based programming are
data transfers over the slow PCIe bus from the host to the
accelerator and vice versa.

 one can simply use the following notation: to allocate data
and keep it for the next offload

#pragma offload target(mic)in (p:length(l) ALLOC RETAIN)

 to reuse the data and still keep it on the coprocessor
#pragma offload target(mic)in (p:length(l) REUSE RETAIN)

 to reuse the data again and free the memory. (FREE is the
default, and does not need to be explicitly specified)

#pragma offload target(mic) in (p:length(l) REUSE FREE)

More information can be found in the section "Managing Memory Allocation
for Pointer Variables" under "Offload Using a Pragma"

Persistent data on the coprocessor

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Xeon-Phi Coprocessors : An Overview 107 C-DAC hyPACK-2013

 Optimizing offloaded code

 The implementation of the matrix-matrix
multiplication can be optimized by defining
appropriate ROWCHUNK and COLCHUNK
chunk sizes.

 Rewrite the code with 6 nested loops (using
OpenMP col-apse for the 2 outermost loops)
and some manual loop unrolling

Optimised Offloaded Code

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 108 C-DAC hyPACK-2013

#define ROWCHUNK 96

#define COLCHUNK 96

#pragma omp parallel for collapse(2) private(i,j,k)

 for(i = 0; i < n; i+=ROWCHUNK) {

 for(j = 0; j < n; j+=ROWCHUNK) {

 for(k = 0; k < n; k+=COLCHUNK) {

 for (ii = i; ii < i+ROWCHUNK; ii+=6) {

 for (kk = k; kk < k+COLCHUNK; kk++) {

#pragma ivdep

#pragma vector aligned

 for (jj = j; jj < j+ROWCHUNK; jj++){

 c[(ii*n)+jj] += a[(ii*n)+kk]*b[kk*n+jj];

 c[((ii+1)*n)+jj] += a[((ii+1)*n)+kk]*b[kk*n+jj];

 c[((ii+2)*n)+jj] += a[((ii+2)*n)+kk]*b[kk*n+jj];

 c[((ii+3)*n)+jj] += a[((ii+3)*n)+kk]*b[kk*n+jj];

 c[((ii+4)*n)+jj] += a[((ii+4)*n)+kk]*b[kk*n+jj];

 c[((ii+5)*n)+jj] += a[((ii+5)*n)+kk]*b[kk*n+jj];

 }

 }

 }

 }

 }

 }

}

Optimizing Offloaded Code

Intel Xeon Phi : Coprocessors – Intel Compiler’s

Offload Programs

Xeon-Phi Coprocessors : An Overview 109 C-DAC hyPACK-2013

Compiler-based Vectorization

Intel Xeon Phi Coprocessors :

Compilation and Vectorization

Part-2

Xeon-Phi Coprocessors : An Overview 110 C-DAC hyPACK-2013

Use Compiler Optimization Switches

Optimization Done Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program -fast
(same as: -ipo –O3 -no-

prec-div -static -xHost)

OpenMP 3.0 support -openmp

Automatic parallelization -parallel

110

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 111 C-DAC hyPACK-2013

Compiler Reports – Optimization Report

Compiler switch:
-opt-report-phase[=phase]

phase can be:

 ipo_inl - Interprocedural Optimization Inlining Report

 ilo – Intermediate Language Scalar Optimization

 hpo – High Performance Optimization

 hlo – High-level Optimization

 all – All optimizations (not recommended, output too verbose)

Control the level of detail in the report:

-opt-report[0|1|2|3]

If you do not specify the option, no optimization report is being generated; if you do not
specify the level (i.e. -opt-report) level 2 is being used by the compiler.

111

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 112 C-DAC hyPACK-2013

Compiler-Based Autovectorization

 Compiler recreate vector instructions from the serial Program

 Compiler make decisions based on some assumption

 The programmer reassures the compiler on those assumptions

 The compiler takes the directives and compares them with its
analysis of the code

112

 Compiler checks for

 Is “*p” loop invariant?

 Are a, b, and c loop invariant?

 Does a[] overlap with b[], c[], and/or sum?

 Is “+” operator associative? (Does the order of “add”s matter?)

 Vector computation on the target expected to be faster than scalar
code?

#pragma simd

reduction(+:sum)

for(i=0;i<*p;i++) {

 a[i] = b[i]*c[i];

 sum = sum + a[i];

}

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 113 C-DAC hyPACK-2013

 Compiler checks for

 Is “*p” loop invariant?

 Are a, b, and c loop invariant?

 Does a[] overlap with b[], c[], and/or sum?

 Is “+” operator associative? (Does the order of “add”s
matter?)

 Vector computation on the target expected to be faster than
scalar code?

 Compiler Confirms this loop :

 “*p” is loop invariant

 a[] is not aliased with b[], c[], and sum

 sum is not aliased with b[] and c[]

 “+” operation on sum is associative (Compiler can reorder the
“add”s on sum)

 Vector code to be generated even if it could be slower than
scalar code

Compiler-Based Autovectorization

Xeon-Phi Coprocessors : An Overview 114 C-DAC hyPACK-2013

Compiler-Based Autovectorization

 Compiler recreate vector instructions from the serial Program

 Compiler make decisions based on some assumption

 The programmer reassures the compiler on those assumptions
 The compiler takes the directives and compares them with its analysis of the code

114

 Compiler checks for

 Is “*p” loop invariant?

 Are a, b, and c loop invariant?

 Does a[] overlap with b[], c[], and/or sum?

 Is “+” operator associative? (Does the order of “add”s matter?)

 Vector computation on the target expected to be faster than scalar code?

for(i=0;i<*p;i++) {

 a[i] = b[i]*c[i];

 sum = sum + a[i];

}

#pragma simd reduction(+:sum)

for(i=0;i<*p;i++) {

 a[i] = b[i]*c[i];

 sum = sum + a[i];

}

 Compiler Confirms this loop :

 “*p” is loop invariant

 a[] is not aliased with b[], c[], and sum

 sum is not aliased with b[] and c[]

 “+” operation on sum is associative (Compiler can reorder the “add”s on sum)

 Vector code to be generated even if it could be slower than scalar code

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 115 C-DAC hyPACK-2013
115

#pragma Semantics

#pragma ivdep Ignore vector dependences unless they are
proven by the compiler

#pragma vector always
[assert]

If the loop is vectorizable, ignore any benefit
analysis
If the loop did not vectorize, give a compile-time
error message via assert

#pragma novector Specifies that a loop should never be vectorized,
even if it is legal to do so, when avoiding
vectorization of a loop is desirable (when
vectorization results in a performance
regression)

Hints to Compiler for Vectorization Opportunities

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 116 C-DAC hyPACK-2013
116

#pragma Semantics

#pragma vector aligned /
unaligned

instructs the compiler to use
aligned (unaligned) data movement
instructions for all array references
when vectorizing

#pragma vector temporal
/ nontemporal

directs the compiler to use
temporal/non-temporal (that is,
streaming) stores on systems based
on IA-32 and Intel® 64
architectures; optionally takes a
comma separated list of variables

Hints to Compiler for Vectorization Opportunities

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 117 C-DAC hyPACK-2013

#pragma Semantics

#pragma ivdep Ignore vector dependences unless they are proven by the
compiler

#pragma vector always [assert] If the loop is vectorizable, ignore any benefit analysis
If the loop did not vectorize, give a compile-time error
message via assert

#pragma novector Specifies that a loop should never be vectorized, even if it
is legal to do so, when avoiding vectorization of a loop is
desirable (when vectorization results in a performance
regression)

#pragma vector aligned / unaligned instructs the compiler to use aligned (unaligned) data
movement instructions for all array references when
vectorizing

#pragma vector temporal /
nontemporal

directs the compiler to use temporal/non-temporal (that
is, streaming) stores on systems based on IA-32 and Intel®
64 architectures; optionally takes a comma separated list
of variables

Hints to Compiler for Vectorization

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 118 C-DAC hyPACK-2013

Compiler VEC report

 Indicates whether each loop is vectorized
 Vectorized ≠ efficient

 Different levels
 -vec-report1, for high-level triage of large code
 -vec-report2, when you want reasons for not vectorizing
 -vec-report6, for even more detail, e.g. misalignment

 Indicates reasons for not vectorizing
 Unsupported datatype rewrite to use 32b indices vs. 64b

 Line numbers may not be what you expect
 Inlining
 Loop distribution, interchange, unrolling, collapsing

118

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 119 C-DAC hyPACK-2013

Compiler OPT report - contents

 Control over static reports
 -opt-report [n=0-3] enables varying levels of detail
 -opt-report-phase=[several options] enables specific detail

 Reveals info on various compiler optimization
 Offloaded variables, –opt-report-phase=offload
 Inlining, Vectorization
 OpenMP parallelization, auto-parallelization
 Loop permutations, loop distribution, loop distribution
 Multiversioning of loops performed by compiler

 Dynamic dependence checking, unit-stride for assumed shape arrays, trip-
count checks, etc.

 Prefetching
 Blocking, unrolling, jamming
 Whole-program optimization

119

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 120 C-DAC hyPACK-2013

#include <math.h>

void quad(int length, float *a, float *b, float *c, \

 float *restrict x1, float *restrict x2)

{

 for (int i=0; i<length; i++) {

 float s = b[i]*b[i] - 4*a[i]*c[i];

 if (s >= 0) {

 s = sqrt(s) ;

 x2[i] = (-b[i]+s)/(2.*a[i]);

 x1[i] = (-b[i]-s)/(2.*a[i]);

 }

 else {

 x2[i] = 0.;

 x1[i] = 0.;

 }

 }

}

Use Compiler Optimization Switches

>cc -c -restrict -vec-report2 quad.cpp

> quad5.cpp(5) (col. 3): remark: LOOP WAS VECTORIZED. VE

Xeon-Phi Coprocessors : An Overview 121 C-DAC hyPACK-2013

Get Your Code Vectorized by Intel Compiler

 Data Layout, AOS -> SOA

 Data Alignment (next slide)

 Make the loop innermost

 Function call in treatment

 Inline yourself

 inline! Use __forceinline

 Define your own vector version

 Call vector math library - SVML

 Adopt jumpless algorithm

 Read/Write is OK if it’s continuous

 Loop carried dependency

for(int i = TIMESTEPS; i > 0; i--)

#pragma simd

#pragma unroll(4)

for(int j = 0; j <= i - 1; j++)

 cell[j]=puXDf*cell[j+1]+pdXDf*cell[j];

CallResult[opt] = (Basetype)cell[0];

for (j=1; j<MAX; j++)

 a[j] = a[j] + c * a[j-n];

Not a true dependency

A true dependency

Array of Structures

S0 X0 T0

S1 X1 T1

… … …

Structure of Arrays

S0 S1 …

X0 X1 …

S0 S1 …

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 122 C-DAC hyPACK-2013

Prefetch on Intel Multicore and Manycore

 Objective: Move data from memory to L1 or L2 Cache in
anticipation of CPU Load/Store

 More import on in-order Intel Xeon Phi Coprocessor

 Less important on out of order Intel Xeon Processor

 Compiler prefetching is on by default for Intel® Xeon Phi™
coprocessors at –O2 and above

 Compiler prefetch is not enabled by default on Intel® Xeon®
Processors
 Use external options –opt-prefetch[=n] n = 1.. 4

 Use the compiler reporting options to see detailed diagnostics of
prefetching per loop
 Use -opt-report-phase hlo –opt-report 3

122

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 123 C-DAC hyPACK-2013

Automatic Prefetches

Loop Prefetch

 Compiler generated prefetches target memory access in a
future iteration of the loop

 Target regular, predictable array and pointer access

Interactions with Hardware prefetcher

 Intel® Xeon Phi™ Comprocessor has a hardware L2 prefetcher

 If Software prefetches are doing a good job, Hardware
prefetching does not kick in

 References not prefetched by compiler may get prefetched by
hardware prefetcher

123

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 124 C-DAC hyPACK-2013

Explicit Prefetch

 Use Intrinsics
 _mm_prefetch((char *) &a[i], hint);

See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)
 But you have to specify the prefetch distance
 Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler

user guide, e.g. _mm512_prefetch_i32gather_ps

 Use a pragma / directive (easier):
 #pragma prefetch a [:hint[:distance]]
 You specify what to prefetch, but can choose to let compiler figure

out how far ahead to do it.

 Use Compiler switches:
 -opt-prefetch-distance=n1[,n2]
 specify the prefetch distance (how many iterations ahead, use n1 and

prefetches inside loops. n1 indicates distance from memory to L2.

124

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 125 C-DAC hyPACK-2013

Memory Alignment

 Allocated memory on heap

 _mm_malloc(int size, int aligned)

 scalable_aligned_malloc(int size, int aligned)

 Declarations memory:

 __attribute__((aligned(n))) float v1[];

 __declspec(align(n)) float v2[];

 Use this to notify compiler

 __assume_aligned(array, n);

 Natural boundary

 Unaligned access can fault the processor

 Cacheline Boundary

 Frequently accessed data should be in 64

 4K boundary

 Sequentially accessed large data should be in 4K boundary

125

Instruction Length Alignment

SSE 128 Bits 16 Bytes

AVX 256 Bits 32 Bytes

IMCI 512 Bits 64 Bytes

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 126 C-DAC hyPACK-2013

Streaming Store

 Avoid read for ownership for certain memory write operation

 Bypass prefetch related to the memory read

 Use #pragma vector nontemporal(v1,…) to drop a hint to compiler

 Without Streaming Stores 448 Bytes read/write per iteration

126

for (int chunkBase = 0; chunkBase < OptPerThread; chunkBase +=
CHUNKSIZE)

{

#pragma simd vectorlength(CHUNKSIZE)

#pragma simd

#pragma vector aligned

#pragma vector nontemporal (CallResult, PutResult)

 for(int opt = chunkBase; opt < (chunkBase+CHUNKSIZE); opt++)

 {

 float CNDD1;

 float CNDD2;

 float CallVal =0.0f, PutVal = 0.0f;

 float T = OptionYears[opt];

 float X = OptionStrike[opt];

 float S = StockPrice[opt];

 ……

 CallVal = S * CNDD1 - XexpRT * CNDD2;

 PutVal = CallVal + XexpRT - S;

 CallResult[opt] = CallVal ;

 PutResult[opt] = PutVal ;

 }

}

 With Streaming Stores, 320
Bytes read/write per
iteration

 Relief Bandwidth pressure;
improve cache utilization

 –vec-report6 displays
the compiler action

bs_test_sp.c(215): (col. 4) remark: vectorization support:
streaming store was generated for CallResult.

bs_test_sp.c(216): (col. 4) remark: vectorization support:
streaming store was generated for PutResult.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 127 C-DAC hyPACK-2013

Data Blocking

 Partition data to small blocks that fits in L2 Cache
 Exploit data reuse in the application.
 Ensure the data remains in the cache across multiple uses
 Using the data in cache remove the need to go to memory
 Bandwidth limited program may execute at FLOPS limit

 Simple case of 1D
 Data size DATA_N is used WORK_N times from 100s of threads
 Each handles a piece of work and have to traverse all data

 Without Blocking

127

#pragma omp parallel for

for(int wrk = 0; wrk < WORK_N; wrk++)

{

 initialize_the_work(wrk);

 for(int ind = 0; ind < DATA_N; ind++)

 {

 dataptr datavalue = read_data(dataind);

 result = compute(datavalue);

 aggregate = combine(aggregate, result);

 }

 postprocess_work(aggregate);

}

for(int BBase = 0; BBase < DATA_N; BBase += BSIZE)

{

#pragma omp parallel for

 for(int wrk = 0; wrk < WORK_N; wrk++)

 {

 initialize_the_work(wrk);

 for(int ind = BBase; ind < BBase+BSIZE; ind++)

 {

 dataptr datavalue = read_data(ind);

 result = compute(datavalue);

 aggregate[wrk] = combine(aggregate[wrk], result);

 }

 postprocess_work(aggregate[wrk]);

 }

}

 100s of thread pound on different
area of DATA_N

 Memory interconnet limit the
performance

 Cacheable BSIZE of data is processed by all
100s threads a time

 Each data is read once kept reusing until all
threads are done with it

With Blocking

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 128 C-DAC hyPACK-2013

Offload Code Examples

 C/C+ Offload Pragma
#pragma offload target (mic)

#pragma omp parallel for reduction(+:pi)

 for (i = 0; i<count; i++) {

 float t = (float) (i+0.5/count);

 pi += 4.0/(1.0t*t);

 }

pi/ = count;

 C/C++ Offload Pragma
#pragma offload target(mic)

 in(transa, transb, N, alpha, beta) \

 in(A:length(matrix_elements)) \

 in(B:length(matrix_elements)) \

 inout(C:length(matrix_elements))

 sgemm(&transa, &transb, &N, &N, &N,
& alpha, A, &N, B, & N, &beta, C &N);

 Fortran Offload Directives
!dir$ omp offload target(mic)

!$omp parallel do

 do i = 1, 10

 A(i) = B(i) * C(i)

 enddo

 C/C++ Language Extension
class_Cilk_Shated common {

 int data1;

 int *data2;

 class common *next;

 void process();

}

_Cilk_Shared class common obj1, obj2;

_Cilk_spawn _offload obj1.process();

_Cilk_spawn _offload obj2.process();

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 129 C-DAC hyPACK-2013

Summary: Tricks for Performance

 Use asynchronous data transfer and double buffering offloads
to overlap the communication with the computation

 Optimizing memory use on Intel MIC architecture target relies
on understanding access patterns

 Many old tricks still apply: peeling, collapsing, unrolling,
vectorization can all benefit performance

Xeon-Phi Coprocessors : An Overview 130 C-DAC hyPACK-2013

Conclusions

 An Overview of Intel Xeon-Phi Compilation & Vectorisation
techniques are discussed

Xeon-Phi Coprocessors : An Overview 131 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

MKL (Math Kernel Library)
Part-3

Xeon-Phi Coprocessors : An Overview 132 C-DAC hyPACK-2013

Simple way to Jobs using Intel MKL (Math Kernel Library)

Details on using MKL (11.0) with Intel Xeon Phi co-processors
can be found in references. Also the MKL developer zone
contains useful information.

Intel MKL 11.0 Update 2 the following functions are highly
optimized for the Intel Xeon Phi coprocessor:

 BLAS Level 3, and much of Level 1 & 2

 Sparse BLAS:

 Some important LAPACK routines (LU, QR, Cholesky)

 Fast Fourier Transformations

 Vector Math Library

 Random number generators in the Vector Statistical Library

Remark : All functions can be used on the Xeon Phi, however
the optimization level for wider 512-bit SIMD instructions differs.

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 133 C-DAC hyPACK-2013

 On Xeon Phi coprocessor, the following usage models of
MKL are available :

 Automatic Offload

 Compiler Assisted Offload

 Native Execution

To know more about the availability of various functions for
above usage models, Please refer MKL documents

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 134 C-DAC hyPACK-2013

Automatic Offload (AO) :

 In the case of automatic offload the user does not have to
change the code at all.

 For automatic offload enabled functions the runtime may
automatically download data to the Xeon Phi coprocessor
and execute (all or part of) the computations there.

 The data transfer and the execution management is
completely automatic and transparent

Intel Xeon-Phi Coprocessors (Intel MKL)

Remark : The matrix sizes for which MKL decides to offload
the computation should be indicated in function statement.
Refer Intel MKL documents

Xeon-Phi Coprocessors : An Overview 135 C-DAC hyPACK-2013

Automatic Offload (AO) :

 Approach 1 : call the function mkl_mic_enable()
within the source code

 Approach 2 : Set the environment variable
MKL_MIC_ENABLE =1

The data transfer and the execution management is
completely automatic and transparent

Intel Xeon-Phi Coprocessors (Intel MKL)

Remark : If no Xeon Phi coprocessor is detected the
application runs on the host without penalty.

Xeon-Phi Coprocessors : An Overview 136 C-DAC hyPACK-2013

Automatic Offload (AO) : To build a program for automatic
offload, the same way of building code as on the Xeon host is
used:

 icc -O3 -mkl file.c -o file

By default, the MKL library decides when to offload and also
tries to determine the optimal work division between the host
and the targets . In case of the BLAS routines the user can
specify the work division between the host and the coprocessor
by calling the routine

mkl_mic_set_Workdivision(MKL_TARGET_MIC,0,0.5)

or by setting the environment variable

MKL_MIC_0_WORKDIVISION=0.5

Both examples specify to offload 50% of computation only to
the 1st card (card #0).

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 137 C-DAC hyPACK-2013

Compiler Assisted Offload (CAO) : In this mode of MKL the
offloading is explicitly controlled by compiler pragmas or
directives.

Advantage :

1. A big advantage of this mode is that it allows for data
persistence on the device.

2. All MKL function can be offloaded in CAO-mode. (In contrast
to the automatic offload mode.)

Remarks :

 For Intel compilers it is possible to use AO and CAO in the
same program, however the work division must be explicitly
set for AO in this case. Otherwise, all MKL AO calls are
executed on the host.

MKL functions are offloaded in the same way as any other
offloaded function.

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 138 C-DAC hyPACK-2013

Compiler Assisted Offload (CAO) : To build a program for
compiler assisted offload, the following command is
recommended by Intel:

 #pragma offload target(mic) \

 in(transa, transb, N, alpha, beta) \

 in(A:length(N*N)) in(B:length(N*N)) \

 in(C:length(N*N)) \

 out(C:length(N*N) alloc_if(0))

{

 sgemm(&transa, &transb, &N, &N, &N, \

 &alpha, A, &N, B, &N, &beta, C, &N);

}

Remarks :. Refer Intel MKL documents

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 139 C-DAC hyPACK-2013

Compiler Assisted Offload (CAO) : To build a program for
compiler assisted offload, the following command is
recommended by Intel:

 icc –O3 -openmp -mkl \

–offload-option,mic,ld, \

 “-L$MKLROOT/lib/mic -Wl,\

 --start-group -lmkl_intel_lp64 \

 -lmkl_intel_thread \

 -lmkl_core -Wl,--end-group” \

 hello.c –o file

Remarks : Setting larger pages by the environment setting
MIC_USE_2MB_BUFFERS=16K usually increases performance. It
is also recommended to exploit data persistence with CAO. Refer
Intel MKL documents

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 140 C-DAC hyPACK-2013

Native Execution : In this mode of MKL the Intel Xeon Phi
coprocessor is used as an independent compute node.

To build a program for native mode, the following compiler
settings should be used:

 icc -O3 -mkl -mmic file.c -o file

Example code : Example code can be found under

$MKLROOT/examples/mic_ao and

$MKLROOT/examples/mic_offload

Remarks : The binary must then be manually copied to the
coprocessor via ssh and directly started on the coprocessor or
Cluster environment automatically copy the data

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 141 C-DAC hyPACK-2013

Native Execution : In this mode of MKL the Intel Xeon Phi
coprocessor is used as an independent compute node.

To build a program for native mode, the following compiler
settings should be used:

 icc -O3 -mkl -mmic file.c -o file

Example code : Example code can be found under

$MKLROOT/examples/mic_ao and

$MKLROOT/examples/mic_offload

Remarks : The binary must then be manually copied to the
coprocessor via ssh and directly started on the coprocessor or
Cluster environment automatically copy the data

Intel Xeon-Phi Coprocessors (Intel MKL)

Xeon-Phi Coprocessors : An Overview 142 C-DAC hyPACK-2013

Summary: Tricks for Performance

 Use asynchronous data transfer and double buffering
offloads to overlap the communication with the
computation

 Optimizing memory use on Intel MIC architecture
target relies on understanding access patterns

 Many old tricks still apply: peeling, collapsing,
unrolling, vectorization can all benefit performance

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi Coprocessors (Intel MKL)

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 143 C-DAC hyPACK-2013

 An Overview of Intel Xeon-Phi Architecture; Tuning &
Performance of Software threading- using MKL

Conclusions

An Overview of Intel Xeon-Phi Coprocessors

Xeon-Phi Coprocessors : An Overview 144 C-DAC hyPACK-2013

 This slide is intentionally kept Blank

Xeon-Phi Coprocessors : An Overview 145 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

POSIX Threads
Part-3

Xeon-Phi Coprocessors : An Overview 146 C-DAC hyPACK-2013

Options for Parallelism – pthreads*

 POSIX* Standard for thread API with 20 years history

 Foundation for other high level threading libraries

 Independently exist on the host and Intel® MIC

 No extension to go from the host to Intel® MIC

 Advantage: Programmer has explicit control

 From workload partition to thread creation,

synchronization, load balance, affinity settings, etc.

 Disadvantage: Programmer has too much control

 Code longevity

 Maintainability

 Scalability

146

Source : References & Intel Xeon-Phi; http://www.intel.com/

Prog.API - Multi-Core Systems with Devices

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 147 C-DAC hyPACK-2013

 Partition the workload to avoid load imbalance
 Understand static vs. dynamic workload partition

 Use pthread API, define, initialize, set, destroy
 Set CPU affinity with pthead_setaffinity_np()
 Know the thread enumeration and avoid core 0
 Core 0 boots the coprocessor, job scheduler, service interrupts

Core 0

0

2
4

1

2
4

2

2
4

3

Core 1

4

1

2

3

Core 2

8

5

6

7

Core 60

2
4

0

2
3

7

2
3

8

2
3

9

Thread Affinity using pthreads*

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 148 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

OpenMP
Part-3

Xeon-Phi Coprocessors : An Overview 149 C-DAC hyPACK-2013

OpenMP parallelization on an “Intel Xeon + Xeon
Phi coprocessor machine” can be applied in
four different programming models.

Realized with Complier Options

Intel Xeon-Phi : OpenMP I Prog. Model

Application

Host Coprocessor

OpenMP

Xeon-Phi Coprocessors : An Overview 150 C-DAC hyPACK-2013

Native OpenMP on the
Xeon host

Serial Xeon host with
OpenMP offload

Native OpenMP on the
Xeon Phi coprocessor

OpenMP on the Xeon
Host with OpenMP
offload

Intel Xeon-Phi : OpenMP I Prog. Model

Application

Xeon

Host

Xeon-Phi

Coprocessor

Four Models with different programming models

Xeon-Phi Coprocessors : An Overview 151 C-DAC hyPACK-2013

Options for Parallelism – OpenMP*

 Compiler directives/pragmas based threading constructs
 Utility library functions and Environment variables

 Specify blocks of code executing in parallel

 Fork-Join Parallelism:
 Master thread spawns a team of worker threads as needed
 Parallelism grow incrementally

151

Parallel Regions Master Thread

#pragma omp parallel sections

{

 #pragma omp section

 task1();

 #pragma omp section

 task2();

 #pragma omp section

 task3();

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : OpenMP I Prog. Model

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 152 C-DAC hyPACK-2013

OpenMP Evolution Beyond 1,00,000 cores

 OpenMP language committee is actively working toward
the expression of locality and heterogeneity

 And to improve task model to enhance asynchrony

 How to identify code that should
run on a certain kind of core?

 How to share data between host
cores and other devices?

 How to minimize data motion?

 How to support diversity of cores?

generic
core

generic
core

Special
ized
core

Special
ized
core

Control and
data transfers

Intel Xeon-Phi : OpenMP I Prog. Model

Xeon-Phi Coprocessors : An Overview 153 C-DAC hyPACK-2013

OpenMP parallelization on an “Intel Xeon + Xeon
Phi coprocessor machine” can be applied in
four different programming models.

Realized with Complier Options

Intel Xeon-Phi : OpenMP I Prog. Model

Xeon-Phi Coprocessors : An Overview 154 C-DAC hyPACK-2013

Remark :

OpenMP threads on Xeon Host and OpenMP
threads on Xeon Phi do not interface each other
and when an offload/pragma section of the code
is encountered

Offloaded as a Unit and uses a number of
threads based on available resources on Xeon
Phi coprocessor

 Usual semantics of OpenMP Constructs apply
on Xeon host and Xeon-Phi Coprocessor

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 155 C-DAC hyPACK-2013

Remark :

Offload to the Xeon Phi coprocessor can be
done at any time by multiple host CPUs until the
filling of the available resources.

 If there are no free threads, the task meant to be
offloaded may be done on the host.

 For offload schemes, the maximal amount of
threads that can be used on the Xeon Phi
coprocessor is 4 times the total number of cores
minus one, because one core is reserved for
the OS and its services.

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 156 C-DAC hyPACK-2013

Settings Description

OpenMP on host without HT 1 x ncore-host

OpenMP on host with HT 2 x ncore-host

OpenMP on Xeon Phi in native mode 4 x ncore-phi

OpenMP on Xeon Phi in offload mode 1 x ncore-phi-1

Threading and affinity : Settings :

• If OpenMP regions exist on the host and on the part of the code offloaded to

the Xeon Phi, two separate OpenMP runtimes exist.

Intel Xeon-Phi Coprocessor : MPI on Cluster

Xeon-Phi Coprocessors : An Overview 157 C-DAC hyPACK-2013

Threading and affinity

 Important Considerations for OpenMP threading
and affinity are the total number of threads that
should be utilized and the scheme for binding
threads to processor cores.

 The Xeon Phi coprocessor supports 4 threads per
core.

 Using more than one core is recommended.

 When running applications natively on the Xeon
Phi the full amount of threads can be used.

 On Xeon host, benefit from hyper-threading exists.

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 158 C-DAC hyPACK-2013

Settings Description

OpenMP on host without HT 1 x ncore-host

OpenMP on host with HT 2 x ncore-host

OpenMP on Xeon Phi in native mode 4 x ncore-phi

OpenMP on Xeon Phi in offload mode 1 x ncore-phi-1

Threading and affinity : Settings :

• If OpenMP regions exist on the host and on the part of the code offloaded to

the Xeon Phi, two separate OpenMP runtimes exist.

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 159 C-DAC hyPACK-2013

Threading and affinity

 Environment variables for controlling OpenMP
behavior are to be set for both runtimes

For example

 the KMP_AFFINITY variable which can be used to
assign a particular thread to a particular physical
node. For

 Intel Xeon Phi it can be done like this:

 export MIC_ENV_PREFIX=MIC

Intel Xeon-Phi : OpenMP Prog. Model

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 160 C-DAC hyPACK-2013

Threading and affinity

export MIC_ENV_PREFIX=MIC

#specify affinity for all cards

export MIC_KMP_AFFINITY=...

#specify number of threads for all cards

export MIC_OMP_NUM_THREADS=120

#specify the number of threads for card #2

export MIC_2_OMP_NUM_THREADS=200

#specify number of threads and affinity for card #3

export MIC_3_ENV="OMP_NUM_THREADS=60 |

 KMP_AFFINITY=balanced"

Intel Xeon-Phi : OpenMPI Prog. Model

Xeon-Phi Coprocessors : An Overview 161 C-DAC hyPACK-2013

Threading and affinity

One can also use special API calls to set the
environment for the coprocessor only, e.g.

omp_set_num_threads_target()

omp_set_nested_target()

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 162 C-DAC hyPACK-2013

Loop Scheduling

 OpenMP accepts four different kinds of loop
scheduling - static, dynamic, guided & auto.

 The schedule clause can be used to set the loop
scheduling at compile time.

 Another way to control this feature is to specify
schedule(runtime) in your code and select the loop
scheduling at runtime through setting the
OMP_SCHEDULE environment variable.

Intel Xeon-Phi : OpenMP Prog. Model

Xeon-Phi Coprocessors : An Overview 163 C-DAC hyPACK-2013

Scalability

 Use -collapse directive to specify how many for-

loops are associated with the OpenMP loop construct

 Another way to improve scalability is to reduce barrier
synchronization overheads by using the nowait
directive.

 Another way to control this feature is to specify
schedule(runtime) in your code and select the loop
scheduling at runtime through setting the

OMP_SCHEDULE environment variable.

Intel Xeon-Phi : OpenMP Prog. Model

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 164 C-DAC hyPACK-2013

Setting Up the MPI Environment
The following commands have to be executed to set up the MPI
environment:

copy MPI libraries and binaries to the card (as root)

only copying really necessary files saves memory
scp /opt/intel/impi/4.1.0.024/mic/lib/* mic0:/lib

scp /opt/intel/impi/4.1.0.024/mic/bin/* mic0:/bin

setup Intel compiler variables
. /opt/intel/composerxe/bin/compilervars.sh intel64

setup Intel MPI variables
. /opt/intel/impi/4.1.0.024/bin64/mpivars.sh

Intel Xeon-Phi : MPI Prog. Model

Xeon-Phi Coprocessors : An Overview 165 C-DAC hyPACK-2013

Programming Models

Two Major Approaches

1. A MPI offload approach (MPI ranks reside on the
host CPU and work is offloaded to the Xeon Phi
Coprocessor

1. A symmetric approach in which MPI ranks reside
both on the CPU and on the Xeon Phi.

AMPI program can be structured using either
model

Intel Xeon-Phi : Hybrid MPI/OpenMP

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 166 C-DAC hyPACK-2013

Programming Models : Threading of MPI ranks

1. For hybrid OpenMP/MPI applications use the
thread safe version of the Intel MPI Library by using
the -mt_mpi compiler driver option.

2. A desired process pinning scheme can be set with
the I_MPI_PIN_DOMAIN environment variable. It
is recommended to use the following setting:

 $exportI_MPI_PIN_DOMAIN = omp

By using this, one sets the process pinning domain
size to be OMP_NUM_THREADS. In this way, every
MPI process is able to create $OMP_NUM_THREADS
number of threads that will run within the
corresponding domain.

Intel Xeon-Phi : Hybrid MPI/OpenMP

Xeon-Phi Coprocessors : An Overview 167 C-DAC hyPACK-2013

Programming Models : Threading of MPI ranks

It is recommended to use the following setting:

 $exportI_MPI_PIN_DOMAIN = omp

 Using this, one sets the process pinning domain size
to be OMP_NUM_THREADS.Every MPI process is
able to create $OMP_NUM_THREADS no. of threads
that will run within the corresponding domain.

 If this variable is not set, each process will create a
number of threads per MPI process equal to the no.
of cores (treated as a separate domain.)

 To pin OpenMP threads within a particular domain,
one could use the KMP_AFFINITY environment
variable

Intel Xeon-Phi : Hybrid MPI/OpenMP

Xeon-Phi Coprocessors : An Overview 168 C-DAC hyPACK-2013

Setting up the MPI environment :
Details about using the Intel MPI library on Xeon Phi coprocessor
systems can be found in references

The following commands have to be executed to set up the MPI
environment:

copy MPI libraries and binaries to the card (as root)

only copying really necessary files saves memory

scp /opt/intel/impi/4.1.0.024/mic/lib/* mic0:/lib

scp /opt/intel/impi/4.1.0.024/mic/bin/* mic0:/bin

setup Intel compiler variables

. /opt/intel/composerxe/bin/compilervars.sh intel64

setup Intel MPI variables

. /opt/intel/impi/4.1.0.024/bin64/mpivars.sh

Intel Xeon-Phi : MPI Programming Model

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 169 C-DAC hyPACK-2013

Fabric

Name

Description

shm Shared-memory

tcp TCP/IP-capable network fabrics, such as Ethernet and

InfiniBand (through IPoIB)

ofa OFA-capable network fabric including InfiniBand (through

OFED verbs)

dapl DAPL–capable network fabrics, such as InfiniBand, iWarp,

Dolphin, and XPMEM (through DAPL)

Network Fabric : The following network fabrics are available for the Intel Xeon

Phi coprocessor (Refer C-DAC PARAM YUVA Cluster)

The Intel MPI library tries to automatically use the best available network fabric

detected (usually shm for in-tra-node communication and InfiniBand (dapl, ofa) for

inter-node communication).

The default can be changed by setting the I_MPI_FABRICS environment variable

to I_MPI_FABRICS=<fabric> or I_MPI_FABRICS=<intra-node fabric>:<inter-nodes

fab-ric>. The availability is checked in the following order: shm:dapl, shm:ofa,

shm:tcp.

Intel Xeon-Phi Coprocessor : MPI on Cluster

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 170 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

Intel TBB
Part-3

Xeon-Phi Coprocessors : An Overview 171 C-DAC hyPACK-2013

 Rule of thumb : An application must scale well
past one hundred threads on Intel Xeon
processors to profit from the possible higher
parallel performance offered with e.g. the Intel
Xeon Phi coprocessor.

 The scaling would profit from utilising the highly
parallel capabilities of the MIC architecture, you
should start to create a simple performance
graph with a varying number of threads (from
one up to the number of cores)

Intel Xeon-Phi : Intel TBB Prog.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 172 C-DAC hyPACK-2013

 Rule of thumb : An application must scale well
past one hundred threads on Intel Xeon
processors to profit from the possible higher
parallel performance offered with e.g. the Intel
Xeon Phi coprocessor.

 The scaling would profit from utilising the highly
parallel capabilities of the MIC architecture, you
should start to create a simple performance
graph with a varying number of threads (from
one up to the number of cores)

Intel Xeon-Phi : Intel TBB Prog.

Xeon-Phi Coprocessors : An Overview 173 C-DAC hyPACK-2013

 What we should know from programming point
of view : We treat the coprocessor as a 64-bit x86
SMP-on-a-chip with an high-speed bi-directional
ring interconnect, (up to) four hardware threads
per core and 512-bit SIMD instructions.

 With the available number of cores, we have easily
200 hardware threads at hand on a single
coprocessor.

Intel Xeon-Phi : Intel TBB Prog.

Xeon-Phi Coprocessors : An Overview 174 C-DAC hyPACK-2013

About Hyper-Threading

 hyper-threading hardware threads can be
switched off and can be ignored.

Intel Xeon System & Xeon-Phi

About Threading on Xeon-Phi Coprocessor

 The multi-threading on each core is primarily
used to hide latencies that come implicitly with
an in-order microarchitecture. Unlike hyper-
threading these hardware threads cannot be
switched off and should never be ignored.

 In general a minimum of three or four active
threads per cores will be needed.

Xeon-Phi Coprocessors : An Overview 175 C-DAC hyPACK-2013

Intel TBB Advantages

 Intel TBB Generic Programming

 Intel TBB is easy to start

 Intel TBB obeys to logical parallelism:

 Intel TBB is compatible with other
programming models:

 The Intel TBB template-based approach –
Performance gain can be achieved.

Intel Xeon-Phi : Intel TBB Prog.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 176 C-DAC hyPACK-2013

Intel TBB : Using TBB NATIVELY
A minimal C++ TBB example looks as follows:

#include “tbb/task_scheduler_init.h”

#include “tbb/parallel_for.h”

#include "tbb/blocked_range.h"

using namespace tbb;

int main() {

task_scheduler_init init;

return 0;

}

Intel Xeon-Phi : Intel TBB Prog.

Xeon-Phi Coprocessors : An Overview 177 C-DAC hyPACK-2013

Intel TBB : Using TBB NATIVELY

 Scalable parallelism can be achieved by parallelizing a

loop of iterations that can each run independently from
each other. The parallel_for template function

replaces a serial loop

 A typical example would be to apply a function MatAdd
on all elements of an array over the iterations space of type
size_t going from 0 to n-1

Intel Xeon-Phi : Intel TBB Prog.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 178 C-DAC hyPACK-2013

Intel TBB : Using TBB NATIVELY
void SerialApplyMatAdd(float a[], size_t n) {

for(size_t i=0; i!=n; ++i)

 MatAdd(a[i]);

}

becomes

void ParallelApplyMatAdd(float a[],size_t n)

{

 parallel_for(size_t(0),n,[=](size_ti)

 {MatAdd(a[i]);});

}

Intel Xeon-Phi : Intel TBB Prog.

Compiling programs that employ TBB constructs, link in the
Intel TBB shared library with –ltbb.

icc -mmic –ltbb foo.cpp

Xeon-Phi Coprocessors : An Overview 179 C-DAC hyPACK-2013

Intel TBB : Using TBB OFFLOAD
The Intel TBB header files are not available on the Intel MIC
target environment by default (the same is also true for Intel
Cilk Plus). To make them available on the coprocessor the
header files have to be wrapped with

#pragma offloaddirectives as demonstrated in the
example below:

#pragma offload_attribute (push,target(mic))

#include “tbb/task_scheduler_init.h”

#include “tbb/parallel_for.h”

#include "tbb/blocked_range.h"

#pragma offload_attribute (pop)

Intel Xeon-Phi : Intel TBB Prog.

Xeon-Phi Coprocessors : An Overview 180 C-DAC hyPACK-2013

Intel TBB : Using TBB NATIVELY
Functions called from within the offloaded construct and
global data required on the Intel Xeon Phi coprocessor

should be appended by the special function attribute
__attribute__((target(mic))).

Codes using Intel TBB with an offload should be compiled
with -tbbflag instead of -ltbb.

Intel Xeon-Phi : Intel TBB Prog.

Compiling programs that employ TBB constructs, link in the
Intel TBB shared library with –ltbb.

icc -mmic –ltbb foo.cpp

Xeon-Phi Coprocessors : An Overview 181 C-DAC hyPACK-2013

 An Overview of Xeon-Phi Architectures,
Programming on based on Shared Address Space
Platforms – OpenMP, MPI, Intel TBB, Performance
of Software threading are discussed.

Conclusions

An Overview of Multi-Core Processors

Xeon-Phi Coprocessors : An Overview 182 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

Cilk Plus
Part-3

Xeon-Phi Coprocessors : An Overview 183 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

 MIT Cilk – The original research project from MIT , culminating in Cilk-

5.4.6. MIT Cilk was implemented as a source-to-source translator that
converts Cilk code to C and them compiled the resulting C source.

 Only supported C code with Cilk keywords

 All parallel functions had to be marked with a cilk keyword

 Cilk functions had to be spawned, not called

183

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 184 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

 Cilk++ - Compilers developed by Cilk Arts, Inc. Cilk Arts licensed the Cilk

technology from MIT.

 Only supported C++ code
 Used a non-standard calling convention, meaning you had to use

a cilk::context to
 call Cilk functions from C or C++
 Cilk files used the .cilk extension
 Released by Intel as unsupported software through the WhatIf site

184

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 185 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

 Cilk++ - Intel Cilk Plus – Fully integrated into the Intel C/C++ compiler

 Supports both C and C++

 Uses standard calling conventions

 Includes both task and data parallelism

185

Xeon-Phi Coprocessors : An Overview 186 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

 Why to use it ?
 Intel® Cilk™ Plus is the easiest, quickest way to harness the

power of both multicore and vector processing.

 What is it ?

 Intel Cilk Plus is an extension to the C and C++ languages to

support data

 Primary Features :
 HPC

 In efficient work-stealing scheduler provides nearly optimal

scheduling of parallel tasks

 Vector support unlocks the performance that's been hiding in

your processors

 Powerful hyperobjects allow for lock-free programming

186

Xeon-Phi Coprocessors : An Overview 187 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Primary Features :
 Easy to Learn

 Only 3 new keywords to implement task parallelism

 Serial semantics make understanding and debugging the

parallel program easier

 Array Notations provide a natural way to express data

parallelism

 Easy to Use

 Automatic load balancing provides good behaviour in multi-

programmed environments

 Existing algorithms easily adapted for parallelism with minimal

modification

 Supports both C and C++ programmers

187

Xeon-Phi Coprocessors : An Overview 188 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Primary Features :

Keywords : Simple, powerful expression of task parallelism:

• cilk_for - Parallelize for loops

• cilk_spawn - Specifies that a function can execute

inparallel with the remainder of the calling function

• cilk_sync - Specifies that all spawned calls in a function
must complete before execution continues

Xeon-Phi Coprocessors : An Overview 189 C-DAC hyPACK-2013

Other Options for Parallelism:
Intel® Cilk™ Plus

C/C++ extension for fine-grained task parallelism. 3 keywords:
_Cilk_spawn

 Function call may be run in parallel with caller – up to the runtime
_Cilk_sync

 Caller waits for all children to complete
_Cilk_for

 Iterations are structured into a work queue
 Busy cores do not execute the loop
 Idle cores steal work items from the queue
 Countable loop Granularity is N/2, N/4, N/8, for trip count of N
 Intended use:

 when iterations are not balanced, or
 When overall load is not known at design time

189

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 190 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Primary Features :

Keywords : Simple, powerful expression of task parallelism:

• Reducers: Eliminate contention for shared variables among

tasks by automatically creating views of them as needed
and "reducing" them in a lock free manner.

• Array Notation : Data parallelism for arrays or sections of
arrays.

• Elemental Functions : Define functions that can be
vectorized when called from within an array notation
expression or a #pragma simd loop

• #pragma simd: Specifies that a loop is to be vectorized

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 191 C-DAC hyPACK-2013

 Sequential
int fib(int n)

{

 if (n < 2)

 return n;

 int x = fib(n-1);

 int y = fib(n-2);

 return x + y;

 }

 (With Cilk Plust Key Words)
 int fib(int n)

{

 if (n < 2)

 return n;

 int x = cilk_spwan fib(n-1);

 int y = fib(n-2);

 cilk_sync;

 return x + y;

 }

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Prog. Env. Cilk Plus

Cilk Plus Keywords

cilk_spawn and cilk_sync:

Example of Fibonacci number calculator program

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 192 C-DAC hyPACK-2013

Offload Code Examples

 C/C+ Offload Pragma
#pragma offload target (mic)

#pragma omp parallel for reduction(+:pi)

 for (i = 0; i<count; i++) {

 float t = (float) (i+0.5/count);

 pi += 4.0/(1.0t*t);

 }

pi/ = count;

 C/C++ Offload Pragma
#pragma offload target(mic)

 in(transa, transb, N, alpha, beta) \

 in(A:length(matrix_elements)) \

 in(B:length(matrix_elements)) \

 inout(C:length(matrix_elements))

 sgemm(&transa, &transb, &N, &N, &N,
& alpha, A, &N, B, & N, &beta, C &N);

 Fortran Offload Directives
!dir$ omp offload target(mic)

!$omp parallel do

 do i = 1, 10

 A(i) = B(i) * C(i)

 enddo

 C/C++ Language Extension
class_Cilk_Shared common {

 int data1;

 int *data2;

 class common *next;

 void process();

}

_Cilk_Shared class common obj1, obj2;

_Cilk_spawn _offload obj1.process();

_Cilk_spawn _offload obj2.process();

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 193 C-DAC hyPACK-2013

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Prog. Env. Cilk Plus

Cilk Plus Keywords

cilk_spawn and cilk_sync:

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 194 C-DAC hyPACK-2013

 Sequential
int fib(int n)

{

 if (n < 2)

 return n;

 int x = fib(n-1);

 int y = fib(n-2);

 return x + y;

 }

 (With Cilk Plust Key Words)
 int fib(int n)

{

 if (n < 2)

 return n;

 int x = cilk_spwan fib(n-1);

 int y = fib(n-2);

 cilk_sync;

 return x + y;

 }

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Prog. Env. Cilk Plus

Cilk Plus Keywords

cilk_spawn and cilk_sync:

Example of Fibonacci number calculator program

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 195 C-DAC hyPACK-2013

Intel Xeon-Phi : Prog. Env. Cilk Plus

Cilk Plus Keywords

Advantage of cilk_for over cilk_spawn

cilk_spawn code

for (int i = 0; i < 8; ++i)

 {

 cilk_spawn do_work(i);

 }

cilk_sync;

cilk_for code

cilk_for (int i = 0; i < 8; ++i)

{ do_work(i);

}

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 196 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Cilk Plus Keywords

 Features of cilk_spawn:

 cilk_spawn permits parallelism. It does not command it.

cilk_spawn does not create a thread. It allows the runtime to

steal the continuation to execute in another worker thread.

 A strand is a sequence of instructions that starts or ends on

a statement which will change the parallelism.

 Permitting parallelism instead of commanding it is an aspect

of the serial semantics of a deterministic Intel Cilk Plus

application.

 It is always possible to run an Intel Cilk Plus application

with a single worker, and it should give identical results to

the serialization of that program

196

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 197 C-DAC hyPACK-2013

Lists

reducer_list_append: Creates a list by adding elements to the back.

reducer_list_prepend: Creates a list by adding elements to the front.

Min/Max

reducer_max: Calculates the maximum value of a set of values.

reducer_max_index: Calculates the maximum value and index of that

 value of a set of values.

reducer_min: Calculates the minimum value of a set of values.

reducer_min_index: Calculates the minimum value and index of that

 value of a set of values.

Cilk Plus Reducers : The Cilk Plus Reducer Library :

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 198 C-DAC hyPACK-2013

Math Operators

reducer_opadd: Calculates the sum of a set of values.

Bitwise Operators

 reducer_opand: Calculates the binary AND of a set of values.

 reducer_opor: Calculate the binary OR of a set of values.

 reducer_opxor: Calculate the binary XOR of a set of values.

Cilk Plus Reducers : The Cilk Plus Reducer Library :

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 199 C-DAC hyPACK-2013

 void locked_list_test()

{ mutex m;

 std::list<char>letters;

 // Build the list in parallel

 cilk_for(char ch = 'a'; ch <= 'z'; ch++)

 { simulated_work();

 m.lock();

 letters.push_back(ch);

 m.unlock(); }

 // Show the resulting list

 std::cout << "Letters from locked list: ";

 for(std::list<char>::iterator i = letters.begin(); i != letters.end(); i++)

 { std::cout << " " << *i;

 }std::cout << std::endl;}

Letters from locked list: y g n d t a w x e z q j o h b u f v c k i r p l m s

Cilk Plus Reducers : The Cilk Plus Reducer Library :

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Xeon-Phi Coprocessors : An Overview 200 C-DAC hyPACK-2013

void reducer_list_test()

{ cilk::reducer_list_append<char> letters_reducer;

 // Build the list in parallel

 cilk_for(char ch = 'a'; ch <= 'z'; ch++)

 { simulated_work();

 letters_reducer.push_back(ch);

 }

// Fetch the result of the reducer as a standard STL list

 const std::list<char> &letters = letters_reducer.get_value();

 // Show the resulting list

 std::cout << "Letters from reducer_list:";

 for(std::list<char>::const_iterator i = letters.begin(); i != letters.end(); i++)

 { std::cout << " " << *i;

 }std::cout << std::endl;}

 Letters from reducer_list: a b c d e f g h i j k l m n o p q r s t u v w x y z

Cilk Plus Reducers : The Cilk Plus Reducer Library :

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 201 C-DAC hyPACK-2013

Intel® Cilk™ Plus Array Notation

 C/C++ Language extension supported by the Intel® Compiler

 Based on the concept of array-section notation:
<array>[<low_bound> : <len> : <stride>] [<low_bound> : <len> :

<stride>]…

 C/C++ Operators / Function Calls
 d[:] = a[:] + (b[:] * c[:])

 b[:] = exp(a[:]); // Call exp() on each element of a[]

 Reductions combine array section elements to generate a scalar result
 Nine built-in reduction functions supporting basic C data-types:

 add, mul, max, max_ind, min, min_ind, all_zero, all_non_zero, any_nonzero

 Supports user-defined reduction function

 Built-in reductions provide best performance

0 1 2 3 4 5 6 7 8 9

float a[10];

..

 = a[:];

 0 1 2 3 4 5 6 7 8 9

float a[10];

..

 = a[2:6];

float a[10];

..

 = c[][5];

0 1 2 3 4 5 6 7 8 9

float a[10];

..

 = d[0:3:2];

Xeon-Phi Coprocessors : An Overview 202 C-DAC hyPACK-2013

 Intel Cilk Plus includes extensions to C and C++ that
allows for parallel operations on arrays.

 The intent is to allow users to express high-level vector
parallel array operations. –

 This helps the compiler to effectively vectorize the code.

 Array notation can be used for both static and dynamic
arrays.

 The extension has parallel semantics that are well suited
for per-element operations that have no implied ordering
and are intended to execute in data-parallel instructions.

Cilk Plus Array Notation

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 203 C-DAC hyPACK-2013

Cilk Plus Array Notation
A new operator [:] delineates an array section:

array-expression[lower-bound : length : stride]

 Length is used instead of upper bound as C and C++ arrays
are declared with a given length.

 The three elements of the array notation can be any integer
expression. The user is responsible for keeping the section
within the bounds of the array.

 Each argument to [:] may be omitted if the default value
is sufficient.

• The default lower-bound is 0.

• The default length is the length of the array. If the length of
the array is not known, length must be specified.

• The default stride is 1. If the stride is defaulted, the
second ":" may be omitted.

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Xeon-Phi Coprocessors : An Overview 204 C-DAC hyPACK-2013

User-mandated Vectorization(pragma simd)

 SIMD (Single Instruction, Multiple Data) vectorization uses the
#pragma simd pragma to enforce loop vectorization.

 Consider an example in C++ where the function add_floats()
uses too many unknown pointers, preventing automatic
vectorization. You can give a data-dependence assertion using
the auto-vectorization hint via #pragma ivdep and let the
compiler decide whether the auto-vectorization optimization
should be applied to the loop. Or you can now enforce
vectorization of this loop by using #pragma simd.

 void add_floats(float *a, float *b, float *c,
 float *d, float *e, int n)

 { int i;

 #pragma simd

 for (i=0; i<n; i++){

 a[i] = a[i]+ b[i]+c[i]+d[i] + e[i];}

 }

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 205 C-DAC hyPACK-2013

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Cilk Plus : User-mandated Vectorization(pragma simd)

 The one big difference between using the SIMD pragma and
auto-vectorization hints is that with the SIMD pragma,
the compiler generates a warning when it is unable to vectorize
the loop. With auto-vectorization hints, actual
vectorization is still under the discretion of the compiler, even
when you use the #pragma vector always hint.

 If a #pragma simd annotated loop is not vectorized by the
compiler, the loop holds its serial semantics.

 By default “#pragma simd” is set to “noassert”.and
compiler will issue a warning if the loop fails to vectorize.

 To direct the compiler to assert an error when the #pragma
simd annotated loop fails to vectorize , add the “assert” clause
to the #pragma simd

205

Xeon-Phi Coprocessors : An Overview 206 C-DAC hyPACK-2013

Intel® Cilk™ Plus Technology:
Elemental Function

 Allow you to define data operations using scalar syntax

 Compiler apply the operation to data arrays in parallel, utilizing both SIMD
parallelism and core parallelism

206

__declspec (vector)

double BlackScholesCall(double S,

 double K,

 double T)

{

double d1, d2, sqrtT = sqrt(T);

d1 = (log(S/K)+R*T)/(V*sqrtT)+0.5*V*sqrtT;

 d2 = d1-(V*sqrtT);

 return S*CND(d1) - K*exp(-R*T)*CND(d2);

}

Cilk_for (int i=0; i < NUM_OPTIONS; i++)

 call[i] = BlackScholesCall(SList[i],

 KList[i],

 TList[i]);

Programmer Build with Intel Cilk Plus Compiler

1. Writes a standard C/C++ scalar syntax
2. Annotate it with __declspec(vector)
3. Use one of the parallel syntax choices to

invoke the function

1. Generates vector code with SIMD Instr.
2. Invokes the function iteratively, until all

elements are processed
3. Execute on a single core, or use the task

scheduler, execute on multicores

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 207 C-DAC hyPACK-2013

Elemental Functions

 An elemental function is a regular function, which can
be invoked either on scalar arguments or on array
elements in parallel. You define an elemental function
by adding

 “__declspec(vector)” (on Windows*) and

 “__attribute__((vector))” (on Linux*) before

 the function signature:

 __declspec (vector)

 double ef_add (double x, double y) {return x + y;}

When you declare a function as elemental the
compiler generates a short vector form of the function,
which can perform your function’s operation on
multiple arguments in a single invocation.

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 208 C-DAC hyPACK-2013

Elemental Functions

The vector form of the function can be invoked in
parallel contexts in the following ways:

1. From a for-loop. It gets auto-vectorized; a loop that
only has a call to an elemental function is always
vectorizable, but the auto-vectorizer is allowed
to apply performance heuristics and decide not to
vectorize the function.

2. From a for-loop with pragma simd. If the
elemental function is called from a loop with
“pragma simd”, the compiler no longer does any
performance heuristics, and is guaranteed to call
the vector version of the function.

3. From a cilk_for

4. From an array notation syntax. .

Intel Xeon-Phi - for Parallelism:
Intel® Cilk™ Plus

Xeon-Phi Coprocessors : An Overview 209 C-DAC hyPACK-2013

Summary: Tricks for Performance

 Use asynchronous data transfer and double buffering offloads
to overlap the communication with the computation

 Optimizing memory use on Intel MIC architecture target relies
on understanding access patterns

 Many old tricks still apply: peeling, collapsing, unrolling,
vectorization can all benefit performance

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 210 C-DAC hyPACK-2013

Data Access Semantics

Explicit Offloading

Implicit Offloading

Complier Data Transfer Overview

The host CPU and the Intel Xeon Phi coprocessor

do not share physical or virtual memory in

hardware

Two offload transfer models are : Explicit Copy

and Implicit Copy

Data Access Semantics

Xeon-Phi Coprocessors : An Overview 211 C-DAC hyPACK-2013

Two offload transfer models are : Explicit Copy and

Implicit Copy

 Explicit Copy :

• Programmer designates variables that need to

be copied between host and card in the offload

directive

• Syntax: Pragma/directive-based

• C/C++ Example: #pragma offload target(mic)

in(data:length(size)) (OpenMP, Pthreads, Intel

TBB, MPI with OpenMP/Pthreads/Intel TBB)

Data Access Semantics

Xeon-Phi Coprocessors : An Overview 212 C-DAC hyPACK-2013

Compiler : Offload using Explicit Copies – Data movement

HOST

pA
Allocate

Free

MIC

5

1

Copy back
4

Copy over
2

Pragma offload inout(pA:length(n))

{…}
3

 Default treatment of in/out variables in a #pragma
offload statement

Xeon-Phi Coprocessors : An Overview 213 C-DAC hyPACK-2013

 Default treatment of in/out variables in a #pragma
offload statement

 At the start of an offload:

• Space is allocated on the coprocessor

• in variables are transferred to the coprocessor

 At the end of an offload:

• out variables are transferred from the coprocessor

• Space for both types (as well as inout) is deallocated

on the coprocessor

Compiler : Offload using Explicit Copies – Data movement

Xeon-Phi Coprocessors : An Overview 214 C-DAC hyPACK-2013

Data Access Semantics

Implicit Offloading

Section of memory maintained at the same virtual

address on both the host and Intel MIC Architecture

coprocessor

Reserving same address range on both devices allows

• Seamless sharing of complex pointer-containing data

structures

• Elimination of user marshaling and data management

• Use of simple language extensions to C/C++

Data Access Semantics

Xeon-Phi Coprocessors : An Overview 215 C-DAC hyPACK-2013

Compiler : Offload using Explicit Copies – Data movement

HOST

Offload

C/C++ Executable

Same Address
Range

MIC

Memory

HOST

Memory

Intel MIC

Xeon-Phi Coprocessors : An Overview 216 C-DAC hyPACK-2013

 Use this extension when data exchanged between CPU
and coprocessor is complex

 Data movement is automatic

Markup is more extensive but richer class of C/C++
programs can be handled

 Functions and statically allocated data need
_Cilk_shared attribute

 Dynamically data is allocated using “shared”
malloc

 This model is available in C/C++ only

2
16

Compiler : _Cilk_shared / _Cilk_offload

Xeon-Phi Coprocessors : An Overview 217 C-DAC hyPACK-2013

 When “shared” memory is synchronized

 Automatically done around offloads (so memory is only synchronized
on entry to, or exit from, an offload call)

 Only modified data is transferred between CPU and coprocessor

 Dynamic memory you wish to share must be allocated with special
functions: _Offload_shared_malloc,

_Offload_shared_aligned_malloc, _Offload_shared_free,

_Offload_shared_aligned_free

 Allows transfer of C++ objects

 Pointers are no longer an issue when they point to “shared” data

 Well-known methods can be used to synchronize access to shared data
and prevent data races within offloaded code

 – E.g., locks, critical sections, etc.

 This model is integrated with the Intel Cilk Plus Parallel Extensions

 Supported in C /C++ Languages Only

Heterogeneous Compiler : Offload using Implicit Copies

Xeon-Phi Coprocessors : An Overview 218 C-DAC hyPACK-2013

Two offload transfer models are : Explicit Copy and

Implicit Copy

 Implicit Copy :

• Programmer makes variables that need to be

shared between host and mic card

• The same variable can be used in both host and

coprocessor code

• Runtime automatically maintains coherence at

the beginning and end of offload statements

• Syntax: keyword extensions based

• Example: _Cilk_shared double foo;

 _Offload func(y);

Compiler : Data Transfer Overview Compiler

Xeon-Phi Coprocessors : An Overview 219 C-DAC hyPACK-2013

Feature Example Description

Offloading a function call x = _Cilk_shared _Cilk_offload
func(y);

func can executes on Intel MIC

Offloading asynchronously x = _Cilk_spawn _Cilk_offload
func(y);

Non blocking offload

Data available on both sides _Cilk_shared int x = 0; Allocated in the shared memory area, can be

synchronized

Function available on both sides int _Clik_shared f(int x)
{ return x+1}

The function can execute on either side

Offload a parallel for loop

(Requires Cilk on Intel MIC)

_Cilk_offload
_Cilk_for (i = 0; i < N; i++) {
 a[i] = b[i] + c[i];
 }

Loop executes in parallel on Intel MIC. The loop

is implicitly outlined as a function call.

(borrow inside the loop disallowed)

Offload array expressions _Offload a[:] = b[:] <op> c[:];
_Offload a[:] =
elemental_func(b[:]);

Array operations execute in parallel on Intel MIC.

 Intel C/C++ Compiler extension with new offloading key words

 Provide the appearance of shared memory using virtual Shared-
memory technology

Heterogeneous Compiler : Offload using Intel Cilk Plus

Xeon-Phi Coprocessors : An Overview 220 C-DAC hyPACK-2013

 An Overview of Xeon-Phi Architectures,
Programming on based on Shared Address Space
Platforms – Cilk Plus, Performance of Software
threading are discussed.

Conclusions

An Overview of Multi-Core Processors

Xeon-Phi Coprocessors : An Overview 221 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Explicit Message Passing - Programming

MPI
Part-3

Xeon-Phi Coprocessors : An Overview 222 C-DAC hyPACK-2013

 Intel MPI for the Xeon Phi coprocessors offers various MPI
programming models:

 Symmetric model : The MPI ranks reside on both the
host and the coprocessor. Most general MPI case.

 Coprocessor-only model : All MPI ranks reside only on
the coprocessors.

 Host-only model All : MPI ranks reside on the host. The
coprocessors can be used by using offload pragmas.
(Using MPI calls inside offloaded code is not supported..

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 223 C-DAC hyPACK-2013

 Intel MPI for the Xeon Phi coprocessors offers various MPI
programming models:

 Symmetric model : The MPI ranks reside on both the
host and the coprocessor. Most general MPI case.

 Coprocessor-only model : All MPI ranks reside only on
the coprocessors.

 Host-only model All : MPI ranks reside on the host. The
coprocessors can be used by using offload pragmas.
(Using MPI calls inside offloaded code is not supported..

Intel Xeon-Phi : MPI Programming Model

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 224 C-DAC hyPACK-2013

Symmetric Model

 The MPI processes reside on both
the host and the MIC devices

 This model involves both the host
CPUs and the co-processors into
the execution of the MPI
processes and the related MPI
communications.

Message passing is supported
inside the co-processor, inside
the host node, and between the
co-processor and the host.
environment variable

Most general MPI view of an
essentially heterogeneous cluster.

MPI on Host Devices and Co-
processors

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 225 C-DAC hyPACK-2013

 Symmetric model : To build and run an application in host-
only mode, the following commands have to be executed:

compile the program for the host (offloading is enabled per

 default

 mpiicc –mmic -o hello.MIC hello.c

launch MPI jobs on the host “ycn-0”,the MPI process

 will offload code for acceleration

mpirun –host ycn-1 -n 1 ./hello

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 226 C-DAC hyPACK-2013

 Coprocessor-only model : To build and run an application
in coprocessor-only mode, the following commands have to
be executed:

compile the program for the coprocessor (-mmic)

mpiicc -mmic -o hello.MIC hello.c

#copy the executable to the coprocessor

scp hello.MIC mic0:/tmp

#set the I_MPI_MIC variable

export I_MPI_MIC=1

#launch MPI jobs on the coprocessor mic0 from the host

#(alternatively one can login to the coprocessor and

 run mpirun there)

mpirun -host mic0 -n 2 /tmp/hello.MIC

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 227 C-DAC hyPACK-2013

Co-processor-only Model (or MPI Native)

 The MPI processes reside on
the MIC co-processor only .

MPI libraries, the application,
and other needed libraries are
uploaded to the co-processors.

 An application can be launched
from the host or the co-
processor.

 This can be seen as a specific
case of the symmetric model

 MPI on Co-processors

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 228 C-DAC hyPACK-2013

MPI Prog. Models for Xeon systems with MIC

Offload

 Intel ® MIC Architecture or host
CPU as an accelerator

MPI

 MPI ranks on several co-processors
and/or host nodes

 Messages to/from any core

MIC Offload
(direct acceleration)

Host Offload
(reverse

acceleration)

 MPI ranks on the
host CPU only

 Messages
into/out of the
host CPU

 Intel ® MIC
Architecture as
an accelerator

 MPI ranks on the
MIC CPU only

 Messages
into/out of the
MIC CPU

 Host CPU as an
accelerator

Co-processor-only Symmetric

 MPI ranks on the
MIC CPU only

 Messages
into/out of the
MIC CPU c/o host
CPUs

 Threading
possible

 MPI ranks on the
MIC and host
CPUs

 Messages into/
out of the MIC
and host CPUs

 Threading
possible

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 229 C-DAC hyPACK-2013

Offload Model

 This model is characterized by the
MPI communications taking place
only between the host processors.

 The co-processors are used
exclusively thru the offload
capabilities of the products like
Intel C, C++, and Fortran Compiler
for Intel MIC Architecture, Intel
Math Kernel Library (MKL), etc.

 This mode of operation is already
supported by the Intel MPI Library
for Linux OS

MPI on Host Devices with
Offload to Co-processors

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 230 C-DAC hyPACK-2013

 Host-only model : To build and run an application in host-
only mode, the following commands have to be executed:

compile the program for the host (offloading is enabled per

 default

 mpiicc -o hello.MIC hello.c

launch MPI jobs on the host “ycn-0”,the MPI process

 will offload code for acceleration

mpirun –host ycn-1 -n 1 ./hello

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 231 C-DAC hyPACK-2013

Simple way to Launch MPI jobs :

Instead of specifying the hosts and coprocessors via -n
hostname one can also put the names into a hostfile and
launch the jobs via

mpirun -f hostfile -n 4 ./hello

Note that the executable must have the same name on the
hosts and the coprocessors in this case. If one sets export

 I_MPI_POSTFIX=.mic

the .mic postfix is automatically added to the executable name
by mpirun, so in the case of the example above test is
launched on the host and hello.mic on the coprocessors.

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 232 C-DAC hyPACK-2013

Simple way to Launch MPI jobs :

mpirun -f hostfile -n 4 ./hello

I_MPI_POSTFIX=.mic

It is also possible to specify a prefix using

export I_MPI_PREFIX=./MIC/

In this case ./MIC/hello will be launched on the
coprocessor. This is specially useful if the host and the
coprocessors share the same NFS file system

Intel Xeon-Phi : MPI Programming Model

Xeon-Phi Coprocessors : An Overview 233 C-DAC hyPACK-2013

Programming Intel MIC-based Systems MPI+Offload

 MPI ranks on Intel ® Xeon ® processor
(only)

 All messages into/out of processors

 Offload models used to accelerate MPI
ranks

 Intel CilkTM Plus, Open MP*, Intel
Threading Building Blocks, Pthreads* within
Intel ®MIC

 Homogenous network of hybrid nodes:

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 234 C-DAC hyPACK-2013

Programming Intel ® MIC-based Systems Many-core Hosted

 MPI ranks on Intel ® MIC (only)

 All messages into/out of Intel ® MIC

 Intel ® CilkTM Plus, Open MP*, Intel ®
Threading Building Blocks, Pthreads*
used directly within MPI processes

 Programmed as homogenous network
of many-core CPUs:

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 235 C-DAC hyPACK-2013

Programming Intel ® MIC-based Systems Symmetric

 MPI ranks on Intel ® MIC Intel ® Xeon
® processors

 Messages into/out anu core

 Intel ® CilkTM Plus, Open MP*, Intel ®
Threading Building Blocks, Pthreads*
used directly within MPI processes

 Programmed as heteregenous
network of homogenous nodes:

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 236 C-DAC hyPACK-2013

Keys to Productive Performance on Intel ® MIC Architecture

 Choose the right Multi-core centric or Many-core
centric model for your application

 Vectorize your application (today)

 Use the Intel Vectorizing compiler

 Parallelize your application (today)

 With MPI (or other multi-process model)

 With threads (via Intel (R) CilkTM Plus, OpenMP*,
Intel (R) Threading Buildig Blocks, Pthreads, etc.)

 Go asynchronous to overlaop computation and
communication

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 237 C-DAC hyPACK-2013

 An Overview of Xeon-Phi Architectures,
Programming on based on Shared Address Space
Platforms – OpenMP, MPI, Intel TBB, Performance
of Software threading are discussed.

Conclusions

An Overview of Multi-Core Processors

Xeon-Phi Coprocessors : An Overview 238 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Shared Address Space Programming –

OpenMP 4.0
Part-3

Xeon-Phi Coprocessors : An Overview 239 C-DAC hyPACK-2013

Programming on Systems with
Co-processors - OpenMP 4.0

An Overview of OpenMP 4.0 240 C-DAC hyPACK-2013

 OpenMP : SIMD Constructs

simd construct

Summary

The simd construct can be applied to a loop to indicate that the loop can be

transformed into a SIMD loop (that is, multiple iterations of the loop can be executed

concurrently using SIMD instructions).

Syntax

C/C++

The syntax of the simd construct is as follows:

 #pragma omp simd [clause[[,] clase] …] new-line

 for-loops

Source : NVIDIA, PGI & References given in the presentation

An Overview of OpenMP 4.0 241 C-DAC hyPACK-2013

Syntax

C/C++

The syntax of the simd construct is as follows:

 #pragma omp simd [clause[[,] clause] …] new-line

 for-loops

where clause is one of the following:

safelen(length)

linear(list[:linear-step])

aligned(list[:alignment])

private(list)

lastprivate(list)

reduction(reduction-identifier:list)

collapse(n)

The simd directive places restrictions on the structure of the associated for-loops.

Specifically, all associated for-loops must have canonical loop form

OpenMP : SIMD Constructs

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 242 C-DAC hyPACK-2013

OpenMP : declare simd Construct

Summary

The declare simd construct can be applied to a function

(C, C++ and Fortran) or a subroutine (Fortran) to enable the

creation of one or more versions that can process multiple

arguments using SIMD instructions from a single invocation
from a SIMD loop. The declare simd directive is a

declarative directive. There may be multiple declare simd

directives for a function (C, C++, Fortran) or subroutine

(Fortran 90).

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 243 C-DAC hyPACK-2013

Syntax

C/C++

The syntax of the declare simd construct is as follows:

 #pragma omp declare simd [clause[[,] clause] …] new-line

 /#pragma omp declare simd [clause[[,] clause] …] new-line

 […]

 function definition or declaration

where clause is one of the following:

simdlen(length)

linear(argument-list[:constant-linear-step])

aligned(argument-list[:alignment])

private(argument-list)

inbranch

notinbranch

OpenMP : declare simd Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 244 C-DAC hyPACK-2013

Summary

The loop SIMD construct specifies a loop that can be executed concurrently using

SIMD instructions and that those iterations will also be executed in parallel by threads

in the team.

Syntax

C/C++
 Description

The loop SIMD construct will first distribute the iterations of the associated loop(s)

across the implicit tasks of the parallel region in a manner consistent with any clauses

that apply to the loop construct. The resulting chunks of iterations will then be

converted to a SIMD loop in a manner consistent with any clauses that apply to the
simd construct. The effect of any clause that applies to both constructs is as if it were

applied to both constructs separately.

OpenMP : Loop SIMD Constructs

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 245 C-DAC hyPACK-2013

Summary

Create a device data environment for the extent of the region.

Syntax

C/C++

The syntax of the target data construct is as follows:

 #pragma omp target data [clause[[,] clase] …] new-line

 structured-block

Where clause is one of the following:

 device(integer-expression)

 map([map-type :] list))

 if (scalar-expression)

OpenMP : Device Construct

An Overview of OpenMP 4.0 246 C-DAC hyPACK-2013

Binding

The binding task region for a target data construct is the encountering task. The

target region binds to the enclosing parallel or task region.

Description

When a target data construct is encountered, a new device data environment is

created, and the encountering task executes the target data region. If there is no

device clause, the default device is determined by the default-device-var ICV. The

new device data environment it constructed form the enclosing device data

environment, the data environment of the encountering task and any data-mapping
clauses on the construct. When an if clause is present and the if clause

expression evaluates to false, the device is the host.

Restrictions

A program must not depend on any ordering of the valuations of the clauses of the
target data directive, or any side effects of the evaluations of the clauses.

At most one device clause can appear on the directive. The device expression

must evaluate to a non-negative integer value.

At most one if clause can appear on the directive

 OpenMP Device Construct

An Overview of OpenMP 4.0 247 C-DAC hyPACK-2013

Summary

Create a device data environment and execute the construct on the same device.

Syntax

C/C++

The syntax of the target construct is as follows:

 #pragma omp target data [clause[[,] clase] …] new-line

 structured-block

Where clause is one of the following:

 device(integer-expression)

 map([map-type :] list))

 if (scalar-expression)

 OpenMP target Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 248 C-DAC hyPACK-2013

Binding

The binding task region for a target construct is the encountering task. The target

region binds to the enclosing parallel or task region.

Description

When a target construct provides a superset of the functionality and restrictions

provided by the target data directive. The functionality added to the target

directive is the inclusion of an executable region to be executed by a device. That is,
the target directive is an executable directive. The encountering task waits for the

device to complete the target region. When an if clause is present and the if

clause expression evaluated to false, the target region is executed by the host

device.

Restrictions

 If a target, target update, or target data construct appears within a

target region then the behaviour is unspecified.

 The result of an omp_set_default_device, omp_get_default_device.

 OpenMP target Construct

An Overview of OpenMP 4.0 249 C-DAC hyPACK-2013

Summary

The target update directive makes the corresponding list item in the device data

environment consistent with their original list items, according to the specified motion
clauses. The target update construct is a stand-alone directive

Syntax

C/C++

The syntax of the target construct is as follows:

 #pragma omp target data [clause[[,] clase] …] new-line

Where motion-clause is one of the following:

 to(list)

 from(list)

and where clause is motion-clause or one of the of following:

 device(integer-expression)

 from(scalar-expression)

 OpenMP target update Construct

An Overview of OpenMP 4.0 250 C-DAC hyPACK-2013

Binding

The binding task for a target update construct is the encountering task. The

target update directive is a stand-alone directive.

Description

For each list item in a to or from clause there is a corresponding list item and an

original list item. If the corresponding list item is not present in the device data

environment, the behaviour is unspecified. Otherwise, each corresponding list item in

the device data environment has an original list item in the current task’s data

environment.

For each list item in a from clause the value of the corresponding list item is

assigned to the original list item.

The list items that appear in the to or from clauses may include array sections.

The device is specified in the device clause. If there is no device clause, the

device is determined by the default-device-var ICV. When an if clause is present

and the if clause expression evaluates to false then no assignments occur.

Restrictions

 A program must bod depend on any ordering of the evaluations of the clauses of
the target update directive, or on any side effects of the evaluations of the

clauses.

 OpenMP target update Construct

An Overview of OpenMP 4.0 251 C-DAC hyPACK-2013

OpenMP Declare target Directive

Summary

The declare target directive specifies that variables, functions (C, C++ and

Fortran), and subroutines (Fortran) are mapped to a device. The declare target

directive is a declarative directive.

Syntax

C/C++

The syntax of the declare target directive is as follows:

 #pragma omp declare target new-line

 declarations-definition-seq
 #pragma omp end declare target new-line

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 252 C-DAC hyPACK-2013

Description

C/C++

Variable and routine declarations that appear between the declare target and end

declare target directives form an implicit list where each list item is the variable or

function name.

C/C++

Fortran

If a declare target does not have an explicit list, then an implicit list of one item is formed

from the name of the enclosing subroutine, subprogram, function subprogram or interface

body to which it applies.

Fortran

If a list item is a function (C, C++, Fortran) subroutine (Fortran) then a device-specific

version of the routine is created that can be called from a target region.

If a list item is a variable then the original variable is mapped to a corresponding variable in

the initial deivce data environment for all devices. If the original variable is initialized the

corresponding variable in the device data environment is initialized with the same value.

Restrictions

 A threadprivate variable cannot appear in a declare target directive

 A variable declared in a declare target directive must have a mappable type.

OpenMP Declare target Directive

An Overview of OpenMP 4.0 253 C-DAC hyPACK-2013

OpenMP teams Construct

Summary

The teams construct creates a league of thread teams and the master thread of

each team executes the region.

Syntax

The syntax of the team construct is as follows:

C/C++

 #pragma omp teams[clause[[,] clase] …] new-line

 structured-block

and where clause is one of the of following:

 num_teams(integer-expression)

 thread_limit(integer-expression)

 default(shared|none)

 private (list)

 firstprivate (list)

 shared (list)

 reduction (reduction-identifier : list)

An Overview of OpenMP 4.0 254 C-DAC hyPACK-2013

Binding

The binding thread set for a teams region is the encountering thread.

Description

When a thread encounters a teams construct, a league of thread teams is created and the

master thread of each thread team executes the teams region.

The number of teams created in implementation defined, but is less than or equal to the
value specified in the num_teams clause.

The maximum number of threads participating in the contention group that each team

initiates is implementation defined, but is less than or equal to the value specified in the
thread_limit clause.

Once the teams are created, the number of teams remains constant for the duration of the

teams region.

Within a teams region, team numbers uniquely identify each team. Team numbers are

consecutive whole numbers ranging from zero to one less than the number of teams. A
thread may obtain its own team number by a call to the omp_get_team_num library

routine.

The threads other than the master thread do not begin execution until the master thread
encounters a parallel region.

After the teams have completed execution of the teams region, the encountering thread

resumes execution of the enclosing target region. There is no implicit barrier at the end

of a teams construct.

OpenMP teams Construct

An Overview of OpenMP 4.0 255 C-DAC hyPACK-2013

OpenMP distribute Construct

Summary

The distribute construct specifies that the iterations of one or more loops will be

executed by the thread teams in the context of their implicit tasks. The iterations are
distributed across the master threads of all teams that execute the teams region to

which the distribute region binds..

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 256 C-DAC hyPACK-2013

Syntax

C/C++

The syntax of the distribute construct is as follows:

 #pragma omp distribute [clause[[,] clase] …] new-line

 for-loops

Where clause is one of the following:

 private (list)

 firstprivate (list)

 collaspe (n)

 dist_schedule (kind[, chunk_size])

All associated for – loops must have the canonical form described in Section 2.6 on

page 51

OpenMP distribute Construct

An Overview of OpenMP 4.0 257 C-DAC hyPACK-2013

Binding

The binding thread set for a distribute region is the set of master threads created by a

teams construct. A distribute region binds to the innermost enclosing teams region.

Only the threads executing the binding teams region participate in the execution of the

loop iterations.

Description

The distribute construct is associated with a loop nest consisting of one or more loops

that follow the directive.

There is no implicit barrier at the end of a distribute construct.

The collapse clause may be used to specify how many loops are associated with the

distribute construct. The parameter of the collapse clause must be a constant

positive integer expression. If no collapse clause is present, the only loop that is

associated with the distribute construct is the one that immediately follows the

distribute construct.

OpenMP distribute Construct

An Overview of OpenMP 4.0 258 C-DAC hyPACK-2013

If more that one loop is associated with the distribute construct, then the iteration of all

associated loops are collapsed into one larger iteration space. The sequential execution of

the iterations in all associated loops determines the order of the iterations in the collapsed

iteration space.

If dist_schedule is specified kind must be static. If specified, iterations are divided into

chunks of size chunk_size, chunks are assigned to the teams of the league in a round-

robin fashion in the order of the team number. When no chunk_size is specified, the

iteration space is divided into chunks that are approximately equal in size, and at most one

chunk is distributed to each team of the league. Note that the size of the chunks is

unspecified in this case.

When no dist_schedule clause is specified, the schedule is implementation defined.

OpenMP distribute Construct

An Overview of OpenMP 4.0 259 C-DAC hyPACK-2013

OpenMP distribute simd Construct

Summary

The distribute simd construct specifies a loop that will be distributed across the

master threads of the teams region and executed concurrently using SIMD

instructions.

Syntax

The syntax of the team construct is as follows:

C/C++
 #pragma omp distribute simd[clause[[,] clase] …]

 for-loops

Where clause can be any of the clauses accepted by the distribute or simd

directives with identical meaning and restrictions:

C/C++

Fortran

 !$omp distribute simd[clause[[,] clase] …]

 do-loops
 [!$omp and distribute simd]

An Overview of OpenMP 4.0 260 C-DAC hyPACK-2013

Description

The distribute simd construct will first distribute the iterations of the associated

loop(s) according to the semantics of the distribute construct and any clauses that

apply to the distribute construct. The resulting chunks of iterations will then be converted to
a SIMD loop in a manner consistent with any clauses that apply to the simd construct. The

effect of any clause that applies to both constructs is as if it were applied to both constructs

separately.

Restrictions

The restrictions for the distribute and simd constructs apply.

Cross References

 simd construct, see Section 2.8.1 on page 68

 distribute construct, see Section 2.9.6 on page 88

 Data attribute clauses

OpenMP distribute simd Construct

An Overview of OpenMP 4.0 261 C-DAC hyPACK-2013

 OpenMP Distribute Parallel Loop Construct

Summary

The distribute parallel loop construct specifies a loop that can be executed in parallel

by multiple threads that are members of multiple teams.

Syntax

The syntax of the distribute parallel loop construct is as follows:

C/C++

 #pragma omp distribute parallel for[clause[[,] clause] …]

 for-loops

Where clause can be any of the clauses accepted by the distribute or parallel

loop directives with identical meaning and restrictions:

C/C++

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 262 C-DAC hyPACK-2013

Description

The distribute parallel loop construct will first distribute the iterations of the associated
loop(s) according to the semantics of the distribute construct and any clauses that

apply to the distribute construct. The resulting loops will then be distributed across the

threads contained within the teams region to which the distribute construct binds in a

manner consistent with any clauses that apply to the parallel loop construct. The effect of
any clause that applies to both the distribute and parallel loop constructs is as if it were

applied to both constructs separately.

Restrictions

The restrictions for the distribute and parallel loop constructs apply.

Cross References

 distribute construct, Parellel loop construct, Data attribute clauses

OpenMP distribute simd Construct

An Overview of OpenMP 4.0 263 C-DAC hyPACK-2013

 OpenMP Distribute Parallel Loop SIMD Construct

Summary

The distribute parallel loop SIMD construct specifies a loop that can be executed in

concurrently using SIMD instruction in parallel by multiple threads that are members

of multiple teams.

Syntax

The syntax of the distribute parallel loop SIMD construct is as follows:

C/C++

 #pragma omp distribute parallel for simd [clause[[,] clause] …]

 for-loops

Where clause can be any of the clauses accepted by the distribute or parallel

loop SIMD directives with identical meaning and restrictions:

C/C++

An Overview of OpenMP 4.0 264 C-DAC hyPACK-2013

Description

The distribute parallel loop construct will first distribute the iterations of the
associated loop(s) according to the semantics of the distribute construct and

any clauses that apply to the distribute construct. The resulting loops will

then be distributed across the threads contained within the teams region to

which the distribute construct binds in a manner consistent with any clauses

that apply to the parallel loop construct. The resulting chunks of iterations will

then be converted to a SIMD loop in a manner consistent with any clauses that
apply to the simd construct. The effect of any clause that applies to both the

distribute and parallel loop SIMD constructs is as if it were applied to both

constructs separately.

 OpenMP Distribute Parallel Loop SIMD Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 265 C-DAC hyPACK-2013

OpenMP Combined Construct

Description

Combined constructs are shortcuts for specifying one construct

immediately nested inside another construct. The semantics of the

combined constructs are identical to that of explicitly specifying the first

construct containing one instance of the second construct and no other

statements.

Some combined constructs have clauses that are permitted on both

constructs that were combined. Where specified, the effect is as if

applying the clauses to one or both constructs. If not specified and

applying the clause to one to one construct would result in different

program behaviour than applying the clause to the other construct then

the program’s behaviour is unspecified.

Source : NVIDIA, PGI & References given in the presentation

An Overview of OpenMP 4.0 266 C-DAC hyPACK-2013

 OpenMP Parallel for Loop Construct

Summary

The parallel loop construct is a shortcut for specifying a parallel construct

containing one or more associated loops and no other statements.

Syntax

The syntax of the parallel loop construct is as follows:

C/C++

 #pragma omp parallel for [clause[[,] clause] …] new-line

 for-loops

where clause can be any of the clauses accepted by the parallel or for

directives, except the nowait clause, with identical meanings and restrictions.

C/C++

Fortran

An Overview of OpenMP 4.0 267 C-DAC hyPACK-2013

 OpenMP parallel section Construct

Summary

The parallel sections construct is a shortcut for specifying a parallel construct

containing one sections construct and no other statements.

Syntax

The syntax of the parallel sections construct is as follows:

C/C++

 #pragma omp parallel for [clause[[,] clause] …] new-line

 {
 [#pragma omp section new-line]

 structured-block
 [#pragma omp section new-line

 structured-block]

 …

 }

where clause can be any of the clauses accepted by the parallel or sections

directives, except the nowait clause, with identical meanings and restrictions.

C/C++

An Overview of OpenMP 4.0 268 C-DAC hyPACK-2013

OpenMP : parallel workshare Construct

Syntax

The syntax of the parallel workshare construct is as follows:

 !$omp parallel for [clause[[,] clause]

 structured-block
 !$omp end parallel workshare

where clause can be any of the clauses accepted by the parallel directives, with

identical meanings and restrictions. nowait may not be specified on an end

parallel workshare directive.

Description

The semantics are identical to explicitly specifying a parallel directive immediately

followed by a workshare directive, and an end workshare directive immediately

followed by an end parallel directive.

An Overview of OpenMP 4.0 269 C-DAC hyPACK-2013

Summary

The parallel loop SIMD construct is a shortcut for specifying a parallel

construct containing one loop SIMD construct and no other statement.

Syntax

C/C++

 #pragma omp parallel for simd [clause[[,] clause] …] new-line

 for-loops

where clause can be any of the clauses accepted by the parallel, for or simd

directives, except the nowait clause, with identical meanings and restrictions.

C/C++

Fortran

 OpenMP Parallel for SIMD Loop Construct

An Overview of OpenMP 4.0 270 C-DAC hyPACK-2013

Summary

The semantics of the parallel loop SIMD construct are
identical to explicitly specifying a parallel directive

immediately followed by a loop SIMD directive. The effect of

any clause that applies to both constructs is as if it were
applied to the loop SIMD construct and not to the parallel

construct.

 OpenMP Parallel for SIMD Loop Construct

Source : NVIDIA, PGI & References given in the presentation

An Overview of OpenMP 4.0 271 C-DAC hyPACK-2013

 OpenMP target teams Construct

Summary

The target teams construct is a shortcut for specifying a target construct

containing a teams construct

Syntax

The syntax of the target teams construct is as follows:

C/C++

 #pragma omp parallel for [clause[[,] clause] …]

 structured-block

where clause can be any of the clauses accepted by the target or teams directives

with identical meanings and restrictions

C/C++

An Overview of OpenMP 4.0 272 C-DAC hyPACK-2013

Summary

The teams distribute construct is a shortcut for specifying a team construct

containing a distribute construct

Syntax

The syntax of the teams distribute construct is as follows:

C/C++

 #pragma omp team distribute [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the teams or distribute

directives with identical meanings and restrictions

C/C++

 OpenMP teams distribute Construct

An Overview of OpenMP 4.0 273 C-DAC hyPACK-2013

 OpenMP teams distribute simd Construct

Summary

The teams distribute simd construct is a shortcut for specifying a teams

construct containing a distribute simd construct

Syntax

The syntax of the teams distribute simd construct is as follows:

C/C++

 #pragma omp team distribute [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the teams or distribute

simd directives with identical meanings and restrictions

C/C++

Fortran

 !$omp teams distribute simd [clause[[,] clause] …]

 for-loops
 [!$ompand end teams distribute simd]

An Overview of OpenMP 4.0 274 C-DAC hyPACK-2013

 !$omp teams distribute simd [clause[[,] clause] …]

 do-loops
 [!$ompand end teams distribute simd]

where clause can be any of the clauses accepted by the teams or distribute

simd directive with identical meanings and restrictions.

If an end teams distribute directive is not specified, an end teams

distribute directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a teams directive immediately

followed by a distribute simd directive. Some clauses are permitted on both

constructs.

 OpenMP teams distribute simd Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 275 C-DAC hyPACK-2013

 OpenMP target teams distribute Construct

Summary

The target teams distribute construct is a shortcut for specifying a

target construct containing a teams distribute construct

Syntax

The syntax of the target teams distribute construct is as follows:

C/C++

 #pragma omp target team distribute [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the target or team

distribute directives with identical meanings and restrictions

C/C++

An Overview of OpenMP 4.0 276 C-DAC hyPACK-2013

 OpenMP target teams distribute simd Construct

Summary

The target teams distribute construct is a shortcut for specifying a

target construct containing a teams distribute construct

Syntax

The syntax of the target teams distribute construct is as follows:

C/C++

 #pragma omp target teams distribute simd [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the target or team

distribute simd directives with identical meanings and restrictions

C/C++

An Overview of OpenMP 4.0 277 C-DAC hyPACK-2013

Summary

The teams distribute parallel loop construct is a shortcut for specifying a teams

construct containing a distribute parallel loop construct.

Syntax

The syntax of the teams distribute parallel loop construct is as follows:

C/C++

 #pragma omp teams distribute parallel for [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the teams or distribute

parallel for directives with identical meanings and restrictions

C/C++

OpenMP teams distribute parallel for Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 278 C-DAC hyPACK-2013

OpenMP : Target Teams Distribute Parallel Loop Construct

Summary

The target teams distribute parallel loop construct is a shortcut for specifying a
target construct containing a teams distribute parallel loop construct.

Syntax

The syntax of the target teams distribute parallel loop construct is as follows:

C/C++

 #pragma omp target teams distribute parallel for [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the target or teams

distribute parallel for directives with identical meanings and restrictions

C/C++

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 279 C-DAC hyPACK-2013

OpenMP : Target Teams Distribute Parallel Loop Construct

Summary

The teams distribute parallel construct is a shortcut for specifying a

teams construct containing a distribute parallel loop SIMDconstruct

Syntax

The syntax of the teams distribute simd construct is as follows:

C/C++

 #pragma omp team distribute [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the teams or distribute

parallel for simd directives with identical meanings and restrictions

C/C++

Fortran

 !$omp teams distribute parallel do simd [clause[[,] clause] …]

 for-loops
 [!$omp and end teams distribute parallel do simd]

An Overview of OpenMP 4.0 280 C-DAC hyPACK-2013

Summary

The teams distribute parallel construct is a shortcut for specifying a

teams construct containing a distribute parallel loop SIMD construct

Syntax

The syntax of the teams distribute simd construct is as follows:

C/C++

 #pragma omp team distribute parallel for simd [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the teams or distribute

parallel for simd directives with identical meanings and restrictions

C/C++

OpenMP : Target Teams Distribute Parallel Loop Construct

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 281 C-DAC hyPACK-2013

OpenMP:Target Teams Distribute Parallel Loop SIMD Construct

Summary

The target teams distribute parallel loop SIMD construct is a shortcut for

specifying a target construct containing a teams distribute parallel loop SIMD

construct.

Syntax

The syntax of the target teams distribute parallel loop SIMD construct is as follows:

C/C++

 #pragma omp team distribute [clause[[,] clause] …]

 for-loops

where clause can be any of the clauses accepted by the target or teams

distribute parallel for simd directives with identical meanings and

restrictions

C/C++

An Overview of OpenMP 4.0 282 C-DAC hyPACK-2013

 OpenMP Tasking Construct

Summary

The teams construct defines an explicit task.

Syntax

The syntax of the target teams distribute parallel loop SIMD construct is as follows:

C/C++

 #pragma omp task [clause[[,] clause] …] new-line

 structured-block

where clause is one of the following:

 if (scalar-expression)

 final (scalar-expression)

 untied

 default(shared | none)

 mergeable

 private (list)

 firstprivate (list)

 shared (list)

 depend (dependence-type : list)

An Overview of OpenMP 4.0 283 C-DAC hyPACK-2013

Description

The encountering thread may immediately execute the task, or defer its execution. In the

latter case, any thread in the team may be assigned the task. Completion of the task can
be guaranteed using task synchronization constructs. A task construct may be nested

inside an outer task, but the task region of the inner task is not a part of the task region

of the outer task.

When an if clause is present on a task construct, and the if clause expression

evaluates to false, an undeferred task is generated, and the encountering thread must

suspend the current task region, for which execution cannot be resumed until the
generated task is completed. Note that the use of a variable in an if clause expression of

a task construct causes an implicit reference to the variable in all enclosing constructs.

When a final clause is present on a task construct and the final clause expression

evaluates to true, the generated task will be a final task. All task constructs encountered

during execution of a final task will generate final and included tasks. Note that the use of a
variable in a final clause expression of a task construct cause an implicit reference to

the variable in all enclosing constructs.

 OpenMP :Tasking Construct

An Overview of OpenMP 4.0 284 C-DAC hyPACK-2013

 OpenMP : depend Clause

Summary

The depend clause enforces additional constraints on the scheduling of tasks.

These constraints establish dependences only between sibling tasks. The clause

consists of a dependence-type with one or more list items.

Syntax

The syntax of the target teams distribute parallel loop SIMD construct is as follows:

 depend(dependence-type : list)

Description

Task dependences are derived from the dependence-type of a depend clause and its

list items, where dependence-type is one of the following:

An Overview of OpenMP 4.0 285 C-DAC hyPACK-2013

Description

Task dependences are derived from the dependence-type of a depend clause and its

list items, where dependence-type is one of the following:

The in dependence-type. The generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the list items in an
out or inout dependence-type list.

The out and inout dependence-types. The generated task will be a dependent task

of all previously generated sibling tasks that reference at least one of the list items in
an in, out, or inout dependence-type list.

The list items that appear in the depend clause may include array sections.

Note – The enforced task dependence establishes a synchronization of memory

accesses performed by a dependent task with respect to accesses performed by the

predecessor tasks. However, it is the responsibility of the programmer to synchronize

properly with respect to other concurrent accesses that occur outside of those tasks.

 OpenMP : depend Clause

An Overview of OpenMP 4.0 286 C-DAC hyPACK-2013

Summary

The taskyield construct specifies that the current task can be suspended in

favour of execution of a different task. The taskyield construct is a stand-along

directive.

Syntax

C/C++

The syntax of the taskyield construct is as follows:

 #pragma omp taskyield new-line

C/C++

Fortran

The syntax of the taskyield construct is as follows:

 !$omp taskyield

 OpenMP : taskyield Clause

An Overview of OpenMP 4.0 287 C-DAC hyPACK-2013

Whenever a thread reaches a task scheduling point, the implementation may

cause it to perform a task switch, beginning or resuming execution of a different

task bound to the current team. Task scheduling points are implied as the

following locations:

 the point immediately following the generation of an explicit task region

 in a taskyield region

 in a taskwait region

 at the end of a taskgroup region

 in an implicit and explicit barrier region

 the point immediately following the generation of a target region

 at the beginning and end of a target data region

 in a target update region

 OpenMP : task Scheduling Clause

Source : http:/www.openmp.org; References of OpenMP

An Overview of OpenMP 4.0 288 C-DAC hyPACK-2013

 OpenMP : Data Environment

This section presents a directive and several clauses for controlling the data
environment during the execution of parallel, task, simd, and worksharing

regions.

 how the data-sharing attributes of variables referenced in parallel, task,

simd, and worksharing regions are determined.

 The threadprivate directive, which is provided to create threadprivate

memory

 Clauses that may be specified on directives to control the data-sharing
attributes of variables referenced in parallel, task, simd or

worksharing constructs

 Clauses that may be specified on directives to copy data values from private

or threadprivate variables on one thread to the corresponding variables on

other threads in the team

 Clauses that may be specified on directives to map variables to devices

An Overview of OpenMP 4.0 289 C-DAC hyPACK-2013

 OpenMP : threadprivate Directive

Summary

The threadprivate directive specifies that variable are replicated, with each

thread having its own copy. The threadprivate directive is a declarative

directive.

Syntax

C/C++

The syntax of the threadprivate directive is as follows:

 #pragma omp threadprivate (list) new-line

Where list is a comma-separated list of file-scope, namespace-scope, or static block-

scope variables that do not have incomplete types.

C/C++

An Overview of OpenMP 4.0 290 C-DAC hyPACK-2013

OpenMP : Data-Sharing Attribute Clauses

Several constructs accept clauses that allow a user to control the data-sharing

attributes of variables referenced in the construct. Data-sharing attribute clauses

apply only to variables for which the names are visible in the construct on which

the clause appears.

Not all of the clauses listed in this section are valid on all directives. The set of

clauses that is valid on a particular directive is described with the directive.

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on

age 26). All list items appearing in a clause must be visible, according toe the

scoping rules of the base language. With the exception of the default clause,

clauses may be repeated as needed. A list item that specifies a give variable may

not appear in more than one clause on the same directive, except that a variable

may be specified in both firstprivate and lastprivate clauses.

C/C++

If a variable referenced in a data-sharing attribute clause has a type derived from a

template, and there are no other references to that variable in the program, then

any behaviour related to that variable is unspecified

C/C++

An Overview of OpenMP 4.0 291 C-DAC hyPACK-2013

OpenMP : Data Copying Clauses

This section describes the copyin clause (allowed on the parallel directive and

combined parallel worksharing directives) and the copyprivate clause (allowed

on the single directive).

These clauses support the copying of data values from private or threadprivate

variables on one implicit task or thread to the corresponding variables on other

implicit tasks or threads in the team.

The clauses accept a comma-seperated list of list items (see Section 2.1 on page

26). All list items appearing in a clause must be visible, according to the scoping

rules of the base language. Clauses may be repeated as needed, but a list item

that specifies a given variable may not appear in more than one clause on the

same directive.

An Overview of OpenMP 4.0 292 C-DAC hyPACK-2013

 OpenMP : copypriavate clause

Summary

The copyprivate clause provides a mechanism to use a private variable to

broadcast a value from the data environment of one implicit task to be data
environments of the other implicit tasks belonging to the parallel region.

To avoid race conditions, concurrent reads or updates of the list item must be

synchronized with the update of the list item that occurs as a result of the
copyprivate clause.

Syntax

The syntax of the copyprivate clause is as follows:

 copyprivate (list)

Description

The effect of the copypriate clause on the specified list items occurs after the

execution of the structured block associated with the single construct (see Section 2.7.3

on page 63), and before any of the threads in the team have left the barrier at the end

of the construct.

An Overview of OpenMP 4.0 293 C-DAC hyPACK-2013

 OpenMP : map clause

Summary

The map clause maps a variable from the current task’s data environment to the

device data environment associated with the construct.

Syntax

The syntax of the copyprivate clause is as follows:

 map (list)

Description

The list items that appear in a map clause may include array sections.

For list items that appear in a map clause, corresponding new list items are created in

the device data environment associated with the construct.

The original and corresponding list items may share storage such that write to either

item by one task followed by a read or write of the other item by another task without

intervening synchronization can result in data races.

An Overview of OpenMP 4.0 294 C-DAC hyPACK-2013

OpenMP : declare reduction Directive

Summary

The following section describes the directive for declaring user-defined reductions.
The declare reduction directive declares a reduction-identifier that can be

used in reduction clause. The declare reduction directive is a declarative

directive.

Syntax

C/C++

 #pragma omp declare reduction (reduction-identifier : typename-list :

 combiner) [initializer-clause] new-line

where:

 reduction-identifier is either a base language identifier or one of the following
operators +, -, *, &, |, ^, && and ||

 typename-list in list of type names

 combiner is an expression

 Initializer-clause is initializer (initializer-expr) where initializer-expr is omp_priv *

initializer or function-name (argument-list)

C

An Overview of OpenMP 4.0 295 C-DAC hyPACK-2013

Conclusions

 Discussed An overview of Programming for Multi-Core
Systems with Coprocessors OpenMP 4.0

Source : OpenMP Web Sites and References

Prog. on Intel Xeon-Phi : Hybrid Prog. 296 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : An Overview

Hybrid Programming

Hybrid Programming – MPI & OpenMP

Part-3

Prog. on Intel Xeon-Phi : Hybrid Prog. 297 C-DAC hyPACK-2013

Prog. on Intel Xeon Phi : Hybrid Prog. MPI /OpenMP

 For hybrid OpenMP/MPI programming there are two major
approaches:

• An MPI offload approach, where MPI ranks reside on the host
CPU and work is offloaded to the Xeon Phi coprocessor and

• a symmetric approach in which MPI ranks reside both on the
CPU and on the Xeon Phi. Messages into/out and on the
Xeon Phi

 An MPI program can be structured using either model

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Hybrid Prog. 298 C-DAC hyPACK-2013

Prog. on Intel Xeon Phi : Threading of MPI ranks

 For hybrid OpenMP/MPI applications use the thread safe
version of the Intel MPI Library by using the -mt_mpi
compiler driver option.

 A desired process pinning scheme can be set with the

I_MPI_PIN_DOMAIN environment variable.

It is recommended to use the following setting:
 $ export I_MPI_PIN_DOMAIN = omp

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Hybrid Prog. 299 C-DAC hyPACK-2013

Prog. on Intel Xeon Phi : Threading of MPI ranks

$ export I_MPI_PIN_DOMAIN = omp

 By using this, one sets the process pinning domain size
to be OMP_NUM_THREADS.

In this way, every MPI process is able to create
$OMP_NUM_THREADS number of threads that will run
within the corresponding domain.

 Remark : If this variable is not set, each process will create
a number of threads per MPI process equal to the number
of cores, because it will be treated as a separate domain.

Further, to pin OpenMP threads within a particular domain,
one could use the KMP_AFFINITY environment

variable.
Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Hybrid Prog. 300 C-DAC hyPACK-2013

Prog. on Intel Xeon Phi : Threading of MPI ranks

MPI programming models : Intel MPI for the Xeon Phi
coprocessors offers various MPI programming models:

• Symmetric model : The MPI ranks reside on both the host
and the coprocessor. Most general MPI case.

• Coprocessor-only model : All MPI ranks reside only on
the coprocessors

• Host-only model : All MPI ranks reside on the host. The
coprocessors can be used by using offload pragmas.
(Using MPI calls inside offloaded code is not supported.)

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

301 An Overview of OpenCL C-DAC hyPACK-2013

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

Intel Xeon Phi - Coprocessors : An Overview

Heterogeneous Programming

Heterogeneous Programming – OpenCL

Part-3

http://www.intel.com/

302 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Background & Challenging Objectives :

 OpenGL: Open Graphics Library

 Widely supported application programming interface
(API) for graphics ONLY

 OpenCL: "CL" Stands for Computing Language

 providing an API library

 Modifies C and C++ parallel programming

 New Initiatives for other programming
languages(Fortran)

Aim: to standardize general purpose parallel programming
 for any application Source : Intel, NVIDIA, Khronos AMD, References

303 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 OpenCL C is a restricted version of the C99 language with
extension appropriate for executing data-parallel code on a
variety of heterogeneous devices.

 Aimed for full support for the IEEE 754 formats

 Programming language, well suited to the capabilities of
current heterogeneous platforms

Source : Intel, NVIDIA, Khronos AMD, References

304 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 The model set forth by OpenCL creates portable, vendor-
and device-independent programs that are capable of
being accelerated on many different platforms.

• The OpenCL API is C wit h a C++ Wrapper API that is
defined in terms of the C-API.

• There are third-party bindings for many languages,
including Java, Python, and .NET

• The code that executes on an OpenCL device, which in
general is not the same device as the host-CPU, is
written in the OpenCL C language.

Source : Intel, NVIDIA, Khronos AMD, References

305 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Use all computational resources in system

 Program GPUs, CPUs and other processors as peers

 Support both data- and task- parallel compute models

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience” functions

 Implementation on a range of embedded, desktop, and server systems

 HPC desktop, and handheld profiles in on specification

 Drive future hardware requirements

 Floating point precision requirements

 Application to both consumer and HPC applications

Source : Intel, NVIDIA, Khronos AMD, References

306 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience”
functions

Source : Intel, NVIDIA, Khronos AMD, References

307 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : Intel, NVIDIA, Khronos AMD, References

308 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : Intel, NVIDIA, Khronos AMD, References

309 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : Intel, NVIDIA, Khronos AMD, References

310 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : Intel, NVIDIA, Khronos AMD, References

311 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification – Models

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

Source : NVIDIA, Khronos AMD, References

312 An Overview of OpenCL C-DAC hyPACK-2013

• Platform Layer

 Query and select computer devices in the system

 Initialize a compute device(s)

 Create compute contexts and work-queues

• Runtime

 Resource management

 Execute compute kernels

• Compiler

 A subset of ISO C99 with appropriate language additions

 Compile and build compute program executable

 Online or offline

The OpenCL Specification – Models

 OpenCL Software Stack

Source : Intel, NVIDIA, Khronos AMD, References

313 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

• High Level description of the heterogeneous

system

 Execution Model

• An abstract representation of how stream of

instructions execute on the heterogeneous

system

The OpenCL Specification – Models

Source : Intel, NVIDIA, Khronos AMD, References

314 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Memory Models

• The Collection of memory regions within

OpenCL and how they interact during at

OpenCL computation

 Programming Model

• The high-level abstractions a programmer uses

when designing algorithms to implement an

application

The OpenCL Specification – Models

Source : Intel, VIDIA, Khronos AMD, References

315 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Specifies that there is one processor coordinating the execution
(the host) and one or more processors capable of executing
OpenCL C Code (the devices).

 It defines an abstract hardware model that is used by programmers
when writing OpenCL functions (Called Kernels) that execute on the
devices.

 The platform model defines the relation between the host an
device.

• i.e., OpenCL implementation executing on a host x86 GPU,
which is using a GPU device as an accelerator

The OpenCL Specification

Source : Intel, NVIDIA, Khronos AMD, References

316 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Platforms can be thought of a vendor – specific
implementations of the OpenCL API.

 The platform model also presents an abstract device
architecture that programmers target writing OpenCL C code.

 Vendors map this abstraction architecture to the physical
hardware.

The OpenCL Specification

Source : Intel, NVIDIA, Khronos AMD, References

317 An Overview of OpenCL C-DAC hyPACK-2013

Host-Device Interaction

 Platform Model

• Provides an abstract hardware model for devices

• Present an abstract device architecture that programmers target
when writing OpenCL C code.

• Vendor-specific implementation of the OpenCL API.

OpenCL PLATFROM AND DEVICES

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing elements

• OpenCL device schedule execution of instructions.

Source : Intel, NVIDIA, Khronos AMD, References

318 An Overview of OpenCL C-DAC hyPACK-2013

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

Host

The platform model defines an abstract architecture for devices.

• The host is connected to one or more devices

• Device is where the stream of instructions (or kernels) execute (an

OpenCL device is often referred to as a compute device

• A device can be a CPU, GPU, DSP, or any other processor

provided by Hardware and supported by the OpenCL Vendor

OpenCL Platform Model

OpenCL

Device Compute Unit

Source : Intel, NVIDIA, Khronos AMD, References

319 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Platform Model

 One Host + one or more compute Devices

 Each compute Device is connected to one or more

Compute Units.

• Each compute Unit is further divided into one or more

Processing Elements

Source : Intel, NVIDIA, Khronos AMD, References

320 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system ?

cl_int

ClGetPlatformIds(cl_unit num_entries,

 cl_platform_Id *platforms,

 cl_unit *num_platforms)

OpenCL PLATFROM Model

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing
elements

• OpenCL device schedule execution of instructions.
Source : NVIDIA, Khronos AMD, References

321 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system.

 Application calls ClGetPlatformIds() twice

• The first call passes an unsigned int pointer as the
num_platforms argument and NULL is passes as the
platform argument.

‾ The programmer can then allocate space to hold the
platform information.

• The second call, a cl_platform_id pointer is passed to
the implementation with enough space allocated for
num_entries platforms.

OpenCL PLATFORM Model

Source : NVIDIA, Khronos AMD, References

322 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The ClGetPlatformInfo()call determines implementation

The clGetDeviceIDs()call works very similar to
ClGetPlatformId()

How to use device_type argument ?

 GPUs : cl_DEVICE_TYPE_GPU

 CPUs : cl_DEVICE_TYPE_CPU

 All devices : cl_DEVICE_TYPE_ALL & other options

Cl_GetDeviceinfo() is called to retrieve information such as name,
type, and vendor from each device.

OpenCL PLATFROM AND DEVICES

Source : Inttel, NVIDIA, Khronos AMD, References

323 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The clGetDeviceIDs()

cl_int

clGetDeviceIDs(cl_platform_id platform,

 cl_DEVICE_TYPE_GPU device_type,

 cl_unit num_entries,

 cl_device_id *devices,

 cl_uint *num_devices)

OpenCL PLATFROM Model

Source : Intel, NVIDIA, Khronos AMD, References

324 An Overview of OpenCL C-DAC hyPACK-2013

How to get printed information about the OpenCL, supported

platforms and devices in a system ?

CLinfo prorgam in the AMD APP SDK

• Uses clGetplatforminfo()and clGetDeviceInfo()

• Hardware details such as memory size and bas widths are

available using the commands

• $./CLinfo program gives complete information

OpenCL PLATFORM Model

Source : Intel, NVIDIA, Khronos AMD, References

325 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Number of platforms : 1

Platform Profiles : FULL_PROFILE

Platform Version : OpenCL 1.1 AMD SDK –v2.4

Platform Name : AMD Accelerated Parallel Processing

Platform Vendor : Advanced Micro Devices, Inc.

Number of Devices : 2

Device Type : CL_DEVICE_TYPE_GPU

Name : Cypress

Max Compute Units : 20

Address bits 32

$./CLinfo

326 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Max Memory Allocation: 268435456

Global Memory size : 1073741824

Constant buffer size : 65536

Local Memory type : Scratchpad

Local Memory size : 32768

Device endianess : little

Device Type : CL_DEVICE_TYPE_CPU

Max Compute units : 16

Name : AMD Phenom™ 11 X4 945
Processor

$./CLinfo

Source : NVIDIA, Khronos AMD, References

327 An Overview of OpenCL C-DAC hyPACK-2013

 Execution model :

 Defines

• How the OpenCL environment is configured on the host

• How kernels are executed on device

 This includes

• Setting up an OpenCL context on the host,

• Providing mechanism for host-device interaction, &

• defining a concurrency model used for kernel execution on
device

• The host sets up a kernel for the GPU to run and instantiates
it with some special degree of parallelism.

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

328 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model

 Application consists of two distinct parts

 The host program

• Runs on the host

• OpenCL does not define the details of how the host

progrma works, only how it interacts with objects

defined in OpenCL

 A Collection of Kernels

• The Kernel execute on the OpenCL device

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

329 An Overview of OpenCL C-DAC hyPACK-2013

Query platform

Query devices

Command queue

Create buffers

Compile program

Compile kernel

Set arguments

Executive kernel

C
o
m

p
ile

r

P
la

tf
o

rm
 l
a
y
e

r
R

u
n

ti
m

e
 l
a
y
e

r

Figure 2 Programming steps to writing a complete OpenCL applications

OpenCL Implementation Steps

330 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the platforms

Step 2 : Discover and initialize the devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

Step 7 : Create and compile the program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items structure

Step 11 : Enqueue the kernel for execution

Step 12 : Read the output buffer back to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

331 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the

platforms

Step 2 : Discover and initialize the

devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

332 An Overview of OpenCL C-DAC hyPACK-2013

Step 7 : Create and compile the

program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items

structure

Step 11 : Enqueue the kernel for

execution

Step 12 : Read the output buffer back

to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

333 An Overview of OpenCL C-DAC hyPACK-2013

• Create an OpenCL context on the first available device

• Create a command –queue on the first available device

• Load a kernel file (hello-world.cl) and build it into a

program object

• Create a kernel object for the kernel function

hello_world()

• Query the kernel for execution

• Read the results of the kernel back into the result

buffer

 OpenCL Important Steps – Implementation

334 An Overview of OpenCL C-DAC hyPACK-2013

_kernel void hello_kernel(_global *, *,)

{

 int gid = get_global_id(0);

 ………

 }

int main (int argc, char** argv)

{

// Create an OpencL context on first available platform

// Create an command-queue on the first device

// available on the created context

 OpenCL Important Steps – Implementation

335 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Execution Model - Kernels

 A Collection of Kernels

• Execute on the OpenCL device

• Do the real work of an OpenCL application

• Simple functions transform input memory objects into

output memory objects

Execution Model - Kernels

 OpenCL defines two types of Kernels

• OpenCL Kernels & Native Kernels

The OpenCL Execution Model

336 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model : Defines how the kernels execute

 Several Steps Exist.

• FIRST : How an individual kernel runs on an

OpenCL device ?

• Second: How the host defines the context for

kenrel execution

• THIRD: How the kernels are enqueued for

execution

The OpenCL Execution Model

Source : Intel, NVIDIA, Khronos AMD, References

337 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model - Kernels

 OpenCL Kernels

• Written in OpenCL C programming language and

compiled with the OpenCL Compiler

• All OpenCL implementations must support OpenCL

Kernels

 Native Kernels

• Functions created outside of OpenCL and accessed

within OpenCL through a function pointer. (An

Optional functionality within in OpenCL exist)

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

338 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL Execution Environment defines the

following how the kernel execute

 Contexts

 Command Queues

 Events

 Memory Objects (Buffers -large array /images

• Buffers (allocate buffer & return memory object)

• Image (2D & 3D)

 Flush & Finish

The OpenCL Execution Model

Source : Intel NVIDIA, Khronos AMD, References

339 An Overview of OpenCL C-DAC hyPACK-2013

Mapping :OpenCL constructs to Intel Xeon Phi coprocessor

• Conceptually, at initialization time, the OpenCL driver

creates 240 SW threads and pins them to the HW threads

(for a 60-core configuration).

• Then, following a clEnqueueNDRange() call, the driver

schedules the work groups (WG) of the current NDRange

on the 240 threads.

• A WG is the smallest task being scheduled on the threads.

So calling clEnqueueNDRange() with less than 240

WGs, leaves the coprocessor underutilized

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

340 An Overview of OpenCL C-DAC hyPACK-2013

Mapping :OpenCL constructs to Intel Xeon Phi coprocessor

• The OpenCL compiler implicitly vectorizes the WG

routine based on dimension zero loop, i.e., the dimension

zero loop is unrolled by the vector size.

__Kernel ABC(…)

for(int i = 0; i < get_local_size(2); i++)

for(int j = 0; j < get_local_size(1); j++)

for(int k = 0; k < get_local_size(0); k += VECTOR_SIZE)

 Vector_Kernel_Body;

The vector size of Intel Xeon Phi coprocessor is 16,

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

341 An Overview of OpenCL C-DAC hyPACK-2013

Mapping :OpenCL constructs to Intel Xeon Phi coprocessor

• While the OpenCL specification provides various ways to

express parallelism and concurrency, some of them will not

map well to Intel Xeon Phi coprocessor. Most importantly,

design your application to exploit its parallelism

Multi-threading

• To get good utilization of the 240 HW threads, it’s best to

have more than 1000 WGs per NDRange. Having 180‒240

WGs per NDRange will provide basic threads utilization;

however, the execution may suffer from poor load-

balancing and high invocation overhead.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

342 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Multi-threading

• Recommendation: Have at least 1000 WGs per NDRange

to optimally utilize the Intel Xeon Phi coprocessor HW

threads. Applications with NDRange of 100 WGs or less

will suffer from serious under-utilization of threads

• Single WG execution duration also impacts the threading

efficiency. Lightweight WGs are also not recommended, as

these may suffer from relatively high overheads.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

343 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Vectorization :

• OpenCL on Intel Xeon Phi coprocessor includes an

implicit vectorization module. The OpenCL compiler

automatically vectorizes the implicit WG loop over the

work items in dimension zero (see example above).

• The vectorization width is currently 16, regardless of the

data type used in the kernel. In future implementations, we

may vectorize even 32 elements. As OpenCL work items

are guaranteed to be independent, the OpenCL vectorizer

needs no feasibility analysis to apply vectorization.

•

The OpenCL on Intel Xeon Phi

344 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Vectorization :

• Note that the vectorized kernel is only used if the local size

of dimension zero is greater than or equal to 16. Otherwise,

the OpenCL runtime runs scalar kernel for each of the work

items. If the WG size at dimension zero is not divisible by

16, then the end of the WG needs to be executed by scalar

code. This isn’t an issue for large WGs, e.g., 1024 items at

dimension zero, but is for WGs of size 31 on dimension

zero.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

345 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Vectorization :

• Recommendation 1: Don’t manually vectorize kernels, as

the OpenCL compiler is going to scalarize your code to

prepare it for implicit vectorization.

• Recommendation 2: Avoid using a WG size that is not

divisible by 32 (16 will work for now).

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

346 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Vectorization :

• Work-Item-ID non-uniform control flow

Understand the difference between uniform and

nonuniform control flow in the context of vectorization

• Data Alignment : For various reasons, memory access that

is vector-size-aligned is faster than unaligned memory

access. In the Intel Xeon Phi coprocessor, OpenCL buffers

are guaranteed to start on a vector-size-aligned address

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

347 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Vectorization :

• Recommendation 1: Don’t use NDrange offset. If you

have to use an offset, then make it a multiple of 32, or at

least a multiple of 16.

• Recommendation 2: Use local size that is a multiple of 32,

or at least of 16..

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

348 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Algorithm Design :

• Intra WG data reuse

Designing your application to maximize the amount of

data reuse from the caches is the first memory

optimization to apply.

• Data Data access pattern : Consecutive data access

usually allows the best memory system performance

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

349 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Algorithm Design :

• Data layout : Pure SOA (Structure-of-Arrays) data

layout results in simple and efficient vector loads and stores

• With AOS (Array-of-Structures) data layout, the

generated vectorized kernel needs to load and store data via

gather and scatter instructions, which are less efficient than

simple vector load and store.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

350 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Algorithm Design :

• Data Prefetching : With the Intel Xeon Phi coprocessor

being an in-order machine, data prefetching is an essential

way to bring data closer to the cores, in parallel with other

computations. Loads and stores are executed serially, with

parallelism.

• Manual prefetching can be inserted by the programmer into

the OpenCL kernel, via the prefetch built-in.

• Automatic SW prefetches to the L1 and L2 are inserted by

the OpenCL compiler for data accessed in future iterations,

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

351 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Summary :While designing your OpenCL application for

Intel Xeon Phi coprocessor, you should pay careful attention

to the following aspects:

• Include enough work groups within each NDRange—a

minimum of 1000 is recommended.

• Avoid lightweight work groups. Don’t hesitate using the

maximum local size allowed (currently 1024). Keep the

WG size a multiple of 32.

• Avoid ID(0) dependent control flow. This allows efficient

implicit vectorization.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

352 An Overview of OpenCL C-DAC hyPACK-2013

Mapping : OpenCL constructs to Intel Xeon Phi coprocessor

Summary :While designing your OpenCL application for

Intel Xeon Phi coprocessor, you should pay careful attention

to the following aspects:

• Prefer consecutive data access.

• Data layout preferences: AOS for sparse random access;

pure SOA or AOSOA(32) otherwise.

• Exploit data reuse through the caches within the WG—

tiling/blocking.

• If auto-prefetching didn’t kick in, use the PREFETCH

built-in to bring the global data to the cache 500‒1000

cycles before use.

• Don’t use local memory. Avoid using barriers.

The OpenCL on Intel Xeon Phi

Source : www.intel.com : The Intel SDK for OpenCL Applications XE The OpenCL 1.1 Quick Reference Guide

http://www.intel.com/

353 An Overview of OpenCL C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. RAPIDMIND http://www.rapidmind.net
6. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
7. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
8. AMD http:www.amd.com
9. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
10. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
11. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
12. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl
13. OpenCL - The open standard for parallel programming of heterogeneous systems URL :

http://www.khronos.org/opencl

14. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan
& VVR Talk

15. David B Kirk, Wen-mei W. Hwu nvidia corporation, 2010, Elsevier, Morgan Kaufmann
Publishers, 2011

16. Benedict R Gaster, Lee Howes, David R Kaeli, Perhadd Mistry Dana Schaa,
Heterogeneous Computing with OpenCL, Elsevier, Moran Kaufmann Publishers, 2011

17. The OpenCL 1.2 Specification (Document Revision 15) Last Released November 15, 2011
Editor : Aaftab Munshi Khronos OpenCL Working Group

18. The OpenCL 1.1 Quick Reference card

References

http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://en.wikipedia.org/wiki/GPGPU
http://www.khronos.org/opencl
http://www.khronos.org/opencl

354 An Overview of OpenCL C-DAC hyPACK-2013

19. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx AMD APP
SDK with OpenCL 1.2 Support

20. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#oneAMD-
APP-SDKv2.7 (Linux) with OpenCL 1.2 Support

21. http://icl.cs.utk.edu/magma/software/ MAGMA OpenCL
22. http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx Getting

Started with OpenCL
23. http://developer.amd.com/openclforum AMD Developer OpenCL FORUM
24. http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopencl

performance.aspx AMD Developer Central - Programming in OpenCL - Benchmarks
performance

25. http://developer.amd.com/sdks/AMDAPPSDK/assets/opencl-1.2.pdf OpenCL 1.2 (pdf
file)

26. http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx AMD OpenCL
Emulator-Debugger

27. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf The OpenCL 1.2 Specification
(Document Revision 15) Last Released November 15, 201 Editor : Aaftab Munshi <I>
Khronos OpenCL Working Group

28. http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/ OpenCL1.1 Reference
Pages

29. The Intel SDK for OpenCL Applications XE – Optimization Guide includes many more
details.

References

Source : Intel, NVIDIA, Khronos AMD, References

http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Intel Xeon Phi : Profiling & Timing 355 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors :

Profiling & Timing

Profiling & Timing

Part-4

Intel Xeon Phi : Profiling & Timing 356 C-DAC hyPACK-2013

Intel Xeon Phi : Profiling & Timings

356

Source : References & Intel Xeon-Phi; http://www.intel.com/

 The Intel Composer XE – Development tool and SDK suite
available for developing Intel Xeon Phi

• Intel supports event-monitoring registers. On the
coprocessor these are similar to some counters on a
processor, but with additional abilities for the higher core
count, higher threads per core, and wider vectors.

• Using counters instead of more intrusive techniques (like
profiling compiler time option � pg) is critical when
dealing with high performance programs.

http://www.intel.com/
http://www.intel.com/

Intel Xeon Phi : Profiling & Timing 357 C-DAC hyPACK-2013
357

Source : References & Intel Xeon-Phi; http://www.intel.com/

 The Intel Composer XE – Development tool and SDK suite
available for developing Intel Xeon Phi

• Intel Vtune Amplifier XE product

• Open source community has Performance Application
Programming Interface (PAPI).

• MPI – Intel Trace Analyzer and Collector (ITAC).

Intel Xeon Phi : Profiling & Timings

http://www.intel.com/
http://www.intel.com/

Intel Xeon Phi : Profiling & Timing 358 C-DAC hyPACK-2013

Intel Xeon Phi : The Intel Composer XE 2013

358

Source : References & Intel Xeon-Phi; http://www.intel.com/

 The Intel Composer XE – Development tool and SDK suite available for
developing Intel Xeon Phi

• It includes C/C++ Fortran Complier

• It includes runtime libraries like OpenMP, thread etc. Debuging tool
and math kernel library (MKL)

• Supports various parallel programming models fro Intel Xeon Phi
such as Intel Cilk Plus, Intel Threading Building blocks (TBB),
OpenMP and Pthread

• It includes Intel MKL

http://www.intel.com/
http://www.intel.com/

Intel Xeon Phi : Profiling & Timing 359 C-DAC hyPACK-2013

Intel Trace Analyzer and Collector (ITAC)

359

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Intel MPI, Intel Trace Analyzer and Collector(ITAC) on MIC

• Intel Trace Collector gathers information from running programs into a
trace file, and the Intel Trace Analyzer allows the collected data to be
viewed and analyzed after a run.

• The Intel Trace Analyzer and Collector support processors and
coprocessors.

• The Trace Collector can integrate information from multiple sources
including an instrumented Intel MPI Library and PAPI.

• Trace file from an application running on the host system and
coprocessor simultaneously can be generated

• Generate trace file only on Coprocessor system

http://www.intel.com/
http://www.intel.com/

Intel Xeon Phi : Profiling & Timing 360 C-DAC hyPACK-2013

Intel Vtune Amplier XE 2013

 Rich set of performance data for hotspots, threading, locks

& waits, bandwidth

 Ability to both collect and view sampled data from an Intel

Xeon Phi coprocessor.
 Hotspot Analysis—Quickly locate code that is taking a lot of time.

See the calling sequences.

 Lightweight Hotspot Analysis—Low overhead, high resolution using

on-chip hardware.

 Locks & Waits—Tune threading. Find synchronization objects

impeding performance scaling.

 System Wide Analysis—Tune drivers, kernel modules and multi-

process apps.

 Call Count Analysis—Find code that will benefit from inlining.

 Bandwidth, Memory, Branch analysis, more—Advanced analysis

 MPI applications— Analyze hybrid applications using MPI and

OpenMP.

360

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Intel Xeon Phi : Profiling & Timing 361 C-DAC hyPACK-2013

 The VTune™ Performance Analyzer provides information on
the performance of your code.

 The VTune analyzer shows you the performance issues,
enabling you to focus your tuning effort and get the best
performance boost in the least amount of time

Intel Vtune Performance Analyzer 2013

Intel Xeon Phi : Profiling & Timing 362 C-DAC hyPACK-2013

Performance Application Programming Interface (PAPI) – Open
Source Tool

 PAPI provides a consistent interface and methodology for use of
the performance counter

 hardware found in most major microprocessors including the Intel
Xeon Phi coprocessor. PAPI is used by quite a number of open
source tools (a list is available on the PAPI Web site

Open Source Software Tool on Intel Xeon Phi

Intel Xeon Phi : Profiling & Timing 363 C-DAC hyPACK-2013

 Clocksources on the coprocessor

 There are two clock generators that can generate clock signals.

• At the system level is the PCIe clock generator;

• The second is the ICC PLL.

 From the programmers point of view there are two clock sources
accessible on the coprocessor: MIC Elapsed Time Counter

(micetc) and the Time Stamp Counter (tsc).

 The default clock source on the coprocessor has been micetc.

The micetc clocksource is also compensated for power

management events delivering a very stable clocksource.

Timing on Intel Xeon Phi

Intel Xeon Phi : Profiling & Timing 364 C-DAC hyPACK-2013

Measuring timing and data in offload regions

 You can measure both the amount of time it takes to execute an
offload region of code, as well as the amount of data transferred
during the execution of the offload region.

 From the programmers point of view there are two clock sources
accessible on the coprocessor: MIC Elapsed Time Counter

(micetc) and the Time Stamp Counter (tsc).

 The default clock source on the coprocessor has been micetc.

The micetc clocksource is also compensated for power

management events delivering a very stable clocksource.

Timing on Intel Xeon Phi

An Overview of OpenMP 4.0 365 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : system

Performance Results

Benchmark Results

Part-5

An Overview of OpenMP 4.0 366 C-DAC hyPACK-2013

Quick Glance*

 The Intel Xeon Phi coprocessor Architecture Overview

(Core, VPU, CRI, Ring, SBOX, GBOX, PMU)

 The Cache hierarchy (Details of L1 & L2 Cache)

 Network Configuration (MPSS) : (Obtain the information can
be obtained by running the micinfo program on the host.)

 System Access

Remark : Root privileges are necessary for the destination
directories (Required for availability of some library usage for
codes such MKL)

Intel Xeon-Phi Coprocessor architecture Overview

(* = Useful for tuning and Performance)

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

An Overview of OpenMP 4.0 367 C-DAC hyPACK-2013

 The Intel Xeon Phi coprocessor consists of up to 61 cores
connected by a high performance on-die bidirectional
interconnect.

 The coprocessor runs a full service Linux operating system

 The coprocessor supports all important Intel development
tools, like C/C++ and Fortran compiler, MPI and OpenMP

 To Coprocessor support s high performance libraries like
MKL, debugger and tracing tools like Intel VTune Amplifier
XE.

Intel Xeon-Phi Coprocessor architecture Overview

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

An Overview of OpenMP 4.0 368 C-DAC hyPACK-2013

 The Intel Xeon Phi coprocessor The coprocessor is
connected to an Intel Xeon processor - the "host" - via the
PCI Express (PICe) bus.

 The implementation of a virtualized TCP/IP stack allows to
access the coprocessor like a network node.

Remark : Summarized information can be found In the
following MIC architecture from the System Software
Developers Guide and other references

Intel Xeon-Phi Coprocessor architecture Overview

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

An Overview of OpenMP 4.0 369 C-DAC hyPACK-2013

Quick Glance:
 Details about the system startup and the network

configuration can be found in Intel Xeon-Phi documentation
coming with MPSS

 To start the Intel Manycore Platform Software Stack (Intel
MPSS) and initialize the Xeon Phi coprocessor the following
command has to be executed as root or during host system
start-up:

hypack-root@mic-0:~> sudo service mpss start

Remark : The above command has to be executed as a root

Intel Xeon-Phi Coprocessor System Access

An Overview of OpenMP 4.0 370 C-DAC hyPACK-2013

Quick Glance:
 To start the Intel Manycore Platform Software Stack (Intel

MPSS) and initialize the Xeon Phi coprocessor the following
command has to be executed as root or during host system
start-up:

hypack-root@mic-0:~> sudo service mpss start

Remark : The above command has to be executed as a root.

Details about the system startup and the network configuration
can be found in Intel Xeon-Phi documentation coming with
MPSS. For other necessary commands, refer Intel Xeon Phi
documentation

Intel Xeon-Phi Coprocessor System Access

An Overview of OpenMP 4.0 371 C-DAC hyPACK-2013

Quick Glance:
 Deafault IP addresses ???•?? •?•??? , ???•?? •?•???, etc. are

assigned to the attached Intel Xeon Phi coprocessors. The IP
addresses of the attached coprocessors can be listed via the
traditional ifconfig Linux program.

 hypack-root@mic-0:~> /sbin/ifconfig

Further information can be obtained by running the micinfo
program on the host.

hypack-root@mic-0:~>/sudo/opt/intel/mic/bin/micinfo

Intel Xeon-Phi Coprocessor System Access

An Overview of OpenMP 4.0 372 C-DAC hyPACK-2013

Quick Glance:
hypack-root@mic-0:~>/sudo/opt/intel/mic/bin/micinfo

System Info

Host OS : Linux

OS Version : 3.0.13-0.27-default

Driver Version : 4346-16

MPSS Version : 2.1.4346-16

Host Physical Memory : 66056 MB

…………………

Device No: 0, Device Name: Intel(R) Xeon Phi(TM) coprocessor

…………………

Version

………….…

Board

……………….

Intel Xeon-Phi Coprocessor System Access

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

An Overview of OpenMP 4.0 373 C-DAC hyPACK-2013

Quick Glance:
hypack-root@mic-0:~> /sudo/opt/intel/mic/bin/micinfo

Device No: 0, Device Name: Intel(R) Xeon Phi(TM) coprocessor

…………..

Core

………….…

Thermal

……………….

GGDR

……………….

Device No: 1, Device Name: Intel(R) Xeon Phi(TM) coprocessor

…………………….

…………………..

……………………

Intel Xeon-Phi Coprocessor System Access

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

An Overview of OpenMP 4.0 374 C-DAC hyPACK-2013

Quick Glance:

hypack-root@mic-0:~>/sudo/opt/intel/mic/bin/micinfo

Device No: 0, Device Name: Intel(R) Xeon Phi(TM) coprocessor

…………..

Core

………….…

Intel Xeon-Phi Coprocessor System Access

An Overview of OpenMP 4.0 375 C-DAC hyPACK-2013

Quick Glance:

Users can log in directly onto the Xeon Phi coprocessor via
ssh. User can get basic information abbot Xeon-Phi by
executing the following commands.

[hypack01@mic-0]$ ssh mic-0

[hypack01@mic-0]$ hostname

 …………

[hypack01@mic-0]$ cat /etc/issue

 Intel MIC Platform Software Stack release 2.X

To get further information about the cores, memory etc. can be
obtained from the virtual Linux /proc or /sys filesystems:

[hypack01@mic-0]$ tail -n26 /proc/cpuinfo

 ……………………………

Intel Xeon-Phi Coprocessor System Access

An Overview of OpenMP 4.0 376 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : system

Performance Results

Low Level Benchmark Results

Part-6

Xeon Phi : Benchmarks – Overview 377 C-DAC hyPACK-2013

Task-1

4

1

2

3

Task-2

8

5

6

7

Task-4

2
4

0

2
3

7

2
3

8

2
3

9

Intel Xeon –Phi Programming Paradigms

Source : References & Intel Xeon-Phi; http://www.intel.com/

Task-3

8

5

6

7

http://www.intel.com/
http://www.intel.com/

Xeon Phi : Benchmarks – Overview 378 C-DAC hyPACK-2013

Intel Xeon-Host : Benchmarks Performance

Host : Xeon (Memory Bandwidth (BW) - Xeon: 8 bytes/channel * 4
channels * 2 sockets * 1.6 GHz = 102.4 GB/s)

Xeon Phi Co-Processor Bandwidth

Xeon-Phi coprocessor capacity 8GB; processor Xeon Phi 5110P;
memory channel interface speed: 5.0 Giga Transfer/ Sec (GT/s); 8
memory controllers, each accessing two memory channels, used
on co-processor. each memory transaction to GDDR5 memory is 4
bytes of data, resulting in 5.0 GT/s * 4 bytes or 20 GB/s per
channel.

Xeon Phi : Benchmarks – Overview 379 C-DAC hyPACK-2013

Xeon Node Memory Bandwidth :
8 bytes/channel * 4 channels * 2 sockets * 1.6 GHz = 102.4 GB/s)
Experiment Results : Achieved Bandwidth : 70 % ~75 % Effective bandwidth
can be improved in the range of 10% to 15% with some optimizations

Data Size
(MegaBytes)

No. of Cores
(OpenMP)

Sustained Bandwidth
(GB/sec)

1024 16 72.64

(*) = Bandwidth results were gathered using untuned and unoptimized
versions of benchmark (In-house developed) and Intel Prog. Env

Source : http://www.intel.com; Intel Xeon-Phi books, conferences, Web sites,
Xeon-Phi Technical Reports

PARAM YUVA-II Intel Xeon- Node Benchmarks(*)

http://www.intel.in/content/dam/www/public/us/en/documents/perfo
rmance-briefs/xeon-phi-product-family-performance-brief.pdf

Node : Intel-R2208GZ; Intel Xeon E52670; Core Frequency : 2.6GHz; Cores per Node :
16 ; Peak Performance /Node : 2.35 TF; Memory : 64 GB;

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Xeon Phi : Benchmarks – Overview 380 C-DAC hyPACK-2013

PARAM YUVA-II Xeon Phi Co-Processor Bandwidth
 Xeon-Phi coprocessor (PARAM YUVA-II) capacity 8GB; processor Xeon Phi

5110P; memory channel interface speed: 5.0 Giga Transfer/ Sec (GT/s); 8
memory controllers, each accessing two memory channels, used on co-
processor. Each memory transaction to GDDR5 memory is 4 bytes of data,
resulting in 5.0 GT/s * 4 bytes or 20 GB/s per channel.

 Peak Electrical bandwidth 320 GB/s. (16 total channels provide a maximum
transfer rate 320 GB/s)

 Our experiments indicated that 40% of the peak is achieved. Effective
bandwidth in the range of 50 to 60% of peak memory bandwidth can be
achieved with some optimization.

(*) = Bandwidth results were gathered using untuned and unoptimized
versions of benchmark (in-house developed) and Intel Prog. Env

Source : http://www.intel.com; Intel Xeon-Phi books, conferences, Web sites,
Xeon-Phi Technical Reports

http://www.intel.in/content/dam/www/public/us/en/documents/perf
ormance-briefs/xeon-phi-product-family-performance-brief.pdf

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Xeon Phi : Benchmarks – Overview 381 C-DAC hyPACK-2013

Data Size
(Mega bytes)

No. of Cores
(OpenMP)

Sustained Bandwidth
(GB/sec)(*)

1024 8 39.47

16 68.59

30 98.23

40 118.22

50 136.56

60 138.22

(*) = Bandwidth results were gathered using untuned & unoptimized versions of benchmark (in-

house developed) and Intel Prog. Env

Source : http://www.intel.com; Intel Xeon-Phi books, conferences, Web sites, Technical Reports

(*=No
optimizations are
carried-out to use
OpenMP threads
& Intel Prog. Env)

Bandwidth : Peak Electrical bandwidth 320 GB/s. (16 total channels provide a
maximum transfer rate 320 GB/s)
Experiment Results : Achieved bandwidth is 40% of the peak & it can be increased

in the range of 50% to 60% of peak memory bandwidth.

http://www.intel.in/content/dam/www/public/us/en/documents/performance-
briefs/xeon-phi-product-family-performance-brief.pdf

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Xeon Phi : Benchmarks – Overview 382 C-DAC hyPACK-2013

Data Size
(Megabytes)

No. of Cores (MPI &
120 OpenMP threads)

Sustained Bandwidth
(GB/sec)(*)

2048 ycn213(mic-0) 137.108

ycn213(mic-1) 137.654

ycn210 (mic-0) 138.697

ycn210 (mic-1) 137.712

ycn212 (mic-0) 137.819

ycn212 (mic-1) 132.085

(No optimizations are carried-out to use Intel MPI & OpenMP threads Prog. Env
(*) = Speedup results were gathered using untuned and unoptimized versions of

benchmark (in-house developed) and Intel Prog. Env

(*=No
optimizations are
carried-out to
use OpenMP
threads & Intel
Prog. Env) CDAC
P-COMS
software is
used.)

Bandwidth : Peak Electrical bandwidth 320 GB/s. (16 total channels provide a
maximum transfer rate 320 GB/s)
Experiment Results : Achieved bandwidth is 40% of the peak & it can be
increased in the range of 50% to 60% of peak memory bandwidth on some nodes
of PARAM YUVA (ycn213, ycn210, ycn212)

http://www.intel.in/content/dam/www/public/us/en/documents/performance-
briefs/xeon-phi-product-family-performance-brief.pdf

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

Xeon Phi : Benchmarks – Overview 383 C-DAC hyPACK-2013

Peak Performance : Single Precision : 2129.47 Gflops/s
Peak Perf : 1.1091 GHz X 60 cores X 16 lanes X 2
No. of Cores = 60
Peak Perf. of Single Core = 35.49 GigaFlop/s

Experiment Results for Single Precision
Addition of Two Vectors(*)

Type of Optimization No. of Cores
OpenMP threads

Sustained Perf in
Gflops

 No Vectorization 1 0.195

Vectorization 1 17.256

1 1 (4) 28.435

(No optimizations are carried-out to use OpenMP threads & Intel Prog. Env)

(*) = Speedup results were gathered using untuned and unoptimized
versions of benchmark (in-house developed) and Intel Prog. Env

(*=No
optimizations are
carried-out to use
OpenMP threads
& Intel Prog. Env)
Intel MKL
Libraries are
used.)

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

Xeon Phi : Benchmarks – Overview 384 C-DAC hyPACK-2013

Peak Performance : Single Precision : 2129.47 Gflops/s
No. of Cores = 60

Experiment Results for
Single Precision Addition of Two Vectors(*)

No. of Cores /
OpenMP threads

Thread Affinity Sustained Perf in
Gflops

4 COMPACT 66.7

8 COMPACT 133.69

16 COMPACT 266.89

32 COMPACT 482.85

64 COMPACT 1001.84

120 COMPACT 1804.25

240 COMPACT 1892.66

(No optimizations are carried-out to use OpenMP threads & Intel Prog. Env)

(*) = Speedup results were gathered using untuned and unoptimized
versions of benchmark (in-house developed) and Intel Prog. Env

(*=No
optimizations are
carried-out to use
OpenMP threads &
Intel Prog. Env)
Intel MKL Libraries
are not used

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

Xeon Phi : Benchmarks – Overview 385 C-DAC hyPACK-2013

Peak Performance : Single Precision : 2129.47 Gflops/s
No. of Cores = 60

Experiment Results for
Single Precision Addition of Two Vectors(*)

No. of Cores /
OpenMP threads

Thread Affinity Sustained Perf in
Gflops

4 SCATTER 66.69

8 SCATTER 133.69

16 SCATTER 231.60

32 SCATTER 480.29

64 SCATTER 947.53

120 SCATTER 1795.33

240 SCATTER 1893.56

(No optimizations are carried-out to use OpenMP threads & Intel Prog. Env)

(*) = Speedup results were gathered using untuned and unoptimized
versions of benchmarks (in-house developed) and Intel Prog. Env

(*=No
optimizations are
carried-out to use
OpenMP threads
& Intel Prog. Env)
Intel MKL Libraries
are not used .)

PARAM YUVA-II Intel Xeon- Phi Benchmarks(*)

Prog. on Intel Xeon-Phi : Tuning & Perf. 386 C-DAC hyPACK-2013

Intel Xeon Phi - Coprocessors : Tuning and

Performance Issues

Tips for Tuning and Performance

Part-7

Prog. on Intel Xeon-Phi : Tuning & Perf. 387 C-DAC hyPACK-2013

 Understanding of Intel Multi-Core Systems with Intel Xeon
Phi Programming from Performance Point of View

Lecture Outline

Following topics will be discussed

An Overview of Intel Xeon Phi – Tuning & Perf.

Prog. on Intel Xeon-Phi : Tuning & Perf. 388 C-DAC hyPACK-2013

 Shared Address Space Programming
(Offload, Native, Host)

 OpenMP, Intel TBB, Cilk Plus, Pthreads

 Message Passing Programming

 (Offload – MIC Offload /Host Offload)
 (Symmetric & Coprocessor /Host)

 Hybrid Programming
 (MPI – OpenMP, MPI Cilk Plus

 MPI-Intel TBB)

 Xeon Phi : Programming Environment

Source : References & Intel Xeon-Phi; http://www.intel.com/

Application

Host Coprocessor

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 389 C-DAC hyPACK-2013

 Rule of thumb : An application must scale well
past one hundred threads on Intel Xeon
processors to profit from the possible higher
parallel performance offered with e.g. the Intel
Xeon Phi coprocessor.

 The scaling would profit from utilizing the highly
parallel capabilities of the MIC architecture, you
should start to create a simple performance graph
with a varying number of threads (from one up to
the number of cores)

Intel Xeon-Phi : Shared Address Space Prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 390 C-DAC hyPACK-2013

 What we should know from programming point
of view : We treat the coprocessor as a 64-bit x86 SMP-
on-a-chip with an high-speed bi-directional ring
interconnect, (up to) four hardware threads per core and
512-bit SIMD instructions.

 With the available number of cores, we have easily
200 hardware threads at hand on a single Intel
Xeon coprocessor.

 Resource availability and Memory access is an
important for threading on all 60 Cores.

Intel Xeon-Phi : Shared Address Prog.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 391 C-DAC hyPACK-2013

Keys to Productive Performance

Choose the right Multi-core centric or Many-
core centric model for your application

Vectorize your application (today)

Use the Intel vectorizing compiler

Parallelize your application (today)

with MPI (or other multi-process model)

With threads (via Intel ® Cilk TM Plus,
OpenMP*, Intel ® Threading Building
Blocks, Pthreads, etc.)

Go asynchronous to overlap computation and
communication

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 392 C-DAC hyPACK-2013

Performance on Xeon Phi using different prog.

 What we should know from programming point
of view : We treat the coprocessor as a 64-bit x86
SMP-on-a-chip with an high-speed bi-directional
ring interconnect, (up to) four hardware threads
per core and 512-bit SIMD instructions.

 With the available number of cores, we have easily
200 hardware threads at hand on a single
coprocessor.

Intel Xeon-Phi : Performance-Tips

Prog. on Intel Xeon-Phi : Tuning & Perf. 393 C-DAC hyPACK-2013

About Hyper-Threading

 hyper-threading hardware threads can be
switched off and can be ignored.

Intel Xeon System & Xeon-Phi

About Threading on Xeon-Phi Coprocessor

 The multi-threading on each core is primarily
used to hide latencies that come implicitly with
an in-order microarchitecture. Unlike hyper-
threading these hardware threads cannot be
switched off and should never be ignored.

 In general a minimum of three or four active
threads per cores will be needed.

Performance on Xeon Phi using different prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 394 C-DAC hyPACK-2013

Summary: Tricks for Performance

 Use asynchronous data transfer and double buffering offloads
to overlap the communication with the computation

 Optimizing memory use on Intel MIC architecture target relies
on understanding access patterns

 Loop Optimizations may benefit performance

Source : References & Intel Xeon-Phi; http://www.intel.com/

Performance on Xeon Phi using different prog.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 395 C-DAC hyPACK-2013

 Data should be aligned to 64 Bytes (512 Bits) for the
MIC architecture, in contrast to 32 Bytes (256 Bits) for
AVX and 16 Bytes (128 Bits) for SSE.

 Due to the large SIMD width of 64 Bytes vectorization is
even more important for the MIC architecture than for
Intel Xeon!

 The MIC architecture offers new instructions like

 gather/scatter,

 fused multiply-add,

 masked vector instructions etc.

which allow more loops to be parallelized on the
coprocessor than on an Intel Xeon based host.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 396 C-DAC hyPACK-2013

Intel Xeon Phi Coprocessor : Native Compilation

Use pragmas like

#pragma ivdep,

#pragma vector always,

#pragma vector aligned,

#pragma simd

etc. to achieve autovectorization.

Autovectorization is enabled at default optimization level -O2.
Requirements for vectorizable loops can be found references.

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 397 C-DAC hyPACK-2013

 Let the compiler generate vectorization reports
using the compiler option -vecreport2 to see if
loops were vectorized for MIC (Message "*MIC*
Loop was vectorized" etc).

 The options -opt-report-phase hlo (High
Level Optimizer Report) or

 -opt-report-phase ipo_inl (Inlining
report) may also be useful.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 398 C-DAC hyPACK-2013

 Explicit vector programming is also possible via Intel
Cilk Plus language extensions (C/C++ array notation,
vector elemental functions, ...) or the new SIMD
constructs from OpenMP 4.0 RC1.

 Vector elemental functions can be declared by
using __attributes__((vector)). The
compiler then generates a vectorized version of a
scalar function which can be called from a
vectorized loop.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 399 C-DAC hyPACK-2013

 One can use intrinsics to have full control over the vector
registers and the instruction set.

 Include <immintrin.h> for using intrinsics.

 Hardware prefetching from the L2 cache is enabled per
default.

 In addition, software prefetching is on by default at
compiler optimization level -O2 and above. Since Intel
Xeon Phi is an inorder architecture, care about
prefetching is more important than on out-of-order
architectures.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 400 C-DAC hyPACK-2013

 The compiler prefetching can be influenced by setting
the compiler switch -opt-prefetch = n.

 Manual prefetching can be done by using intrinsics
(_mm_prefetch()) or

 pragmas (#pragma prefetch var).

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 401 C-DAC hyPACK-2013

 Intel Xeon Phi Coprocessor : Prog. Env &

Tips for obtaining Performance (Part-II)

Prog. on Intel Xeon-Phi : Tuning & Perf. 402 C-DAC hyPACK-2013

Optimization Framework

A collection of methodology and tools that enable the developers to
express parallelism for Multicore and Manycore Computing

402

Step 1: Leverage Optimized Tools, Library

Step 2: Scalar, Serial Optimization /Memory Access

Step 3: Vectorization & Compiler

 Step 4: Parallelization

Step 5: Scale from Multicore to Manycore

Source : References & Intel Xeon-Phi; http://www.intel.com/

Objective: Turning unoptimized program into a scalable, highly parallel
application on multicore and manycore architecture

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 403 C-DAC hyPACK-2013

A Family of Parallel Programming Models
Developer Choice

403

Intel® Cilk™
Plus

C/C++
language

extensions to
simplify

parallelism

Open sourced

Also an Intel
product

Intel®
Threading
Building
Blocks

Widely used
C++ template

library for
parallelism

Open sourced

Also an Intel
product

Domain-
Specific
Libraries

Intel®
Integrated

Performance
Primitives

Intel® Math
Kernel Library

Established
Standards

Message
Passing

Interface (MPI)

OpenMP*
(offload TR

coming “real
soon”)

Coarray
Fortran

OpenCL*

Research and
Development

Intel®
Concurrent
Collections

Intel® Offload
Extensions

Intel® SPMD
Parallel

Compiler (ispc)

Applicable to Multicore and Manycore Programming

Step 1 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 404 C-DAC hyPACK-2013

Objective of Scalar and Serial Optimization

 Obtain the most efficient implementation for the problem at
hand

 Identify the opportunity for vectorization and parallelization

 Create Base to account for vectorization and parallelization
gains
 Avoid situation when vectorized, slower code was parallelized and

create a false impression of performance gain

404

Source : References & Intel Xeon-Phi; http://www.intel.com/

Step 2 :

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 405 C-DAC hyPACK-2013

Algorithmic Optimizations

 Elevate constants out of the core loops
 Compiler can do it, but it need your cooperation
 Group constants together

 Avoid and replace expensive operations
 divide a constant can usually be replace by multiplying its reciprocal

 Strength reduction in hot loop
 People like inductive method, because it’s clean
 Iterative can strength reduce the operation involved
 In this example, exp() is replace by a simple multiplication

405

const double dt = T / (double)TIMESTEPS;

const double vDt = V * sqrt(dt);

for(int i = 0; i <= TIMESTEPS; i++){

 double price = S * exp(vDt * (2.0 * i -

TIMESTEPS));

 cell[i] = max(price - X, 0);

}

const double factor = exp(vDt * 2);

double price = S * exp(-

vDt(2+TIMESTEPS));

for(int i = 0; i <= TIMESTEPS; i++){

 price = factor * price;

 cell[i] = max(price - X, 0);

}

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 406 C-DAC hyPACK-2013

Use Compiler Optimization Switches

Optimization Done Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program -fast
(same as: -ipo –O3 -no-prec-div -static -xHost)

OpenMP 3.0 support -openmp

Automatic parallelization -parallel

406

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 407 C-DAC hyPACK-2013

Vectorization and SIMD Execution

 SIMD
 Flynn’s Taxonomy: Single Instruction, Multiple Data
 CPU perform the same operation on multiple data elements

 SISD
 Single Instruction, Single Data

 Vectorization
 In the context of Intel® Architecture Processors, the process of transforming a scalar

operation (SISD), that acts on a single data element to the vector operation that that
act on multiple data elements at once(SIMD).

 Assuming that setup code does not tip the balance, this can result in more compact
and efficient generated code

 For loops in ”normal” or ”unvectorized” code, each assembly instruction deals with
the data from only a single loop iteration

407

Source : References & Intel Xeon-Phi; http://www.intel.com/

Step 3 :

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 408 C-DAC hyPACK-2013

SIMD Abstraction – Options Compared

408

Vector intrinsics (mm_add_ps, addps)

C/C++ Vector Classes (F32vec16, F64vec8)

Intel® Cilk™ Plus technology

Elemental Functions and Array Notation:

Compiler-based autovectorization annotation #pragma
vector, #pragma ivdep,#pragma simd

Programmer control

Ease of use / code
maintainability

(depends on problem)

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 409 C-DAC hyPACK-2013

Get Your Code Vectorized by Intel Compiler

 Data Layout, AOS -> SOA

 Data Alignment (next slide)

 Make the loop innermost

 Function call in treatment
 Inline yourself
 inline! Use __forceinline
 Define your own vector version
 Call vector math library - SVML

 Adopt jumpless algorithm

 Read/Write is OK if it’s continuous

 Loop carried dependency

409

for(int i = TIMESTEPS; i > 0; i--)

#pragma simd

#pragma unroll(4)

for(int j = 0; j <= i - 1; j++)

 cell[j]=puXDf*cell[j+1]+pdXDf*cell[j];

CallResult[opt] = (Basetype)cell[0];

for (j=1; j<MAX; j++)

 a[j] = a[j] + c * a[j-n];

Not a true dependency
A true dependency

Array of Structures

S0 X0 T0

S1 X1 T1

… … …

Structure of Arrays

S0 S1 …

X0 X1 …

S0 S1 …

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 410 C-DAC hyPACK-2013

Options for Parallelism on
Intel® Architecture

 What’s available on Intel® host processor are also available on Intel® target
coprocessor

 Many others (boost) are ported to the coprocessor

 Choose the best threading model your problem dictates

410

pthreads*

OpenMP*

Intel® Cilk™ Plus

Intel® TBB

More control

Ease of use
maintainability

• Well known industry standard

• Best suited when resource utilization is
known at design time

• C++ template Library of parallel algorithms,
containers

• Load balancing via work stealing

• Keyword extension of C/C++, Serial
equivalence via compiler

• Load balancing via work stealing

• Time-tested industry standard for Unix-like

• Common denominator or other high level
threading libraries

Step 4 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 411 C-DAC hyPACK-2013

Options for Parallelism – pthreads*

 POSIX* Standard for thread API with 20 years history

 Foundation for other high level threading libraries

 Independently exist on the host and Intel® MIC

 No extension to go from the host to Intel® MIC

 Advantage: Programmer has explicit control
 From workload partition to thread creation, synchronization, load

balance, affinity settings, etc.

 Disadvantage: Programmer has too much control
 Code longevity
 Maintainability
 Scalability

411

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 412 C-DAC hyPACK-2013

 Partition the workload to avoid load imbalance
 Understand static vs. dynamic workload partition

 Use pthread API, define, initialize, set, destroy
 Set CPU affinity with pthead_setaffinity_np()
 Know the thread enumeration and avoid core 0
 Core 0 boots the coprocessor, job scheduler, service interrupts

Core 0

0

2
4

1

2
4

2

2
4

3

Core 1

4

1

2

3

Core 2

8

5

6

7

Core 60

2
4

0

2
3

7

2
3

8

2
3

9

Thread Affinity using pthreads*

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 413 C-DAC hyPACK-2013

Options for Parallelism – OpenMP*

 Compiler directives/pragmas based threading constructs
 Utility library functions and Environment variables

 Specify blocks of code executing in parallel

 Fork-Join Parallelism:
 Master thread spawns a team of worker threads as needed
 Parallelism grow incrementally

413

Parallel Regions Master Thread

#pragma omp parallel sections

{

 #pragma omp section

 task1();

 #pragma omp section

 task2();

 #pragma omp section

 task3();

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 414 C-DAC hyPACK-2013

OpenMP* Performance, Scalability Issues

 Manage Thread Creation Cost
 Create threads as early as possible, Maximize

the work for worker threads
 IA threads take some time to create, But once

they’re up, they last till the end

 Take advantage of memory locality, use
NUMA memory manager
 Allocate the memory on the thread that will

access them later on.
 Try not to allocate the memory the worker

threads use in the main thread

 Ensure your OpenMP* program works
serially, compiles without openmp*
 Protect OpenMP* API calls with _OPENMP,
 Make sure serial works before enable

OpenMP* (e.g. compile with –openmp)

 Minimize the thread synchronization
 use local variable to reduce the need to access

global variable

#ifdef _OPENMP

int ThreadNum = omp_get_max_threads();

omp_set_num_threads(ThreadNum);

#else

int ThreadNum = 1;

#endif

#pragma omp parallel

{

 #ifdef _OPENMP

 int threadID = omp_get_thread_num();

 #else

 int threadID = 0;

 #endif

 float *CallResult = (float *) scalable_aligned_malloc

 (mem_size, SIMDALIGN);

 float *PutResult = (float *) scalable_aligned_malloc

 (mem_size, SIMDALIGN);

}

#pragma omp parallel for

for (int k = 0; k < RAND_N; k++)

 h_Random[k] = cdfnorminv ((k+1.0)/(RAND_N+1.0));

#pragma omp parallel for

for(int opt = 0; opt < OPT_N; opt++)

{

 CallResultList[opt] = 0;

 CallConfidenceList[opt] = 0;

}

Source : References & Intel Xeon-Phi;
http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 415 C-DAC hyPACK-2013

Scale from Multicore to Manycore

415

A Tale of Two Architectures
Intel® Xeon® processor Intel® Xeon Phi™ Coprocessor

Sockets 2 1

Clock Speed 2.6 GHz 1.1 GHz

Execution Style Out-of-order In-order

Cores/socket 8 Up to 61

HW Threads/Core 2 4

Thread switching HyperThreading Round Robin

SIMD widths 8SP, 4DP 16SP, 8DP

Peak Gflops 692SP, 346DP 2020SP, 1010DP

Memory Bandwidth 102GB/s 320GB/s

L1 DCache/Core 32kB 32kB

L2 Cache/Core 256kB 512kB

L3 Cache/Socket 30MB none

Step 5 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 416 C-DAC hyPACK-2013

Assessing potential

 Threads
 Code analysis – loop nesting, iteration counts, determinism
 Intel Vtune™ Amplifier timeline analysis – existence of applciation

serialization
 Performance vs. threads – knee of the curve

 Vectorization
 VTune Amplifier hot spots and compiler VEC reports
 HW PerfMon-based evaluation
 Performance vs. vectorization on/off

 Bandwidth
 HW PerfMon-based evaluation

416

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 417 C-DAC hyPACK-2013

More on Thread Affinity

 Bind the worker threads to certain processor core/threads

 Minimizes the thread migration and context switch

 Improves data locality; reduce coherency traffic

 Two components to the problem:
 How many worker threads to create?
 How to bind worker threads to core/threads?

 Two ways to specify thread affinity
 Environment variables OMP_NUM_THREADS, KMP_AFFINITY
 C/C++ API: kmp_set_defaults("KMP_AFFINITY=compact")

omp_set_num_threads(244);

 Add to your source file#include <omp.h>
 Compiler with –openmp
 Use libiomp5.so

417

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 418 C-DAC hyPACK-2013

The Optimal Thread Number

 Intel MIC maintains 4 hardware contexts per core
 Round-robin execution policy,
 Require 2 threads for decent performance
 Financial algorithms takes all 4 threads to peak

 Intel Xeon processor optionally use HyperThreading
 Execute-until-stall execution policy
 Truly compute intensive ones peak with 1 thread per core
 Finance algorithms likes HyperThreading, 2 threads per core

 Use OpenMP application with NCORE number of cores
 Host only: 2 x ncore (or 1x if HyperThreading disabled)
 MIC Native: 4 x ncore
 Offload: 4 x (ncore-1) OpenMP runtime avoids the core OS runs

418

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 419 C-DAC hyPACK-2013

 Intel Xeon Phi Coprocessor : Prog. Env &

Tips for obtaining Performance (Part-III)

Prog. on Intel Xeon-Phi : Tuning & Perf. 420 C-DAC hyPACK-2013

Use Compiler Optimization Switches

Optimization Done Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen; -prof-use

Optimize for speed across the entire program -fast
(same as: -ipo –O3 -no-prec-div -static -xHost)

OpenMP 3.0 support -openmp

Automatic parallelization -parallel

420

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Intel Xeon Phi Coprocessor : Prog. Env &

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 421 C-DAC hyPACK-2013

Performance: Intel Xeon-Phi Coprocessor

 Vectorization is key for performance

Sandybridge, MIC, etc.

Compiler hints

Code restructuring

 Many-core nodes present scalability
challenges

Memory contention

Memory size limitations
Source : References & Intel Xeon-Phi; http://www.intel.com/

Prog.API - Multi-Core Systems with Devices

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 422 C-DAC hyPACK-2013

Options for Vectorization : Use Tools

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Prog. Env. Perf Issuses

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 423 C-DAC hyPACK-2013

Tuning & Performance :

 Using intrinsics with manual data prefetching and
register blocking can still considerably increase
the performance.

 Try to get a suitable vectorization and write cache
and register efficient code, i.e. values stored in
registers should be reused as often as possible in
order to avoid cache and memory access.

Optimised Offloaded Code

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Prog. on Intel Xeon-Phi : Tuning & Perf. 424 C-DAC hyPACK-2013

 Quantification of Overheads : Use
Tools on Intel Xeon Phi

 Prog.on Shared Address Space
Platforms (UMA/NUMA)
 Data Parallel Fortran 2008, Pthreads,

OpenMP, Intel TBB Cilk Plus
 Explicit Message Passing - MPI –

Cluster of Message Passing Multi-
Core systems

Pthreads

2
2

4

2
2

1

2
2

2

2
2

3

OpenMP

4

1

2

3

Intel TBB

8

5

6

7

MPI

2
4

0

2
3

7

2
3

8

2
3

9

Intel Xeon Phi Prog. : Tools to Measure Overheads

Source : References & Intel Xeon-Phi; http://www.intel.com/

Cilk plus

5
4

5
1

5
2

5
3

Compiler

2
3

4

2
3

1

2
3

2

2
3

3

Coprocessor

1
5

0

0
9

0

1
2

0

2
0

3

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 425 C-DAC hyPACK-2013

Intel Xeon & Xeon Phi : Execution Modes

main()

Intel ® Xeon Phi™
Coprocessor

Intel® Xeon

main()

Native Offload

 Card is an SMP machine running Linux

 Separate executables run on both MIC
and Xeon
 e.g. Standalone MPI applications

 No source code modifications most of
the time
 Recompile code for Xeon Phi™

Coprocessor

 Autonomous Compute Node (ACN)

 “main” runs on Xeon

 Parts of code are offloaded to MIC

 Code that can be
 Multi-threaded, highly parallel

 Vectorizable

 Benefit from large memory BW

 Compiler Assisted vs. Automatic
 #pragma offload (…)

foo()

Intel® Xeon

main()

Intel® Xeon Phi™
Coprocessor

 Quantification of Overheads – Explicit / Implicit Data Transfer –
Using Offload

Prog. on Intel Xeon-Phi : Tuning & Perf. 426 C-DAC hyPACK-2013

Pros:
 Compilation with an additional Intel compiler flag

(-mmic);

 Scalability tests: fast and smooth;

 Quick analysis with Intel tools (VtuneT, Itac Intel

Trace Analyzer and Collector;

 Porting time: one day with validation of the

numerical result;

 expert developer of FARM, with good knowledge

of the Intel Compiler, But with only a basic

knowledge of MIC.

 Best scalability with OpenMP and Hybrid.
 Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 427 C-DAC hyPACK-2013

Porting on MIC : Issues to be addressed

 MPI_Init routine problem: increasing CPU time for

increasing number of processes; Same problem when

using two MICs together;

 Detailed analysis of OpenMP threads & thread affinity

and Memory available per thread

 Execution time depends strongly from code vectorization,

so compiler vectorization for data parallel and task

parallel constructs

 code re-structure and memory access pattern are a key

point to have a vectorizable satisfactory overall

Performances.

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Xeon Phi : Programming Environment

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 428 C-DAC hyPACK-2013

Intel Xeon Phi : Performance Issues

 Limited problem size or limited exposure
 Inherent lack of available parallelism
 Parallelism not adequately exposed by programmer

 Excessive synchronization
 Inhibits harvesting thread parallelism

 ISA-specific issues
 Data structures excessively rely on scatter/gather
 Use of 64b integer indices and 64 INT FP conversion

 Offload overhead
 Excessive communication/computation ratio, unhidden communication

 Memory footprint and working set size
 Limited to 8GB, unless you “overlay,” e.g. with offload

 428

Source : References & Intel Xeon-Phi; http://www.intel.com/

Factors to work around

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 429 C-DAC hyPACK-2013

 Objective: Move data from memory to L1 or L2 Cache in
anticipation of CPU Load/Store

 More import on in-order Intel Xeon Phi Coprocessor

 Less important on out of order Intel Xeon Processor

 Compiler prefetching is on by default for Intel® Xeon Phi™
coprocessors at –O2 and above

 Compiler prefetch is not enabled by default on Intel® Xeon®
Processors
 Use external options –opt-prefetch[=n] n = 1.. 4

 Use the compiler reporting options to see detailed diagnostics of
prefetching per loop
 Use -opt-report-phase hlo –opt-report 3

429

Intel Xeon Phi : Performance Issues

Prefetch on Intel Multicore and Many-core

Prog. on Intel Xeon-Phi : Tuning & Perf. 430 C-DAC hyPACK-2013

Automatic Prefetches

Loop Prefetch

 Compiler generated prefetches target memory access in a
future iteration of the loop

 Target regular, predictable array and pointer access

Interactions with Hardware prefetcher

 Intel® Xeon Phi™ Comprocessor has a hardware L2 prefetcher

 If Software prefetches are doing a good job, Hardware
prefetching does not kick in

 References not prefetched by compiler may get prefetched by
hardware prefetcher

430

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 431 C-DAC hyPACK-2013

Explicit Prefetch

 Use Intrinsics
 _mm_prefetch((char *) &a[i], hint);

See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)
 But you have to specify the prefetch distance
 Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler

user guide, e.g. _mm512_prefetch_i32gather_ps

 Use a pragma / directive (easier):
 #pragma prefetch a [:hint[:distance]]
 You specify what to prefetch, but can choose to let compiler figure

out how far ahead to do it.

 Use Compiler switches:
 -opt-prefetch-distance=n1[,n2]
 specify the prefetch distance (how many iterations ahead, use n1 and

prefetches inside loops. n1 indicates distance from memory to L2.

431

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 432 C-DAC hyPACK-2013

Streaming Store
 Avoid read for ownership for certain memory write operation

 Bypass prefetch related to the memory read

 Use #pragma vector nontemporal(v1,…) to drop a hint to compiler

 Without Streaming Stores 448 Bytes read/write per iteration

432

for (int chunkBase = 0; chunkBase < OptPerThread; chunkBase +=
CHUNKSIZE)

{

#pragma simd vectorlength(CHUNKSIZE)

#pragma simd

#pragma vector aligned

#pragma vector nontemporal (CallResult, PutResult)

 for(int opt = chunkBase; opt < (chunkBase+CHUNKSIZE); opt++)

 {

 float CNDD1;

 float CNDD2;

 float CallVal =0.0f, PutVal = 0.0f;

 float T = OptionYears[opt];

 float X = OptionStrike[opt];

 float S = StockPrice[opt];

 ……

 CallVal = S * CNDD1 - XexpRT * CNDD2;

 PutVal = CallVal + XexpRT - S;

 CallResult[opt] = CallVal ;

 PutResult[opt] = PutVal ;

 }

}

 With Streaming Stores, 320
Bytes read/write per
iteration

 Relief Bandwidth pressure;
improve cache utilization

 –vec-report6 displays
the compiler action

bs_test_sp.c(215): (col. 4) remark: vectorization support:
streaming store was generated for CallResult.

bs_test_sp.c(216): (col. 4) remark: vectorization support:
streaming store was generated for PutResult.

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 433 C-DAC hyPACK-2013

Data Blocking
 Partition data to small blocks that fits in L2 Cache

 Exploit data reuse in the application.
 Ensure the data remains in the cache across multiple uses
 Using the data in cache remove the need to go to memory
 Bandwidth limited program may execute at FLOPS limit

 Simple case of 1D
 Data size DATA_N is used WORK_N times from 100s of threads
 Each handles a piece of work and have to traverse all data

 Without Blocking

433

#pragma omp parallel for

for(int wrk = 0; wrk < WORK_N; wrk++)

{

 initialize_the_work(wrk);

 for(int ind = 0; ind < DATA_N; ind++)

 {

 dataptr datavalue = read_data(dataind);

 result = compute(datavalue);

 aggregate = combine(aggregate, result);

 }

 postprocess_work(aggregate);

}

for(int BBase = 0; BBase < DATA_N; BBase += BSIZE)

{

#pragma omp parallel for

 for(int wrk = 0; wrk < WORK_N; wrk++)

 {

 initialize_the_work(wrk);

 for(int ind = BBase; ind < BBase+BSIZE; ind++)

 {

 dataptr datavalue = read_data(ind);

 result = compute(datavalue);

 aggregate[wrk] = combine(aggregate[wrk], result);

 }

 postprocess_work(aggregate[wrk]);

 }

}

 100s of thread pound on different
area of DATA_N

 Memory interconnet limit the
performance

 Cacheable BSIZE of data is processed by all
100s threads a time

 Each data is read once kept reusing until all
threads are done with it

With Blocking

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 434 C-DAC hyPACK-2013

 Allocated memory on heap

 _mm_malloc(int size, int aligned)

 scalable_aligned_malloc(int size, int aligned)

 Declarations memory:

 __attribute__((aligned(n))) float v1[];

 __declspec(align(n)) float v2[];

 Use this to notify compiler

 __assume_aligned(array, n);

 Natural boundary

 Unaligned access can fault the processor

 Cacheline Boundary

 Frequently accessed data should be in 64

 4K boundary

 Sequentially accessed large data should be in 4K boundary

434

Instruction Length Alignment

SSE 128 Bits 16 Bytes

AVX 256 Bits 32 Bytes

IMCI 512 Bits 64 Bytes

Source : References & Intel Xeon-Phi; http://www.intel.com/

Memory Alignment

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 435 C-DAC hyPACK-2013

Double Buffering Example
 Transfer and work on a dataset in small pieces

 While part is being transferred, work on another part!

Host Target

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

process

process

process

process

Pre-work

Iteration 0

Iteration 1

Iteration n

data
block

Last
Iteration

data
block

process

Iteration n+1

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 436 C-DAC hyPACK-2013

Memory Mapping

 Translation of address issued by some device (e.g., CPU or I/O
device) to address sent out on memory bus (physical address)

Mapping is performed by memory management units

Implementation: Matrix into Matrix Multiplication using mmap
(Assume that Matrix Size A = 1,00,000 Real float and Matrix Size B =
1,00,000 Real float)

Computing – Enabling Huge Memory – Implementation
using Memory Mapping (mmap)

Prog. on Intel Xeon-Phi : Tuning & Perf. 437 C-DAC hyPACK-2013

Program

Virtual Address

Offset Page No

Page Table Ptr

Register

Page Mechanism Main Memory

Page Frame

Page Offset

Page Table

Page Frame & Offset

Address Mapping Function (Review)

Computing – Enabling Huge Memory – Implementation
using Memory Mapping (mmap)

Prog. on Intel Xeon-Phi : Tuning & Perf. 438 C-DAC hyPACK-2013

 IA processors support multiple page sizes; commonly 4K and 2MB

 Some applications will benefit from using huge pages

 Applications with sequential access patterns will improve due to larger
TLB “reach”

 TLB miss vs. Cache miss

 TLB miss means walking the 4 level page table hierarchy

 Each page walk could result in additional cache misses

 TLB is a scarce resource and you need to “manage” them well

 On Intel® Xeon Phi™ Coprocessor

 64 entries for 4K, 8 entries for 2MB

 Additionally, 64 entries for second level DTLB.

 Page cache for 4K, L2 TLB for 2MB pages

 Linux supports huge pages – CONFIG_HUGETLBFS

 2.6.38 also has support for Transparent Huge Pages (THP)

 Pre-faulting via MAP_POPULATE flag to mmap()

Memory – Huge Pages and Pre-faulting

Intel Xeon Phi :Coprocessor Offload Prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 439 C-DAC hyPACK-2013

Intel Xeon Phi : The Intel Composer XE 2013

439

Source : References & Intel Xeon-Phi; http://www.intel.com/

 The Intel Composer XE – Development tool and SDK suite available for
developing Intel Xeon Phi

• It includes C/C++ Fortran Complier

• It includes runtime libraries like OpenMP, thread etc. Debuging tool
and math kernel library (MKL)

• Supports various parallel programming models fro Intel Xeon Phi
such as Intel Cilk Plus, Intel Threading Building blocks (TBB),
OpenMP and Pthread

• It includes Intel MKL

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 440 C-DAC hyPACK-2013

Intel Trace Analyzer and Collector (ITAC)

440

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Intel MPI, Intel Trace Analyzer and Collector(ITAC) on MIC

• Intel Trace Collector gathers information from running programs into a
trace file, and the Intel Trace Analyzer allows the collected data to be
viewed and analyzed after a run.

• The Intel Trace Analyzer and Collector support processors and
coprocessors.

• The Trace Collector can integrate information from multiple sources
including an instrumented Intel MPI Library and PAPI.

• Trace file from an application running on the host system and
coprocessor simultaneously can be generated

• Generate trace file only on Coprocessor system

http://www.intel.com/
http://www.intel.com/

Xeon Phi : Benchmarks – Overview 441 C-DAC hyPACK-2013

Xeon Phi : Benchmarks – Overview 442 C-DAC hyPACK-2013

Xeon Phi : Benchmarks – Overview 443 C-DAC hyPACK-2013

Xeon-Phi Coprocessors : An Overview 444 C-DAC hyPACK-2013

1. Theron Voran, Jose Garcia, Henry Tufo, University Of Colorado at Boulder National Center or
Atmospheric Research, TACC-Intel Hihgly Parallel Computing Symposium, Austin TX, April 2012

2. Robert Harkness, Experiences with ENZO on the Intel R Many Integrated Core (Intel MIC)
Architecture, National Institute for Computational Sciences, Oak Ridge National Laboratory

3. Ryan C Hulguin, National Institute for Computational Sciences, Early Experiences Developing CFD
Solvers for the Intel Many Integrated Core (Intel MIC) Architecture, TACC-Intel Highly Parallel
Computing Symposium April, 2012

4. Scott McMillan, Intel Programming Models for Intel Xeon Processors and Intel Many Integrated Core
(Intel MIC) Architecture, TACC-Highly Parallel Comp. Symposium April 2012

5. Sreeram Potluri, Karen Tomko, Devendar Bureddy , Dhabaleswar K. Panda, Intra-MIC MPI
Communication using MVAPICH2: Early Experience, Network-Based Computing Laboratory,
Department of Computer Science and Engineering The Ohio State University, Ohio Supercomputer
Center, TACC-Highly Parallel Computing Symposium April 2012

6. Karl W. Schulz, Rhys Ulerich, Nicholas Malaya ,Paul T. Bauman, Roy Stogner, Chris Simmons, Early
Experiences Porting Scientific Applications to the Many Integrated Core (MIC) Platform ,Texas
Advanced Computing Center (TACC) and Predictive Engineering and Computational Sciences (PECOS)
Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin ,Highly
Parallel Computing Symposium ,Austin, Texas, April 2012

7. Kevin Stock, Louis-Noel, Pouchet, P. Sadayappan ,Automatic Transformations for Effective Parallel
Execution on Intel Many Integrated, The Ohio State University, April 2012

8. http://www.tacc.utexas.edu/
9. Intel MIC Workshop at C-DAC, Pune April 2013
10. First Intel Xeon Phi Coprocessor Technology Conference iXPTC 2013 New York, March 2013
11. Shuo Li, Vectorization, Financial Services Engineering, software and Services Group, Intel ctel

Corporation;
12. Intel® Xeon Phi™ (MIC) Parallelization & Vectorization, Intel Many Integrated Core Architecture,

Software & Services Group, Developers Relations Division

References & Acknowledgements

References :

http://www.tacc.utexas.edu/

Xeon-Phi Coprocessors : An Overview 445 C-DAC hyPACK-2013

13. Intel® Xeon Phi™ (MIC) Programming, Rama Malladi, Senior Application Engineer, Intel Corporation,
Bengaluru India April 2013

14. Intel® Xeon Phi™ (MIC) Performance Tuning, Rama Malladi, Senior Application Engineer, Intel
Corporation, Bengaluru India April 2013

15. Intel® Xeon Phi™ Coprocessor Architecture Overview, Dhiraj Kalamkar, Parallel Computing Lab, Intel
Labs, Bangalore

16. Changkyu Kim,Nadathur Satish ,Jatin Chhugani ,Hideki Saito,Rakesh Krishnaiyer ,Mikhail Smelyanskiy
,Milind Girkar, Pradeep Dubey, Closing the Ninja Performance Gap through Traditional Programming
and Compiler Technology , Technical Report Intel Labs , Parallel Computing Laboratory , Intel Compiler
Lab, 2010

17. Colfax International Announces Developer Training for Intel® Xeon Phi™ Coprocessor, Industry First
Training Program Developed in Consultation with Intel SUNNYVALE, CA, Nov, 2012

18. Andrey Vladimirov Stanford University and Vadim Karpusenko , Test-driving Intel® Xeon Phi™
coprocessors with a basic N-body simulation Colfax International January 7, 2013 Colfax International,
2013 http://research.colfaxinternational.com/

19. Jim Jeffers and James Reinders,Intel® Xeon Phi™ Coprocessor High-Performance Programming by
Morgann Kauffman Publishers Inc, Elsevier, USA. 2013

20. Michael McCool, Arch Robison, James Reinders, Structured Parallel Programming: Patterns for Efficient
Computation, Morgan Kaufman Publishers Inc, 2013.

21. Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld by Preparing for Stampede: Programming
Heterogeneous Many-Core Supercomputers. TACC, XSEDE 12 July 2012

22. John Michalakes, Computational Sciences Center, NREL, & Andrew Porter, Opportunities for WRF Model
Acceleration, WRF Users workshop, June 2012

23. Jim Rosinski , Experiences Porting NOAA Weather Model FIM to Intel MIC, ECMWF workshop On High
Performance Computing in Meteorology, October 2012

24. Michaela Barth, KTH Sweden , Mikko Byckling, CSC Finland, Nevena Ilieva, NCSA Bulgaria, Sami
Saarinen, CSC Finland, Michael Schliephake, KTH Sweden, Best Practice Guide Intel Xeon Phi v0.1,
Volker Weinberg (Editor), LRZ Germany March 31 ,2013

References & Acknowledgements

References :

Xeon-Phi Coprocessors : An Overview 446 C-DAC hyPACK-2013

25. Barbara Chapman, Gabriele Jost and Ruud van der Pas, Using OpenMP, MIT Press Cambridge, 2008
26. Peter S Pacheco, An Introduction Parallel Programming, Morgann Kauffman Publishers Inc, Elsevier,

USA. 2011
27. Intel Developer Zone: Intel Xeon Phi Coprocessor,
28. http://software.intel.com/en-us/mic-developer
29. Intel Many Integrated Core Architecture User Forum,
30. http://software.intel.com/en-us/forums/intel-many-integrated-core
31. Intel Developer Zone: Intel Math Kernel Library, http://software.intel.com/en-us
32. Intel Xeon Processors & Intel Xeon Phi Coprocessors – Introduction to High Performance Applications

Development for Multicore and Manycore – Live Webinar, 26.-27, February .2013,
33. recorded http://software.intel.com/en-us/articles/intel-xeon-phi-training-m-core
34. Intel Cilk Plus Home Page, http://cilkplus.org/
35. James Reinders, Intel Threading Building Blocks (Intel TBB), O’REILLY, 2007
36. Intel Xeon Phi Coprocessor Developer's Quick Start Guide,
37. http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
38. Using the Intel MPI Library on Intel Xeon Phi Coprocessor Systems,
39. http://software.intel.com/en-us/articles/using-the-intel-mpi-library-on-intel-xeon-phi-coprocessor-

systems
40. An Overview of Programming for Intel Xeon processors and Intel Xeon Phi coprocessors,
41. http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-

xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
42. Programming and Compiling for Intel Many Integrated Core Architecture,
43. http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-

architecture
44. Building a Native Application for Intel Xeon Phi Coprocessors,
45. http://software.intel.com/en-us/articles/

References & Acknowledgements

References :

Xeon-Phi Coprocessors : An Overview 447 C-DAC hyPACK-2013

46. Advanced Optimizations for Intel MIC Architecture, http://software.intel.com/en-us/articles/advanced-
optimizations-for-intel-mic-architecture

47. Optimization and Performance Tuning for Intel Xeon Phi Coprocessors - Part 1: Optimization
Essentials, http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-
xeonphi-coprocessors-part-1-optimization

48. Optimization and Performance Tuning for Intel Xeon Phi Coprocessors, Part 2: Understanding and
Using Hardware Events, http://software.intel.com/en-us/articles/optimization-and-performance-
tuning-for-intel-xeon-phi-coprocessors-part-2-understanding

49. Requirements for Vectorizable Loops,
50. http://software.intel.com/en-us/articles/requirements-for-vectorizable-
51. R. Glenn Brook, Bilel Hadri, Vincent C. Betro, Ryan C. Hulguin, Ryan Braby. Early Application

Experiences with the Intel MIC Architecture in a Cray CX1, National Institute for Computational
Sciences. University of Tennessee. Oak Ridge National Laboratory. Oak Ridge, TN USA

52. http://software.intel.com/mic-developer
53. Loc Q Nguyen , Intel Corporation's Software and Services Group , Using the Intel® MPI Library on

Intel® Xeon Phi™ Coprocessor System,
54. Frances Roth, System Administration for the Intel® Xeon Phi™ Coprocessor, Intel white Paper
55. Intel® Xeon Phi™ Coprocessor, James Reinders, Supercomputing 2012 Presentation
56. Intel® Xeon Phi™ Coprocessor Offload Compilation, Intel software

References & Acknowledgements

References :

Xeon-Phi Coprocessors : An Overview 448 C-DAC hyPACK-2013

57. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming,
Boston, MA : Addison-Wesley

58. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

59. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

60. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

61. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

62. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing Performance
through Software Multi-threading , Intel PRESS, Intel Corporation,

63. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming O'Reilly
and Associates, Newton, MA 02164,

64. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series
65. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and

Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor
66. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel

Corporation
67. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the

Message-Passing Interface, The MIT Press..
68. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan

Kaufman Publishers, Inc., Sanfrancisco, California
69. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture

Programming), McGraw Hill New York.
70. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill

International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork
71. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Progrmaming,

Boston, MA : Addison-Wesley

References

References & Acknowledgements

http://www.intel.com/

Xeon-Phi Coprocessors : An Overview 449 C-DAC hyPACK-2013

72. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

73. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

74. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

75. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

76. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995

77. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

78. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

79. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix.
1 Standard. O'Reilly & Associates, 1991

80. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable
Memory Allocator for Multi-threaded Applications ; The Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX).
Cambridge, MA, November (2000). Web site URL : http://www.hoard.org/

81. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

82. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

83. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)
84. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP

web site, URL : http://www.openmp.org/
85. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars

Technica, October (2002)

References

References & Acknowledgements

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Xeon-Phi Coprocessors : An Overview 450 C-DAC hyPACK-2013

86. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed
Programming, Boston MA : Addison – Wesley (2000)

87. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan
Miller, Michael Upton, “Hyperthreading, Technology Architecture and
Microarchitecture”, Intel (2000-01)

88. http://www.erc.msstate.edu/mpi
89. http://www.arc.unm.edu/workshop/mpi/mpi.html
90. http://www.mcs.anl.gov/mpi/mpich
91. The MPI home page, with links to specifications for MPI-1 and MPI-2 standards :

http://www.mpi–forum.org
92. Hybrid Programming Working Group Proposals, Argonne National Laboratory,

Chiacago (2007-2008)
93. TRAC Link : https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
94. Threads and MPI Software, Intel Software Products and Services 2008 - 2009
95. Sun MPI 3.0 Guide November 2007
96. Treating threads as MPI processes thru Registration/deregistration –Intel Software

Products and Services 2008 – 2009
97. Intel MPI library 3.2 -

http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
98. http://www.cdac.in/opecg2009/
99. PGI Compilers http://www.pgi.com

References

References & Acknowledgements

http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.erc.msstate.edu/mpi
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
http://www.mpi–forum.org/
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.pgi.com/
http://www.pgi.com/
http://www.pgi.com/
http://www.pgi.com/
http://www.pgi.com/
http://www.pgi.com/
http://www.pgi.com/

Xeon-Phi Coprocessors : An Overview 451 C-DAC hyPACK-2013

100. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

101. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

102. http://www.nvidia.com/object/nvidia-kepler.html NVIDIA Kepler Architecture 2012
103. http://developer.nvidia.com/cuda-toolkit NVIDIA CUDA toolkit 5.0 Preview Release April 2012
104. http://developer.nvidia.com/category/zone/cuda-zone NVIDIA Developer Zone
105. http://developer.nvidia.com/gpudirect RDMA for NVIDIA GPUDirect coming in CUDA 5.0 Preview

Release, April 2012
106. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_

Guide.pdf NVIDIA CUDA C Programming Guide Version 4.2 dated 4/16/2012 (April 2012)
107. http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parall

elism_in_CUDA.pdf Dynamic Parallelism in CUDA Tesla K20 Kepler GPUs - Prelease of NVIDIA CUDA
5.0

108. http://developer.nvidia.com/cuda-downloads NVIDIA Developer ZONE - CUDA Downloads CUDA
TOOLKIT 4.2

109. http://developer.nvidia.com/gpudirect NVIDIA Developer ZONE – GPUDirect
110. http://developer.nvidia.com/openacct OpenACC – NVIDIA
111. http://developer.nvidia.com/cuda-toolkit Nsight, Eclipse Edition Pre-release of CUDA 5.0, April 2012
112. The OpenCL Specification, Version 1.1, Published by Khronos OpenCL Working Group, Aaftab

Munshi (ed.), 2010.
113. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_
Guide.pdf

114. http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf The OpenCL 1.1 Quick Reference
card.

115. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
116. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0

References

References & Acknowledgements

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/openacct
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0

Xeon-Phi Coprocessors : An Overview 452 C-DAC hyPACK-2013

117. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
118. GPGPU Reference http://www.gpgpu.org
119. NVIDIA http://www.nvidia.com
120. NVIDIA tesla; http://www.nvidia.com/object/tesla_computing_solutions.html
121. NVIDIA CUDA Reference; http://www.nvidia.com/object/cuda_home.html
122. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html
123. href://www.nvidia.com/object/cuda_learn_products.html List of NVIDIA GPUs compatible with CUDA:
124. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html
125. Specifications of nVIDIA GeForce 8800 GPUs:
126. RAPIDMIND http://www.rapidmind.net
127. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.co
128. http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/
129. AMD http:www.amd.com
130. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
131. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
132. http://www-graphics.stanford.edu/projects/brookgpu/ Merrimac - Stream Arch. Standford Brook for

GPUs
133. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/
134. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/
135. ATI & AMD - Technology Products http://ati.amd.com/products/index.html
136. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....
137. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).
138. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).
139. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp
917-924 Graphic Hardware (2007).

140. NVIDIA CUDA Compute Unified Device Architecture – Prog. Guide - Ver1.1 November 2007

References

References & Acknowledgements

Xeon-Phi Coprocessors : An Overview 453 C-DAC hyPACK-2013

141. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com

142. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

143. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008)

144. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ;
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008

145. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in :
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.

146. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003)

147. Tutorial SC 2007 SC05 : High Performance Computing with CUDA
148. FASTRA http://www.fastra.ua.ac.bc/en/faq.html
149. AMD Stream Computing software Stack ; http://www.amd.com
150. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html
151. FFT – Fast Fourier Transform www.fftw.org
152. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas
153. LAPACK : Linear Algebra Package – www.netlib.org/lapack
154. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual

computing, Intel Deverloper FORUM 2008
155. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable Many core Processor Reaches

Beyond Graphics, Microprocessor Report September 29, 2008
156. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches

More Systems, Microprocessor Report December 2008
157. AMD’s ATI Stream Platform http://www.amd.com/stream
158. General-purpose computing on graphics processing units (GPGPU) http://en.wikipedia.org/wiki/GPGPU
159. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl

References

References & Acknowledgements

http://www.amd.com/
http://www.amd.com/
http://www.amd.com/
http://www.amd.com/
http://www.amd.com/
http://www.amd.com/
http://www.amd.com/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.netlibr.org/blas
http://www.netlibr.org/blas
http://www.netlibr.org/blas
http://www.netlibr.org/blas
http://www.netlibr.org/blas
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.amd.com/stream
http://www.amd.com/stream
http://www.amd.com/stream
http://www.amd.com/stream
http://www.amd.com/stream
http://www.amd.com/stream
http://www.amd.com/stream
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU

Xeon-Phi Coprocessors : An Overview 454 C-DAC hyPACK-2013

160. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

161. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
162. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0
163. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
164. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
165. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf

166. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf

167. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

168. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
169. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf
170. NVIDA CUDA C Programming Guide Version V5.0, May 2012 (5/6/2012)
171. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf
172. Programming Massively Parallel Processors - A Hands-on Approach, David B Kirk, Wen-mei W. Hwu,

Nvidia corporation, 2010, Elsevier, Morgan Kaufmann Publishers, 2011
173. Aftab Munshi Benedict R Gaster, timothy F Mattson, James Fung, Dan Cinsburg, Addison Wesley,

OpenCL Progrmamin Guide, Pearson Education, 2012
174. The OpenCL 1.2 Specification Khronos OpenCL Working Group
175. http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf“ The OpenCL 1.2 Quick-reference-

card ; Khronos OpenCL Working Group
176. http:/www.openmp.org OpenMP 4.0

References
References & Acknowledgements

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

Xeon-Phi Coprocessors : An Overview 455 C-DAC hyPACK-2013

177. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
178. GPGPU Reference http://www.gpgpu.org
179. NVIDIA http://www.nvidia.com
180. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
181. RAPIDMIND http://www.rapidmind.net
182. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
183. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
184. AMD http:www.amd.com
185. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
186. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
187. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
188. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl
189. OpenCL - The open standard for parallel programming of heterogeneous systems URL :

http://www.khronos.org/opencl

190. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan
& VVR Talk

191. David B Kirk, Wen-mei W. Hwu nvidia corporation, 2010, Elsevier, Morgan Kaufmann
Publishers, 2011

192. Benedict R Gaster, Lee Howes, David R Kaeli, Perhadd Mistry Dana Schaa,
Heterogeneous Computing with OpenCL, Elsevier, Moran Kaufmann Publishers, 2011

193. The OpenCL 1.2 Specification (Document Revision 15) Last Released November 15, 2011
Editor : Aaftab Munshi Khronos OpenCL Working Group

194. The OpenCL 1.1 Quick Reference card

References

http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://en.wikipedia.org/wiki/GPGPU
http://www.khronos.org/opencl
http://www.khronos.org/opencl

Xeon-Phi Coprocessors : An Overview 456 C-DAC hyPACK-2013

195. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx AMD APP
SDK with OpenCL 1.2 Support

196. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#oneAMD-
APP-SDKv2.7 (Linux) with OpenCL 1.2 Support

197. http://icl.cs.utk.edu/magma/software/ MAGMA OpenCL
198. http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx Getting

Started with OpenCL
199. http://developer.amd.com/openclforum AMD Developer OpenCL FORUM
200. http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopencl

performance.aspx AMD Developer Central - Programming in OpenCL - Benchmarks
performance

201. http://developer.amd.com/sdks/AMDAPPSDK/assets/opencl-1.2.pdf OpenCL 1.2 (pdf
file)

202. http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx AMD OpenCL
Emulator-Debugger

203. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf The OpenCL 1.2 Specification
(Document Revision 15) Last Released November 15, 201 Editor : Aaftab Munshi <I>
Khronos OpenCL Working Group

204. http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/ OpenCL1.1 Reference
Pages

205. The Intel SDK for OpenCL Applications XE – Optimization Guide includes many more
details.

References

Source : Intel, NVIDIA, Khronos AMD, References

http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Xeon-Phi Coprocessors : An Overview 457 C-DAC hyPACK-2013

 An Overview of Intel Xeon-Phi Coprocessor Architecture &
Software Environment is discussed

 Programming paradigms on Intel Xeon-Phi Coprocessor
are discussed

 Tips for Tuning & Performance Issues on Intel Xeon-Phi
Coprocessor are discussed

Summary

An Overview of Prog. Env on Intel Xeon-Phi

Xeon-Phi Coprocessors : An Overview 458 C-DAC hyPACK-2013

 Thank You
 Any questions ?

