
Multi-Core Processors & ARM Processors An Overview 1 C-DAC hyPACK-2013

Topic : An Overview Multi-Core Processors -
Architecture, Prog. Env - Software Threading &

Performance Issues & An Overview of ARM
Multi-Core Processors

hyPACK-2013

Mode-1 : Multi-Core & Mode-2 : ARM Processors

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Application Kernels

C-DAC Four Days Technology Workshop

ON

Multi-Core Processors & ARM Processors An Overview 2 C-DAC hyPACK-2013

 Understanding of Multi-Core Architectures

 Programming on Multi-Core Processors

 Tuning & Performance – Software Threading

 An Overview or ARM Processors – Prog. Env

Lecture Outline

Following topics will be discussed

An Overview of Multi-Core & ARM Processors

Multi-Core Processors & ARM Processors An Overview 3 C-DAC hyPACK-2013

Part-I :
An Overview of Multi-Core Processors

History

Multi-Core Processors & ARM Processors An Overview 4 C-DAC hyPACK-2013

 Parallel computing has been used for HPCs and
networking.

 PRAM & other shared memory models - Limitations.

 BSP & LogP (message passing models) were used.

– Only for HPC specialists.

– Demand complicated system analyze per
application.

 Clusters are becoming popular (NUMA, CC NUMA)

 HW (Scalability) Constraints force Multicore architectures.

 Era of frequency race

Multi-Core History

Multi-Core Processors & ARM Processors An Overview 5 C-DAC hyPACK-2013

 No more frequency race

 The era of multi cores

 Parallel programming is not easy

 Split a sequential task into multiple sub tasks

 Data Parallelism – Task Paralleism

Year

Performance

Pentium

(1993)

Pentium 4

(2000)

Core Duo

(2006)

Multi-Core History

Multi-Core Processors & ARM Processors An Overview 6 C-DAC hyPACK-2013

 Moving from Multiple processor on single box (SMP)

Multiple Core on Single Chip.

 Four, even six/eight/twelve, processor cores on the same

die are fast becoming commonplace.

 Moving to a multi-core world means applications will have

to be written in a different manner.

Multi-Core History

Source : http://www.intel.com ; Reference : [6]

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 7 C-DAC hyPACK-2013

Multi-Core History

Auto Parallelism

 Thread Analyzer

Thread Checker

Compilers & Math Lib

Thread Performance Analysis

Thread Profiler

Source : http://www.intel.com ; Reference : [6]

Multi-core architectures

involve multi-processing,

and to take advantage of

that, parallel

programming is almost

compulsory.

 The lack of parallel-

programming tools and

expertise is threatening

the progress of multi-core

architectures.

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 8 C-DAC hyPACK-2013

Programmers Challenge :

 Identify independent pieces of a task that
can be executed in parallel

 Coordinate their Execution

 Managing Communications

 Managing Synchronization

 A program with a communication or
synchronization bottleneck will be unable to
take full advantage of the available Cores

 Scalable Programs that avoid such
bottlenecks are surprisingly difficult to
construct

Intel Quad Core (Clovertown)

Multi-Cores - Parallel Programming -Difficulties

Reference : [6], [29], [31]

AMD Quad Core

Multi-Core Processors & ARM Processors An Overview 9 C-DAC hyPACK-2013

Challenge: taking advantage of Multi-Core

 Parallel Prog. is difficult with locks:

 Deadlock, convoys, priority inversion

 Conservative, poor composability

 Lock ordering complicated

 Performance-complexity tradeoff

 Transactional Memory in the OS

 Benefits user programs

 Simplifies programming

Multi-Cores - Parallel Programming -Difficulties

Intel Quad Core (Clovertown)

AMD Quad Core

Multi-Core Processors & ARM Processors An Overview 10 C-DAC hyPACK-2013

 Multicore architectures force us to rethink how we do
synchronization

 Parallel programming has traditionally been considered using
locks to synchronize concurrent access to shared data.

 Standard locking model won’t work

 Lock-based synchronization, however, has known pitfalls: using
locks for fine-grain synchronization and composing code that
already uses locks are both difficult and prone to deadlock.

 Transactional model might
 Software

 Hardware

 Programming Issues

Multi-Cores - Parallel Programming Difficulties

Multi-Core Processors & ARM Processors An Overview 11 C-DAC hyPACK-2013

P/C : Microprocessor and cache; SM : Shared memory

 Uses commodity microprocessors with on-chip and off-chip

caches.

 Processors are connected to a shared memory through a

high-speed snoopy bus

(Contd…)

Symmetric Multiprocessors (SMPs) : Issues

Multi-Core Processors & ARM Processors An Overview 12 C-DAC hyPACK-2013

 Two processors is involved.

 OS schedule two processes
for execution by either CPU

 Not allowed to monopolize

 Less waiting time

 Number of empty execution
slots doubled

 Efficiency - No improvement
in CPU utilization

 Time Slicing Issues

Reference : [6], [29], [31]

Symmetric Multiprocessors (SMPs) : Issues

Multi-Core Processors & ARM Processors An Overview 13 C-DAC hyPACK-2013

CPU 0 CPU 1

Memory

Simple SMP Block Diagram

for a two processors

AMD Opteron

CPU0

 Memory

AMD Opteron

CPU1

 Memory

HyperTransport

Two processor AMD

Opteron system in

cc NUMA configuration

Two processor Dual Core

Multi Cores Today

Multi-Core Processors & ARM Processors An Overview 14 C-DAC hyPACK-2013

Industry Standard Servers

SMP and Cluster Platforms based on
Single Threaded CPU

Preemptive vs. co-operative

Multitasking

Context, process and Thread

Waste Associated with Threads

Multi-Cores - An Overview of threading

Time Slicing

I/O Threads

Implementing

Hyper-threading

• Replicated

• Partitioned

• Shared

•Caching &

•SMT

Source : http://www.intel.com ; htpp://www.amd.com; Reference : [6], 29], [31]

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 15 C-DAC hyPACK-2013

 Performance

 Tools to Discover Parallelism

 Use of Math Libraries

 Measure Overheads of
Threads

 Hardware Counters

Auto Parallelism

 Thread Analyzer

Thread Checker

Compilers & Math Lib

Thread Performance Analysis

Thread Profiler

Source : http://www.intel.com ; Reference : [6]

MultiCores - An Overview of threading -tools

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 16 C-DAC hyPACK-2013

 Out of Order Execution

 Preemptive and Co-operative Multitasking

 SMP to the rescue

 Super threading with Multi threaded Processor

 Hyper threading the next step (Implementation)

 Multitasking

 Caching and SMT

Multi-Core Processors - Programming Issues

Multi-Core Processors & ARM Processors An Overview 17 C-DAC hyPACK-2013

 Issues & Challenges

Process, context and thread

Multi-tasking: Each program has a mind of its own

• Pipeline bubbles

• Number of Instructions per clock cycle

 Time slicing – up-restore- context switches

 The concept of “State” – Halting /Restoring

Wasting number of number of CPU cycles…

Execution efficiency improves ?

Multi-Core Processors - Programming Issues

Multi-Core Processors & ARM Processors An Overview 18 C-DAC hyPACK-2013

Architectural
State

Execution
Engine

Local APIC

Bus Interface

Physical Package

System Bus

Single Processor

Logical
Professor 0
Architectural

State

Logical
Professor 1
Architectural

State

Execution Engine

Local APIC Local APIC

Single Processor with
Hyper-Threading Technology

System Bus

Physical Package

 Single Processor System without Hyper-Threading Technology and
 Single Processor System with Hyper-Threading Technology

Hyper-threading : Partitioned Resources

 Hyper-threading (HT) technology is a hardware mechanism where

multiple independent hardware threads get to execute in a single

cycle on a single super-scalar processor core.

Bus Interface

Source : http://www.intel.com ; Reference : [6], [10], [19], [23], [24],[29], [31]

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 19 C-DAC hyPACK-2013

System Bus

Logical
Professor 0
Architectural

State

Logical
Professor 1
Architectural

State

Execution Engine

Local APIC Local APIC

MP HT

Physical Package

Bus Interface

Logical
Professor 0
Architectural

State

Logical
Professor 1
Architectural

State

Execution Engine

Local APIC Local APIC

Physical Package

Bus Interface

Architectural
State

Execution Engine

Local APIC

Physical Package

Bus Interface

Architectural
State

Execution Engine

Local APIC

Physical Package

Bus Interface

MP

System Bus

Hyper-threading Technology

 Multi-processor with and without Hyper-threading (HT) technology

Source : http://www.intel.com ; Reference : [6], [29]. [31]

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 20 C-DAC hyPACK-2013

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

Thread Pool

Multithreading

CPU

T0 T1 T2 T3 T4 T5 CPU

Time

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

Thread Pool

Hyper-threading Technology

CPU

T2 T0 T4

T1 T3 T5

LP0

LP1

CPU

2 Threads per
Processor

Time

Multi-threaded Processing using Hyper-Threading Technology

 Time taken to process n threads on a single processor is significantly

more than a single processor system with HT technology enabled.

Source : http://www.intel.com ; Reference : [6], [29], [31]

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 21 C-DAC hyPACK-2013

FSB Bus
Interface Unit

Last Level Cache
(LLC)

Execution Core
(EC)

FSB Bus
Interface Unit

Last Level Cache
(LLC)

Execution Core
(EC)

FSB Bus
Interface Unit

Last Level Cache
(LLC)

Execution Core
(EC)

FSB Bus
Interface Unit

Last Level Cache
(LLC)

Execution Core
(EC)

Processor

(a) Single Core
Processor

System Bus or FSB (Front Side Bus) System Bus or FSB (Front Side Bus)

(b) Multi-Core Processor with
Two Cores and Individual FSB

(c) Actual representation of
show shared FSB

Multi-Core Processor Configurations

Processor

System Bus or FSB

FSB Bus Interface
Unit

Last Level Cache
(LLC)

Execution Core
(EC)

Source : Reference : [6]

Processor

System Bus or FSB (Front Side Bus)

FSB Bus Interface Unit

Last Level Cache (LLC)

Execution Core
(EC)

Execution Core
(EC)

System Bus or FSB (Front Side Bus)

FSB Bus Interface Unit

Last Level Cache
(LLC)

Execution Core
(EC)

Execution Core
(EC)

Processor

Last Level
Cache (LLC)

(d) Multi-Core Processor with Two
Cores and Shared FSB

(e) Multi-Core Processor with Two
Cores and Shared LLC and FSB

Multi-Core Processors & ARM Processors An Overview 22 C-DAC hyPACK-2013

A) Single Core

B) Multiprocessor CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic
CPU State

Interrupt Logic

Cache Execution
Units

CPU State

Interrupt Logic

Cache Execution
Units

C) Hyper-Threading Technology D) Multi-core

Simple Comparison of Single-core, Multi-
processor, and multi-Core Architectures

CPU State

Interrupt Logic

Execution
Units Cache

B) Multi Processor

CPU State

Interrupt Logic

Execution
Units

Cache

Source : http://www.intel.com ; Reference : [4],[6], [29], [31]

CPU State

Interrupt Logic

Execution Units

CPU State

Interrupt Logic

Execution Units

Cache

E) Multi-core with
Shared Cache

F) Multi-core with Hyper-threading Technology

CPU State

Interrupt Logic

CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic

CPU State

Interrupt Logic

Execution
Units

Cache

http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 23 C-DAC hyPACK-2013

Intel Quad Core (Clovertown) Server Processor with

Blackford Chipset : Clovertown will consist of two Woodcrest

dice crammed into a single package.

Multi-Core Processors

source : http:/www.intel.com

Multi-Core Processors & ARM Processors An Overview 24 C-DAC hyPACK-2013

 AMD Dual-Core Opteron, Circa 2005

 Socket F used in the motherboard OEMs

AMD Opteron Dual Core Processor

source : http:/www.amd.com

Multi-Core Processors & ARM Processors An Overview 25 C-DAC hyPACK-2013

Core 0 Core 1

AMD Opteron Dual-

Core Processor 0

HyperTransport

Dual-Core AMD Opteron Processor configuration

 Memory

Core 2 Core 3

 Memory

AMD Opteron Dual-

Core Processor 1

 AMD : Cache-Coherent nonuniform memory access (ccNUMA)

 Two or more processors are connected together on the same

motherboard

 In ccNUMA design, each processor has its own memory system.

 The phrase ‘Non Uniform Memory access’ refers to the potential

difference in latency

AMD Multi Cores

source : http:/www.amd.com

Multi-Core Processors & ARM Processors An Overview 26 C-DAC hyPACK-2013

 AMD Quad-Core Opteron, Circa 2007

AMD Opteron Quad Core Processor

source : http:/www.amd.com

Multi-Core Processors & ARM Processors An Overview 27 C-DAC hyPACK-2013

Comp System Conf. Intel Dunnington (six Core)

CPU – Frequency 2.67 GHz

No of Sockets /Cores 4 Sockets (Total : 24 Cores)

Chipset Clarksboro

FSB Frequency 1067 MHz

Memory Technology DDR2- 667 FB

Core Design/Technology Penryn (45 nm)

L1 Dcache & L1 Cache L1 Dcache=32 KB; L1 Cache =32 KB

L2 Cache 3 MB per 2 Core

L3 Cache Shared 16 MB (40 ns latency)

Peak(Perf.) 256 Gflops (Approximately)

Memory/Core 2-4 GB per Core

Total Memory 48-96 GB

OS Red Hat Enterprise Linux Server x86_64 (64 bit)

Prog. Env Intel 10.0(icc; fce; OpenMP, MPI)

Math Libraries Math Kernel Library 9.1

Intel Dunnigton (6 Core) System Configuration

Multi-Core Processors & ARM Processors An Overview 28 C-DAC hyPACK-2013

Intel Nehalem-EP 2 S (Quad Core) System

 4 Cores

 8M on-chip Shared Cache

 Intel QuickPath Interconnect

 Integrated Memory Controller

(DD3)

 Power : 60W – 95 W

CPU CPU CPU CPU

8 MB Shared L2 Cache

Memory

 Controller

Link

 Controller

 Simultaneous Multi-Threading (SMT)

• Single Core to execute 2 separate threads (Efficient

 Resource Utilisation & Greater Performance

• Using “-multi n” option to use multiple cores available on the

 Nehalem system

Multi-Core Processors & ARM Processors An Overview 29 C-DAC hyPACK-2013

Intel Nehalem-EP 2 S (Quad Core) System

Features – to improve performance

 SMP : Multiple threads share resource such as L0, L1

Cache (A small LO cache on top of a traditional Ll cache has the advantages

of shorter access time and lower power consumption. The performance loss in

case of cache misses is possible with LO & Cache Management schemes re

required.)

 Streaming SIMD Extensions (SSE)

 support SIMD operation & Vectorization

 Increase processor throughput by performing multiple

computations in a single instruction

 Useful for Matrix Computations Data Parallel Operations

 Useful for Complex Arithmetic & Video Codec Algorithms

Multi-Core Processors & ARM Processors An Overview 30 C-DAC hyPACK-2013

Part-II :
An Overview of Multi-Core Processors

Application Perspective

Multi-Core Processors & ARM Processors An Overview 31 C-DAC hyPACK-2013

Application software

Setup/initial
partitioning Compute

Rebalance
load

Rebalance
load

Compute

done

!done

OK

!OK

Load-balancing suite

Partitioning and dynamic load balancing
implementations/support tool

Application Perspective : Multi Cores

 Threads of Computation : Work is partitioned amongst

the threads – Data Handling & Synchronization Issues

 Computational

requirements

dynamically

changes –

• Cache Friendly

applications

• I/O Intensive

applications

Source : Reference [4],[6]

Multi-Core Processors & ARM Processors An Overview 32 C-DAC hyPACK-2013

Finite Element Unstructured Mesh for Lake Superior Region

 Parallel Unstructured Adaptive Mesh/Mesh Repartitioning methods

Types of Parallelism : Task Parallelism
(Contd…)

 HPF / Automatic compiler techniques may not yield good
performance for unstructured mesh computations.

 Choosing right algorithm and message passing is a right
candidate for partition (decomposition) of unstructured mesh

(graph) onto processors. Task parallelism is right to obtain
concurrency.

Multi-Core Processors & ARM Processors An Overview 33 C-DAC hyPACK-2013

FIMI PDE NLP

Level Set

Computer

Vision
Physical

Simulation
(Financial)

Analytics Data Mining

Particle

Filtering

SVM

Classification

SVM

Training
IPM

(LP, QP)

Fast Marching

Method

K-Means

Index

Bench Monte Carlo

Body

Tracking

Face

Detection
CFD

Face,

Cloth

Rigid

Body
Portfolio

Mgmt

Option

Pricing

Cluster/

Classify

Text

Index

Basic matrix primitives

(dense/sparse, structured/unstructured)

Basic Iterative

Solver

(Jacobi, GS, SOR)

Direct Solver

(Cholesky)

Krylov Iterative

Solvers (PCG)

Rendering

Global

Illumination

Collision

detection
LCP

Media

Synthesis

Machine

learning

Filter/

transform

Basic geometry primitives

(partitioning structures, primitive tests)

Non-Convex

Method

Source : Intel

Multi-Core Processors & ARM Processors An Overview 34 C-DAC hyPACK-2013

 Multicore architectures force us to rethink how we do
synchronization

 Parallel programming has traditionally been considered using
locks to synchronize concurrent access to shared data.

 Standard locking model won’t work

 Lock-based synchronization, however, has known pitfalls: using
locks for fine-grain synchronization and composing code that
already uses locks are both difficult and prone to deadlock.

 Transactional model might

 Software

 Hardware

 Programming Issues

Multi-Cores - Parallel Programming Difficulties

Multi-Core Processors & ARM Processors An Overview 35 C-DAC hyPACK-2013

 Static load-balancing

 Distribute the work among

processors prior to the execution

of the algorithm

 Matrix-Matrix Computation

 Easy to design and implement

(Contd…)

Dynamic load-balancing

 Distribute the work among processors

 during the execution of the algorithm

 Algorithms that require dynamic load-balancing are somewhat

more complicated (Parallel Graph Partitioning and Adaptive Finite

Element Computations)

Load Balancing Techniques

Multi-Core Processors & ARM Processors An Overview 36 C-DAC hyPACK-2013

Parallel Algorithmic Design

 Data parallelism; Task parallelism; Combination of Data and

Task parallelism

 Decomposition Techniques

 Static and Load Balancing

 Mapping for load balancing

 Minimizing Interaction

 Overheads in parallel algorithms design

 Data Sharing Overheads

Source : Reference :[1], [4]

Multi-Core Processors & ARM Processors An Overview 37 C-DAC hyPACK-2013

Questions to be answered

 How to partition the data?

 Which data is going to be

partitioned?

 How many types of concurrency?

Parallel Algorithms and Design

 What are the key principles of

designing parallel algorithms?

 What are the overheads in the

algorithm design?

 How the mapping for balancing the

load is done effectively?

Decomposition techniques

 Recursive decomposition

 Data decomposition

 Exploratory decomposition

 Hybrid decomposition

Multi-Core Processors & ARM Processors An Overview 38 C-DAC hyPACK-2013

T00 = To

T01 T02

T03 T04 T05

T07 T08

Sub Task Graph for To

T10 = T1

T11
T12

Sub Task Graph for T1

T0

T1 T2

T3 T4 T5 T6

T7 T8 T9 T10

Task Graph

Types of Parallelism : Task Parallelism

Multi-Core Processors & ARM Processors An Overview 39 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 One decomposition of work using Multi-threads

 It consists of

 A thread Monitoring a network port for arriving data,

 A decompressor thread for decompressing packets

 Generating frames in a video sequence

 A rendering thread that displays frame at programmed intervals

Programming Aspects –Example

Multi-Core Processors & ARM Processors An Overview 40 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 The thread must communicate via shared buffers –

• an in-buffer between the network and decompressor,

• an out-buffer between the decompressor and renderer

 It consists of

 Listen to port ……..Gather data from the network

 Thread generates frames with random bytes (Random string of

specific bytes)

 Render threads pick-up frames & from the out-buffer and calls the

display function

 Implement using the Thread Condition Variables

Programming Aspects -Example

Refer HeMPA-2011 web-page POSIX Threads

Multi-Core Processors & ARM Processors An Overview 41 C-DAC hyPACK-2013

Portable Extensible Toolkit for Scientific comptuations

 PETSc, pronounced PET-see (the S is silent), is a suite of data

structures and routines for the scalable (parallel) solution of scientific

applications modeled by partial differential equations. It supports

MPI, shared memory pthreads, and NVIDIA GPUs, as well as hybrid

MPI-shared memory pthreads or MPI-GPU parallelism.

 It consists of

 Finite Element Solver : Unstructured Adaptive Finite Element Lib.

 Finite volume Solver

 General purpose CFD Solver

 C++ Finite element Library

PetSc Library : Scientific Computations

Refer HeGaPa-2012 web-page CUDA /OpenCL

http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/threads.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/threads.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/threads.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/threads.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/threads.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/gpus.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/gpus.html
http://www.mcs.anl.gov/petsc-dev/src/docs/website/features/gpus.html

Multi-Core Processors & ARM Processors An Overview 42 C-DAC hyPACK-2013

Part-III :
An Overview of Multi-Core Processors

Memory Allocators

Multi-Core Processors & ARM Processors An Overview 43 C-DAC hyPACK-2013

Memory Allocation is often a bottleneck that severely
limits program scalability on multiprocessor systems

 Existing Serial memory allocations do not scale well
for multithreaded applications.

 Concurrent memory allocators do not provide one or
more following features….

• Speed (fast malloc & free)

• Scalability

• False Sharing avoidance (Cache line)

• Low fragmentation (Poor Data Locality, Paging)

• Still some execution block is utilized

 Blowup

An Overview of Memory Allocator for

Multithreaded Application

Multi-Core Processors & ARM Processors An Overview 44 C-DAC hyPACK-2013

Heap 0 : Global heap

Heap 1

Heap 2

Hoard : A Memory allocator

Heap 3

Heap 4

Processor 1

Processor 2

Processor 3

Processor 4

 Superblocks

 Each superblock has some blocks

(Empty/Partially filled /Fully Filled)

 thread ‘k’ maps to

heap ‘k’

Source : http://www.hoard.org/

http://www.hoard.org/
http://www.hoard.org/

Multi-Core Processors & ARM Processors An Overview 45 C-DAC hyPACK-2013

 Example :

 Threads in Producer–consumer relationship

• Blow-up mechanism exists ….

• Memory Consumption grows linearly

 Producer thread repeatedly allocates a block of
memory and it gives it to a consumer thread which
frees it.

 If the memory freed by the consumer is unavailable it
the producer, the program consumes more and more
memory as it runs…

 Memory Consumption grows without bound while the
memory required….

Hoard : A Memory allocator

For more details , refer HeGaPa-2012web-page

Multi-Core Processors & ARM Processors An Overview 46 C-DAC hyPACK-2013

 Allocation and freeing in Hoard Memory Allocator

 Hoard maintains usage statistics for each heap

 The amount of memory allocated by Hoard from

the operating system held in heap i.

 The amount of memory is use (“Live”) in heap “I”

 Hoard allocates memory from the system in chunks as

well as superblocks

 Each superblock is an array of some number of blocks

(objects) and contains a free list of its available blocks

maintained in LIFO order to improve locality.

 All the superblocks are of same size (S), a multiple

of system page size.

Hoard : A Memory allocator

Multi-Core Processors & ARM Processors An Overview 47 C-DAC hyPACK-2013

Intel Scalable Memory Allocator

 Standard malloc implementations still do not provide

proper scalability for multi-threaded applications.

 The TBB allocator uses thread-private heaps. Such a

design has proven to cut down on the amount of code

that requires and reduce false sharing, thus providing

better scalability.

 Each thread allocates its own copy of heap structures

and accesses it via thread-specific data (TSD) using

corresponding system APIs.

Source : http://www.intel.com/technology/

Multi-Core Processors & ARM Processors An Overview 48 C-DAC hyPACK-2013

Intel Scalable Memory Allocator

 The allocator requests

memory from the OS

in 1MB chunks and

divides each chunk

into 16K-byte aligned

blocks. These blocks

are initially placed in

the global heap of free

blocks.

Source : http://www.intel.com/technology

Multi-Core Processors & ARM Processors An Overview 49 C-DAC hyPACK-2013

Google Perftools

Multi-threaded applications in C++ with templates. Includes

TCMalloc, heap-checker, heap-profiler and cpu-profiler

Works with STL

 Perf Tools is a collection of a high-performance multi-

threaded malloc() implementation, and performance

analysis tools. http://code.google.com/p/google-perftools

 PerfTools help one to identify spots in a program that are

responsible for CPU consumption.
 http://minos.phy.bnl.gov/~bviren/minos/software/prof/PerfTools/doc/

http://code.google.com/p/google-perftools
http://code.google.com/p/google-perftools
http://code.google.com/p/google-perftools

Multi-Core Processors & ARM Processors An Overview 50 C-DAC hyPACK-2013

top – b

top - 15:22:45 up 4:19, 5 users, load average: 0.00, 0.03, 0.00

Tasks: 60 total, 1 running, 59 sleeping, 0 stopped, 0 zombie

Cpu(s): 3.8%us, 2.9% sy, 0.0% ni, 89.6% id, 3.3% wa, 0.4% hi, 0.0% si

Mem: 515896k total, 495572k used, 20324k free, 13936k buffers

Swap: 909676k total, 4k used, 909672k free, 377608k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1
root 16 0 1544 476 404 S 0.0 0.1 0:01.35 init

 2 root 34 19 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/0

 3 root 10 –5 0 0 0 S 0.0 0.0 0:00.11 events/0

Top Linux Tool

time top -b -n 1; top –p 4360 4358

 Monitoring resource usage, optimization our system, identifying

memory leak. Top provide almost everything we need to monitor our

system's resource usage within single shot.

http://www.linuxforums.org/articles/using-top-more-efficiently_89.html

Multi-Core Processors & ARM Processors An Overview 51 C-DAC hyPACK-2013

Part-IV :
An Overview of Multi-Core Processors

System Overview of Threading

Multi-Core Processors & ARM Processors An Overview 52 C-DAC hyPACK-2013

Parallel Code Block or a

section needs multithread

synchronization

. . .

 .

 .

 .

 .

 .

 .

Parallel Code Block

Implementation Source Code

Perform synchronization

operations using parallel

constructs Bi

Perform synchronization

operations using parallel

constructs Bj

T1 T2 Tn
. . .

T1
T2 Tn . . .

T1 …. p

Operational Flow of Threads

Operational Flow of Threads for an Application

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 53 C-DAC hyPACK-2013

 A thread is defined as an

independent stream of instructions

that can be scheduled to run as

such by the operating system.

 A thread is a discrete sequence of

related instructions that is

executed independently of other

instructions sequences

 A process can have several

threads, each with its own

independent flow of control.

 Threads share the resources of

the process that created it.

Defining Threads : What are threads ?

Implementation specific
issues of Pthreads :

 Synchronization

 Sharing Process
Resource

 Communication

 Scheduling

Multi-Core Processors & ARM Processors An Overview 54 C-DAC hyPACK-2013

Processors

Processes

Threads T1

µPi

OP1 OP2
. . . OPn

T2 Tm
. . .

Processors

Map to MMU

Map to

Processors

µPi : Processor OP1 : Process T1 : Thread MMU : Main Memory Unit

Relationship among Processors, Processes, &Threads

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 55 C-DAC hyPACK-2013

 A thread is a user-level concept that is invisible to the

kernel

 Because threads are user-level object, thread operations

such as switching from one thread to another are fast

because they do not incur a context switch

 Threads are not visible to the kernel

 Threads are not scheduled for CPUs

 Threads have un-describable blocking behavior

 Threaded programs have more overhead than a non-

threaded one.

(Contd…)

Threads Parallel Programming

Multi-Core Processors & ARM Processors An Overview 56 C-DAC hyPACK-2013

 The operating system maps

software threads to hardware

execution resources

 Too much threading can hurt

Performance

Each Thread maintains its current machine state

At the hardware level, a thread is an execution path
that remains independent of other hardware thread
execution paths.

System Overview of Threads

Multi-Core Processors & ARM Processors An Overview 57 C-DAC hyPACK-2013

(Processors and Chipset)
Architecture

(Hardware Abstraction Layer)
HAL

Process,

Threads and

Resource

Scheduler

IO

Manager
Memory

Manager

Kernel

Internal

Operational

Manager

Other

Operation

Units

System Libraries

Applications and Required Service Components

Application Layer

Different Layers of the Operating System /Threads

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 58 C-DAC hyPACK-2013

System Overview of Threads

 Three levels of threading is commonly used

 Each program thread frequently involves all
three levels

Computation Model of Threading

Used by executable application and handled by user-level OS

User-Level Threads

Used by operating system kernel and handled by kernel-level OS

Kernel-Level Threads

Used by each Processor

Hardware Threads

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 59 C-DAC hyPACK-2013

System View of Threads

 Understand the problems - Face using the
threads – Runtime Environment

Flow of Threads in an Execution Environment

Defining and

Preparing

Threads

Operating

Threads

Executing

Threads

Performed by

Programming

Environment

and Compiler

Performed by

OS using

Processes

Performed by

Processors

Showing return trip to represent that after

execution operations get pass to user space

Threads Above the Operating System

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 60 C-DAC hyPACK-2013

Operational Path Operational Path

Threads Inside the
Hardware

Concurrency Parallelism

System Overview of Threads

 Concurrency versus

Parallelism

 Thread stack allocation

 Sharing hardware

resources among

executing threads –

Concurrency

 Hyper-threading Technology

 Chip Multi-threading (CMT)

 Simultaneous Multi-threading (SMT)

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 61 C-DAC hyPACK-2013

Address 0

Address N

Region for
Thread 1

Stack

Stack

Stack

.

.

.

Program Code + Data

Heap

Region for
Thread 2

After thread creation, each thread needs to have its own stack space.

System Overview of Threads

 Thread stack size

 Thread stack allocation

 Know Operating System

Limitations

 Default Stack Size may

vary from system to

system

 Performance may vary

from system to system

 Bypass the default stack manager and manage

stacks on your own as per application demands

Stack Layout in a Multi-threaded Process

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 62 C-DAC hyPACK-2013

New

Ready Running

Waiting

Terminate
Enter Interrupt Exit

Event
Wait

Scheduler Dispatch Event
Completion

State Diagram for a Thread

System Overview of Threads

 Threads Creation

 Four Stages of

Thread Life Cycle

• Ready,

• Running,

• Waiting (blocked),

• Termination

 Finer Stages in debugging or analyzing a threaded application

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 63 C-DAC hyPACK-2013

Part-V :
An Overview of Multi-Core Processors

POSIX-Threads

Multi-Core Processors & ARM Processors An Overview 64 C-DAC hyPACK-2013

What should the expected speedup be?

Will the performance meet expectations?

 Will it scale if the more number of processor added?

 Which threading model is it?

Commonly Encountered Questions While Threading

 Application ?

Multi-Core Processors & ARM Processors An Overview 65 C-DAC hyPACK-2013

Commonly Encountered Questions

While Threading Application ?

 Where to thread ?

 thread the more time consuming section of code like loops

 How long would it take to thread?

 Very minimum time just need to use some directives/lib. routine

 How much re-design / efforts is required?

 Very less

 Is it worth threading the selected region ?

 Appears to have minimal dependencies

 Consuming over 90% of run time

Analysis

Multi-Core Processors & ARM Processors An Overview 66 C-DAC hyPACK-2013

What are Pthreads?

 POSIX threads or Pthreads is a portable threading

 library which provides consistent programming

 interface across multiple operating systems.

 It is set of C language programming types and

 procedure calls,implemented with pthread.h file

 and a thread library.

 Set of threading interfaces developed by IEEE
committee in charge of specifying a portable OS
Interface.

 Library that has standardized functions for using
threads across different platform.

POSIX Threads

Multi-Core Processors & ARM Processors An Overview 67 C-DAC hyPACK-2013

Pthread APIs

 Pthread APIs can be grouped into three major classes:

•Thread Management - thread creation,joining,setting attributes etc.

 pthread_create(thread,attr,start_routine,arg)

• Thread Synchronization - functions that deal with Mutex

 pthread_mutex_init(mutex , attr)

 pthread_mutex_destroy(mutex)

 pthread_mutex_lock(mutex)

 pthread_mutex_trylock(mutex)

 pthread_mutex_unlock(mutex)

• Condition Variables - functions that deal with condition variables

 pthread_cond_init(condition,attr)

 pthread_cond_destroy(condition,attr)

Multi-Core Processors & ARM Processors An Overview 68 C-DAC hyPACK-2013

Pthread APIs

 All identifiers in the thread library begins with pthread_

Condition variable related pthread_cond_

Mutex related routines pthread_mutex_

Thread Attribute objects pthread_attr_

Threads themselves and misc

subroutines

 pthread_

 Functional Group Routine Prefix

pthread_join(threadId , status)

pthread_exit(void *value_ptr)

pthread_detach(pthread_t thread_to_detach)

Multi-Core Processors & ARM Processors An Overview 69 C-DAC hyPACK-2013

Pthread APIs

 Semaphores : A semaphore is a counter that can have any

nonnegative value. Threads wait on a semaphore.

 When the semaphore’s value is 0, all threads are forced to wait.

When the value is non-zero, a waiting thread is released to work.

 Pthreads does not implement semaphores, they are part of a

different POSIX specification.

 Semaphores are used to conjunction with Pthreads’ thread-

management functionality

 Usage : Include <semaphore.h>

 - sem_init(*, *, …*);

 - sem_post(*, *, …*)

 - sem_wait(*, *, …*)

Multi-Core Processors & ARM Processors An Overview 70 C-DAC hyPACK-2013

Pthread APIs – Key Points

 Threads can communicate with one another using events

 A care is needed to terminate the Thread while using the C runtime

library.

 Thread synchronizations can be accomplished through the use of

Mutexes, Semaphores, Critical Sections, and Interlocked functions

 Windows support multiple thread-priority levels

 Processor affinity is a mechanism that allows the programmer to

specify which processor a thread should try to run on. – OS play an

important role on Multi Core processor

 POSIX Threads (Pthreads) is a portable threading APIs that is

supported on a number of platforms.

Multi-Core Processors & ARM Processors An Overview 71 C-DAC hyPACK-2013

.

.

.

.

.

.

A section
contains

shared data or
Critical Section

Synchronization
Operation to

Enter

Synchronization
Operation to

Leave

Source Code

Generic Representation of Synchronization Block
inside Source Code

 Two types of Synchronization operations are widely

used : Mutual exclusion and Condition synchronization

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 72 C-DAC hyPACK-2013

Thread 1

transfer

Thread 2 Thread 1 Thread 2

transfer

transfer

transfer

Unsynchronized Unsynchronized

Too little / too much

synchronization

 In-Correct

Results

Performance –

Slow done the

results

Comparison of Unsynchronized / Synchronized threads

Multi-Core Processors & ARM Processors An Overview 73 C-DAC hyPACK-2013

new

runnable

new

run method

exits

start

stop

blocked

resume

suspend

notify

wait

not available

wait for lock

I/O complete

block in I/O

sleep

done sleeping

Pthreads:Synchronization & Thread States

 I/O Requests

 Read-Write Locks

 Available CPU

 Release Locks

 Critical Sections

Multi-Core Processors & ARM Processors An Overview 74 C-DAC hyPACK-2013

Synchronization

Atomicity Control

Data

Barrier Mutual Exclusion

Semaphore

and Lock

Producer-

Consumer
Pool.

Queue

Pthreads : Various types of synchronization

 Use of Scheduling techniques as means of
Synchronization is not encouraged. – Thread Scheduling
Policy ,High Priority & Low Priority Threads

Remark :

Atomic operations are a fast and relatively easy alternative
to mutexes. They do not suffer from the deadlock.

Multi-Core Processors & ARM Processors An Overview 75 C-DAC hyPACK-2013

Synchronizing Primitives in Pthreads

Common Synchronization Mechanism

 Read/Write exclusion

 Thread safe data structures

 Condition variable functions

 Semaphores

Mutex Variables

 To protect a shared resource from a race condition, we use a type
of synchronization called mutex exclusion, or mutex fort short

 Critical section : Provide access to the code paths or routines that
access data -

 How large does a critical section have to be to require protection
through a mutex ?

 Pthread library operations such as mutex locks and unlocks work
properly regardless of the platform you are using and the number of
CPUs in the system.

Multi-Core Processors & ARM Processors An Overview 76 C-DAC hyPACK-2013

 Mutual Exclusion for Shared Variables

 Implementation of critical sections and atomic operations
using mutex-locks (mutual exclusion locks)

 Mutex locks have two states (locked and unlocked) Use
functions pthread_mutex_lock &
pthread_mutex_unlock function)

 A function to initialize a mutex-lock to its unlocked state -
pthread_mutex_init function)

 Synchronization Primitives in Pthreads

Multi-Core Processors & ARM Processors An Overview 77 C-DAC hyPACK-2013

 Controlling Thread Attributes and Synchronization

Attribute Objects for Threads

Attribute Objects for Mutexes

 Thread Cancellation

Clean-up functions are invoked for reclaiming the
thread data structures

Synchronization Primitives in Pthreads

 Composite synchronization Primitives

Read-Write Locks (Data Structure is read frequently
but written infrequently.

 Issues of Multiple reads /Serial writes

 Issues of Read Locks; read-write locks etc…

Multi-Core Processors & ARM Processors An Overview 78 C-DAC hyPACK-2013

 Barriers

A barrier call is used to hold a thread until all other
threads participating in the barrier have reached the
barrier

Barriers can be implemented using a counter, a
mutex, and a condition variable.

 A single integer is used to keep track of the number
rof threads that have reached the Barrier

 Remark :

Barrier implementation using mutexes may suffer
from the overhead of busy-wait.

Synchronization Primitives in Pthreads

Multi-Core Processors & ARM Processors An Overview 79 C-DAC hyPACK-2013

 Mutual Exclusion for Shared Variables

Thread APIs provide support for implementing
critical sections and atomic operations using mutex-
locks (mutual exclusion locks)

 Condition Variables for Synchronization

When thread performs a condition wait, it takes itself
off the runnable list – Does not use any CPU cycle

Synchronization Primitives in Pthreads

Remark :

Mutex Lock consumes CPU cycles as it polls for
the lock

 Condition wait consumes CPU cycles when it is
woken up

Multi-Core Processors & ARM Processors An Overview 80 C-DAC hyPACK-2013

 Barrier : A barrier call is used to hold a thread until all

other threads participating in the barrier have reached the

barrier.

 Barrier can be implemented using a counter, a

mutex, and a condition variable.

 Overheads will vary for large number of threads.

 Performance of programs depends upon the

application characteristics such as the number of
threads & the number of condition variable

mutexes pairs for implementation of a barrier for n

threads.

Composite Synchronization Constructs

Multi-Core Processors & ARM Processors An Overview 81 C-DAC hyPACK-2013

 The higher level synchronization constructs can be built

using basic constructs.

 Read-Write Constructs

 A data structure is read frequently but written

infrequently.

 Multiple reads can proceed without any coherence

problems. Write must be serialized.

 A structure can be defined as read-write lock

Composite Synchronization Constructs

Example 1 : Using read-write locks for computing the

minimum of a list of integers

Example 2 : Using read-write locks for implementing hash

tables. Source : Reference : [4]

Multi-Core Processors & ARM Processors An Overview 82 C-DAC hyPACK-2013

 Read-Write Struct

 typedef struct {

 int readers;

 int writer;

 pthread_conf_t readers_proceed;

 pthread_cond_t writer_proceed;

 int pending_writers;

 pthread_muex_t read_write_lock;

 } mylib_rwlock_t;

Composite Synchronization Constructs

Source : Reference : [4]

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 83 C-DAC hyPACK-2013

 Read-Write Constructs

 Offer advantages over normal locks

 For frequent reads /Writes, overhead is less

 Using normal mutexes for writes is advantages when

there are a significant number of read operations

 For performance of database applications (hash tables) on
Multi Cores, the mutex lock version of the progam hashes

key into the table requires suitable modification.

Composite Synchronization Constructs

Source : Reference : [4]

Multi-Core Processors & ARM Processors An Overview 84 C-DAC hyPACK-2013

Performance depends on input workload :

 Increasing clients and contention

• Number of clients vs Ratio of Time to Completion

 Performance depends on a good locking strategy

• No locks at all;One lock for the entire data base;
One lock for each account in the data base

 Performance depends on the type of work threads do

• Percentage of Thread I/O vs CPU and Ratio of
Time to Completion

Pthreads:Performance issues-Synchronization Overhead

Multi-Core Processors & ARM Processors An Overview 85 C-DAC hyPACK-2013

How do your threads spend their time ?

 Profiling a program is a good step toward
identifying its performance bottlenecks (CPU
Utilization, waiting for locks and I/O completion

 Do the threads spend most of their time blocked,
waiting for their threads to release locks ?

 Are they runnable for most of their time but not
actually running because other threads are
monopolizing the available CPUs ?

 Are they spending most of their time waiting on the
completion of I/O requests ?

Pthreads:Performance issues-Synchronization Overhead

Multi-Core Processors & ARM Processors An Overview 86 C-DAC hyPACK-2013

 Initialize Attributes (pthread_attr_init)

 Default attributes OK

 Put thread in system-wide scheduling contention
 pthread_attr_setscope(&attrs,

PTHREAD_SCOPE_SYSTEM);

 Spawn thread (pthread_create)

 Creates a thread identifier

 Need attribute structure for thread

 Needs a function where thread starts

 One 32-bit parameter can be passed (void *)

Spawning Threads

Source : Reference : [4],[6], [29]

Multi-Core Processors & ARM Processors An Overview 87 C-DAC hyPACK-2013

 How does a thread know which thread it is? Does it

matter?

 Yes, it matters if threads are to work together

 Could pass some identifier in through parameter

 Could contend for a shared counter in a critical section

 pthread_self()returns the thread ID, but doesn’t help.

 How big is a thread’s stack?

 By default, not very big. (What are the ramifications?)

 pthread_attr_setstacksize()changes stack size

Thread Spawning Issues

Multi-Core Processors & ARM Processors An Overview 88 C-DAC hyPACK-2013

 Main thread must join with child threads
(pthread_join)

 Why?

 Ans: So it knows when they are done.

 pthread_join can pass back a 32-bit value

 Can be used as a pointer to pass back a result

 What kind of variable can be passed back that way? Local?

Static? Global? Heap?

Join Issues

Multi-Core Processors & ARM Processors An Overview 89 C-DAC hyPACK-2013

Thread Pitfalls

 Shared data

 2 threads perform

 A = A + 1

Thread 1:

1) Load A into R1

2) Add 1 to R1

3) Store R1 to A

Thread 1:

1) Load A into R1

2) Add 1 to R1

3) Store R1 to A

 Mutual exclusion preserves

correctness

Locks/mutexes

Semaphores

Monitors

Java “synchronized”

 False sharing

 Non-shared data packed

into same cache line

int thread1data;

int thread1data;

 Cache line ping-pongs

between CPUs when

threads access their data

 Locks for heap access

 malloc() is expensive

because of mutual

exclusion

 Use private

Multi-Core Processors & ARM Processors An Overview 90 C-DAC hyPACK-2013

 What is a Data Race?

A data-race occurs under the following conditions:

 Two or more threads concurrently accessing the

same memory location.

 At least one of the threads is accessing the memory

 Location for writing

 The threads are not using any exclusive locks to

control their accesses to that memory.

For more details refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 91 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

 Un-synchronized access to shared memory can

introduce Race conditions
 Results depends on relative timings of two or more threads

 Solaris, Posix Multi-threaded Programming

 Example :
 Two threads trying to add to a shared variable x, which have

an initial value of 0.

 Depending on upon the relative speeds of the threads, the final

value of x can be 1, 2, or 3.

 Parallel Programming would be lot of easier

 Multi-threaded Compiler & Tools may give clue to

programmer

Source : Reference [6]

Multi-Core Processors & ARM Processors An Overview 92 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

 The interactions of Memory, Cache, and Pipeline should

be examined carefully.

 Thread Private

 Thread shared read only

 Exclusive Access

 Read and Write by Unsynchronized threads

Multi-Core Processors & ARM Processors An Overview 93 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

Original Code Thread 1

 T = x

 Thread 2

 u = x

 x = u +2

Interleaving #1

(x is 0)

 t = x

 x= t + 1

(x is 1)

 u = x

 x = u +2

 (x is 2)

Deadlock conditions

1.A thread is allowed

to whole one

resource while

requesting another

2.No thread is willing

to relinquish a

resource that is

has acquired

3.Access to each

resource is

exclusive

Deadlock is caused by Cycle of operations

Multi-Core Processors & ARM Processors An Overview 94 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

Interleaving #2

t = x

 x= t + 1

(x is 1)

 (x is 0)

 u = x

 x = u +2

 (x is 2)

Interleaving #3

(x is 0)

 t = x

 x= t + 1

(x is 1)

 u = x

 x = u +2

 (x is 3)

Thread 1 Thread 2

Deadlock Conditions

4.There is a cycle of

threads trying to

acquire resources,

where each

resource is held by

one thread and

requested by

another

Deadlock Conditions

can be avoided by

breaking any one of

the conditions

Multi-Core Processors & ARM Processors An Overview 95 C-DAC hyPACK-2013

 Locks : Locks are similar to semaphores except that a single thread

handles lock at one instance. Two basic atomic operations get

performed on a lock are acquire() & release ().

Mutexes : The mutex is the simplest lock an implementation can use.

 Recursive Locks : Recursive locks are locks that may be

repeatedly acquired by the thread that currently owns the lock withut

causing the thread to deadlock.

 Read-Write Locks : Read-Write locks are also called shared-

exclusive or multiple-read/single-write locks or non-mutual exclusion

semaphores. Read-Write locks allow simultaneous read access to

multiple threads but limit the write access to only one thread.

 Spin Locks : Spin locks are non-blocking locks owned by a thread.

Spin locks are used mostly on multiprocessors .

Data Races, Deadlocks & Live Locks

Source : Reference [4],[6]

Multi-Core Processors & ARM Processors An Overview 96 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Thread-safe Functions and Libraries

Cache Related Issues

Cache Line (Estimate the cache line size of the Multi core Systems

(Remark : Dual Core Processors share L1 Cache)

False Sharing (The data can be pushed into different cache lines,

thereby pushing reduce the false sharing overhead.)

Performance Impact may vary from problem to problem. (Cache

friendly programs such as Dense Matrix Computations & Producer

–Consumer using condition variables, mutexes – have different flow

of computation and synchronization.)

Use of Scheduling techniques as a means of synchronization may

give rise to Memory in-consistency when two threads share the data

Multi-Core Processors & ARM Processors An Overview 97 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Core #0

Cache line
Core #1

1 0

x[0]++

. . .

. . .

Thread-safe Functions and Libraries

1 1

x[1]++

. . .

. . .

x[1]++

1 0

1 0

Cache Related Issues

 Cache Line

False Sharing

Memory consistency

Performance Impact

Correctness of the Results

Source : Reference [4],[6]

Multi-Core Processors & ARM Processors An Overview 98 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Thread-safe Functions and Libraries

Remark : Multiple threads manipulates a single piece of data

Multiple threads manipulate different parts of large data structure,

the programmer should explore ways of breaking it into smaller data

structures and making them private to the thread manipulating them

Making memory consistency across the threads is an important

and it is for hardware efficiency.

Multi-Core Processors & ARM Processors An Overview 99 C-DAC hyPACK-2013

Microsoft Windows using C /C++ languages

 Win 32 / Microsoft Foundation Class Library (MFC)

wrapped Windows API functionality in C++ classes

 Provides Developers with C/C++ interface for
developing windows applications

 Performance Issues – Concept of Virtual Machine
op-codes & Overhead Minimization

 Performance Issues – run in a Managed runtime
environment

 Legacy Application Support

Threading APIs for Windows

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 100 C-DAC hyPACK-2013

Microsoft Windows using C /C++ languages

 Creating Threads

 CreateThread();

 Terminate the Thread

 ExitThread();

 Managing Threads

 Thread Communication using Windows events

 Thread Synchronization

 Thread Atomic Operations

 Thread Pools; Thread Priority & Thread Affinity

Threading APIs for Windows

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 101 C-DAC hyPACK-2013

Threading APIs for Microsoft .NET Framework

Threading APIs for Microsoft .NET Framework

 Provide common execution environment for all the
major languages : C++ & Visual Basic; C#

 ThreadStart() – Constructs a new thread

 Microsoft .NET framework Class Library – provides
examples of the APIs

 Managing Threads

 Thread Synchronization

 Thread Atomic Operations

 Thread Pools; Thread Affinity

 Thread Priority - .Net framework supports five
levels thread priority

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 102 C-DAC hyPACK-2013

Part-V :
An Overview of Multi-Core Processors

POSIX-Threads (Case Study)

Multi-Core Processors & ARM Processors An Overview 103 C-DAC hyPACK-2013

Example: To perform Vector-Vector Multiplication.
Sequential Code:

In main().... :

// declarations and do memory allocations for vectors
// Fill both vectors
 vec_vec_mult(vecA,vecB); // call vector multiplication function

Function Definition :
void vec_vec_mult(int *vecA,int *vecB)
{
 int sum=0,i;
 for(i=0;i < VecSize; i++)
 sum += va[i] * vb[i];

 printf("\n Result of Vector Multiplication = %d",sum);
}

Multi-threaded Processing : Pthreads Prog.

Multi-Core Processors & ARM Processors An Overview 104 C-DAC hyPACK-2013

In main().... :
 // declarations and do memory allocations
 // Fill both vectors
 dist = VecSize / NumThreads; // Divide vectors here
 for (counter = 0; counter < NumThreads; counter++) // Call thread function
 pthread_create(&threads[counter], &pta, (void *(*) (void *)) doMyWork, (void *)
(counter + 1));

Thread Function Definition :
 void * doMyWork(int myId)
 {
int counter, mySum = 0;
 /*calculating local sum by each thread */
for (counter = ((myId - 1) * dist); counter <= ((myId * dist) - 1); counter++)
 mySum += VecA[counter] * VecB[counter];

 /*updating global sum using mutex lock */
 pthread_mutex_lock(&mutex_sum);
 finalsum += mySum;
 pthread_mutex_unlock(&mutex_sum);
 }

Multi-threaded Processing : Pthreads Prog.
Pthread Code:

Multi-Core Processors & ARM Processors An Overview 105 C-DAC hyPACK-2013

Example: Finding the Minimum Value in the Integer List.

Sequential Code:

In main().... :

list = (int *) malloc (sizeof(int) *numElements); // memory allocation
// Here fill list with random numbers
min = findmin(list,numElements); // call function to find min val

Function Definition :
int findmin(int *list,int numElements)
{
 minval = list[0];
 for(counter = 0 ; counter < numElements ; counter++)
 {
 if(list[counter<minval]) {
 minval = list[counter]; }
 } return minval;
 }

Multi-threaded Processing : Pthreads Prog.

Multi-Core Processors & ARM Processors An Overview 106 C-DAC hyPACK-2013

Example: Finding the Minimum Value in the Integer List.
Sequential Code:
In main().... :

list = (int *) malloc (sizeof(int) *numElements); // memory allocation
// Here, fill list with random numbers
min = findmin(list,numElements); // call function to find min val

Function Definition :
int findmin(int *list,int numElements)
{
 minval = list[0];
 for(counter = 0 ; counter < numElements ; counter++)
 {
 if(list[counter<minval]) {
 minval = list[counter]; }

 } return minval;
 }

Multi-threaded Processing : Pthreads Prog.

Multi-Core Processors & ARM Processors An Overview 107 C-DAC hyPACK-2013

 Example: Finding the Minimum Value in the Integer List.
 Pthread Code :
 In main().... :
 partial_list_size = NumElements / NumThreads; // Here divide list

 list = (long int *)malloc(sizeof(long int) * NumElements); // memory allocation
 minimum_value = list[0];
 for(counter = 0 ; counter < NumThreads ; counter++) // Call thread function
 {
 pthread_create(&threads[counter],&pta,(void *(*) (void *)) find_min,(void *) (counter+1));
 }

 Thread Function Definition :
 void *find_min(void * myid)
 {
 int myId = (int)myid;
 my_min = list[(myId-1)*partial_list_size];
for (counter = ((myId - 1) * partial_list_size); counter <=((myId * partial_list_size) -1);counter++) {
 if (list[counter] < my_min) my_min = list[counter];
 }
 pthread_mutex_lock(&minimum_value_lock) ;
 if (my_min < minimum_value)
 minimum_value = my_min;
 pthread_mutex_unlock(&minimum_value_lock) ; }

Multi-threaded Processing : Pthreads Prog.

Multi-Core Processors & ARM Processors An Overview 108 C-DAC hyPACK-2013

Example: Finding the Minimum Value in the Integer List.

Explanation :

Here we divide list depending upon number of threads

 partial_list_size = NumElements / NumThreads;

Each thread will find minimum value in its own part of list (say from 0-7 or
8-15) and using mutex lock assigns its calculated value to final
minimum value.(see last if loop carefully)

Multi-threaded Processing : Pthreads Prog.

Multi-Core Processors & ARM Processors An Overview 109 C-DAC hyPACK-2013

1. Assign fixed number of points to each thread.

2. Each thread generates random points and keeps track of

the number of points that land in circle locality.

3. After all threads finish execution, their counts are combined

to compute the value of π

º

º
º

º
º

º
º

Pthreads Prog. : Example : Value

Performance Issues

 False Sharing of data items (Two adjoining data items

(which likely reside on the same cache line) are being

continually written to by threads that might be scheduled
on different cores.

 Estimate the cache line size of the cores and use higher

dimensional arrays that are proportional to number of

cores which share the cache line.

Multi-Core Processors & ARM Processors An Overview 110 C-DAC hyPACK-2013

THREAD 1 :

Increment (x)

{

x= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address)

THREAD 1 :

Increment (x)

{

x= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address

Example:Two threads on 2 cores are both trying to increment

a variable x at the same time (Assume x is initially 0)

 Synchronization Primitives in Pthreads

Use Threaded APIs mutex-locks (Mutual exclusion locks)

to avoid Race Conditions
Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 111 C-DAC hyPACK-2013

 Example : Computing the minimum entry in a list of
integers

 The list is partitioned equally among the threads

 The size of each thread’s partition is stored in the
variable

 Performance for large number of threads is not scalable
(At any point of time, only one thread can hold a lock, only
one thread can test updates the variable.)

 Synchronization Primitives in Pthreads

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 112 C-DAC hyPACK-2013

Synchronization Primitives in Pthreads

:Alleviating Locking Overheads

 Example : Finding k-matches in a list

Finding k matches to a query item in a given list.

(The list is partitioned equally among the threads.
Assume that the list has n entries, each of p

threads is responsible for searching n/p entries of

the list.

 Implement using pthread_mutex_lock.

Reduce the idling overhead associated with locks
using pthread_mutex_trylock. (Reduce the

Locking overhead can be alleviated)

Source : Reference [4]

Multi-Core Processors & ARM Processors An Overview 113 C-DAC hyPACK-2013

Producer/Consumer Problem : Synchronizing Issues

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 114 C-DAC hyPACK-2013

Semaphore s

void producer() {

 while (1) {

 <produce the nest data>

 s->release()

 }

}

void consumer () {

 while (1) {

 s->wait()

 <Consume the next data>

 }

}

Remarks : Neither producer nor consumer maintains an order. Synchronization

problem exists. Buffer Size needs to be within a boundary to handle.

Producer/Consumer Problem : Psuedo code

Producer & Consumer : (1). Using Semaphores; (2) Critical Directives

(Mutexes – Locks); (3). Condition Variables

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 115 C-DAC hyPACK-2013

Semaphore sEmpty, sFull

void producer() {

 while (1) {

 sEmpty->wait ()

 <produce the nest data >

 sFull->release()

 }

}

void consumer () {

 while (1) {

 sFull->release ()

 <Consume the next data>

 sEmpty->wait ()

 }

}

Producer/Consumer Problem : Dual Semaphores Solution

Remarks : Two independent Semaphores are used to maintain the boundary of
buffer. sEmpty, and sFull retain the constraints of buffer capacity for operating

threads.
Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 116 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

 There is concurrent access to the task-queue, these

accesses must be serialized using critical blocks.

 The tasks of inserting and extracting from the task-

queue must be serialized.

 Define your own “insert_into_queue” and

“extract_from_queue” from queue (Note that queue full

& queue empty conditions must be explicitly handled)

Multi-Core Processors & ARM Processors An Overview 117 C-DAC hyPACK-2013

 Critical Section directive is a direct application of the

corresponding mutex function in Pthreads

 Reduce the size of the critical section in Pthreads/OpenMP

to get better performance (Remember that critical section

represents serialization points in the program)

 Critical section consists simply of an update to a single

memory location.

 Safeguard : Define Structured Block I.e. no jumps are

permitted into or out of the block. This leads to the threads

wait indefinitely.

Producer & Consumer : Critical Directive

Multi-Core Processors & ARM Processors An Overview 118 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Possibilities & Implementation Issues on Multi cores

 The producer thread must not overwrite the shared

buffer when the previous task has not been picked up

by a consumer thread

 The consumer threads must not pick-up tasks until

there is something present in the shared data

structure.

 Individual consumer threads should pick-up tasks

one at a time.
 Implementation can be done using variable called

task_variable which handles the wait condition of

consumer & producer.

Multi-Core Processors & ARM Processors An Overview 119 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Implementation & Performance Issues on Multi cores

 If task_variable = 0

• Consumer threads wait but the producer thread

can insert tasks into the shared data structure.

 If task_variable = 1

• Producer threads wait to insert the task into the

shared data structure but one of the Consumer

threads can pick up the task available.

All these operations on the variable task_variable

should be protected by mutex-locks to ensure that only
one thread is executing test-update on it.

Source : Reference [4],[6], [7]

Multi-Core Processors & ARM Processors An Overview 120 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Performance Issues on Multi cores

Consumer thread waits for a task to become available

and executes when it is available.

Locks represent sterilization points since critical

sections must be executed by one after the other.

Handle Shared Data Structures and Critical sections to

reduce the idling overhead.

 Alleviating Locking Overheads

To reduce the idling overhead associated with
locks using pthread_mutex_trylock.

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 121 C-DAC hyPACK-2013

 A Condition Variable is a data object used for

synchronization threads. This variable allows a thread to

block itself until specified data reaches a predefined state.

 A condition variable always has a mutex associated with it.

 Use functions pthread_cond_init for initializing and

pthread_cond_destroy for destroying condition

variables.

 The concept of polling for lock as it consumes CPU cycles

can be reduced. Use of condition variables may not use

any CPU cycles until it is woken up.

Producer & Consumer :

 Condition Variable for Synchronization

Multi-Core Processors & ARM Processors An Overview 122 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

One decomposition of work using Multi-threads

It consists of

 A thread Monitoring a network port for arriving data,

 A decompressor thread for decompressing packets

 Generating frames in a video sequence

 A rendering thread that displays frame at

programmed intervals

Programming Aspects Examples

Source : Reference : [4]

Multi-Core Processors & ARM Processors An Overview 123 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 The thread must communicate via shared buffers –

• an in-buffer between the network and decompressor,

• an out-buffer between the decompressor and renderer

 It consists of

 Listen to port ……..Gather data from the network

Thread generates frames with random bytes (Random

string of specific bytes)

Render threads pick-up frames & from the out-buffer

and calls the display function

 Implement using the Thread Condition Variables

Programming Aspects Examples

Multi-Core Processors & ARM Processors An Overview 124 C-DAC hyPACK-2013

 Pthreads programs to illustrate read write API library calls :

Programs that illustrate the use of Read-Write Lock using

different read-write lock APIs are described.Sample demo

code that gives basic idea of how to use Read-Write Lock

and one sample application using both mutex and Read-

Write Lock is described so that one can get better idea of

what is exact difference between these synchronization

constructs and how to use them.

Programming Examples

Multi-Core Processors & ARM Processors An Overview 125 C-DAC hyPACK-2013

 Pthreads programs to illustrate producer consumer

program for large no. of threads

 Programs that illustrate the application of Pthreads to

producer / consumer problem with large number of

producers and consumers. It illustrates the usage of

Pthreads for large no. of threads reading and writing to

vectors implemented in 'indexed-access' (or array

implementation) and 'sequential-access' (or linked list

implementation). It also shows how the problem can be

solved using the Mutex objects and condition-variable

objects of Pthreads. It also illustrates 'thread-affinity'

setting, to bind threads to particular number of cores. For

different thread-affinity masks, the performance can be

observed.

Programming Aspects Examples

Multi-Core Processors & ARM Processors An Overview 126 C-DAC hyPACK-2013

Threads - Common Errors /Solutions : Prog. Paradigms

Key Points

 Set up all the requirements for a thread before actually creating the

thread. This includes initializing the data, setting thread attributes,

thread priorities, mutex, attributes, etc…

 Buffer management is required in applications such as producer

and consumer problems.

 Define synchronizations and data replication wherever it is possible

and address stack variables,

 Avoid Race Conditions in designing algorithms and implementation

 Extreme caution is required to avoid parallel overheads associated

with synchronization

 Design of asynchronous Programs and use of scheduling

techniques require attention.

Multi-Core Processors & ARM Processors An Overview 127 C-DAC hyPACK-2013

Key Points

 Match the number of runnable software threads to the available

hardware threads

 Synchronization : In correct Answers ; Performance Issues

 Keeps Locks private

 Avoid dead-locks by acquiring locks in a consistent order

 Memory Bandwidth & contention Issues

 Lock contention (Using Multiple distributed locks)

 Design Lockless Algorithms – Advantages & dis-advantages

 Cache lines are – Hardware threads

 Writing synchronized code – Memory Consistency

Threads - Common Errors /Solutions : Prog. Paradigms

Multi-Core Processors & ARM Processors An Overview 128 C-DAC hyPACK-2013

Part-V :
Java Threading

Multi-Core Processors & ARM Processors An Overview 129 C-DAC hyPACK-2013

 Threading and synchronization built in

 An object can have associated thread

 Subclass Thread or Implement Runnable

 “run”method is thread body

 “synchronized”methods provide mutual exclusion

 Main program

 Calls “start”method of Thread objects to spawn

 Calls “join”to wait for completion

Java Threads

Multi-Core Processors & ARM Processors An Overview 130 C-DAC hyPACK-2013

 The Concurrency Utilities packages provide a powerful, extensible

framework of high-performance threading utilities such as thread

pools and blocking queues.

 Concurrency packages provide low-level primitives for advanced

concurrent programming.

 Concurrency packages provide utilities for concurrent

programming, like Collections Framework for data structures.

Java concurrency Packages

Multi-Core Processors & ARM Processors An Overview 131 C-DAC hyPACK-2013

 java.util.concurrent: This package includes a few small

standardized extensible frameworks, as well as some classes that

provide useful functionality.

 java.util.concurrent.locks: Interfaces and classes providing a

framework for locking and waiting for conditions that is distinct from

built-in synchronization and monitors. The framework permits much

greater flexibility in the use of locks and conditions.

 java.util.concurrent.atomic: A small toolkit of classes that support

lock-free thread-safe programming on single variables.

Java concurrency package & subpackages

Multi-Core Processors & ARM Processors An Overview 132 C-DAC hyPACK-2013

java.util.concurrent package provides:

 Executors:

Executors is a simple standardized interface for defining

custom thread-like subsystems, including thread pools,

asynchronous IO, and lightweight task frameworks. It

manages queuing and scheduling of tasks, and allows

controlled subsystem shutdown.

 Queues:

The java.util.concurrent classes supplies an efficient scalable

thread-safe non-blocking FIFO queue. Five implementations in

java.util.concurrent blocking versions of put and take operation.

 java.util.concurrent package

Multi-Core Processors & ARM Processors An Overview 133 C-DAC hyPACK-2013

java.util.concurrent package provides:

 Synchronizers

 Semaphore is a classic concurrency

tool. CountDownLatch is a very simple yet very common

utility for blocking until a given number of signals, events,

or conditions hold. A CyclicBarrier is a resettable

multiway synchronization point useful in some styles of

parallel programming.

 An Exchanger allows two threads to exchange objects at

a rendezvous point, and is useful in several pipeline

designs.

java.util.concurrent package

Multi-Core Processors & ARM Processors An Overview 134 C-DAC hyPACK-2013

java.util.concurrent package provides:

 Concurrent Collections

 For many threads are expected to access a given

collection, A ConcurrentHashMap ,

ConcurrentSkipListMap and CopyOnWriteArrayList is

normally preferable to a synchronized HashMap,

synchronized TreeMap and synchronized ArrayList when

the expected number of reads and traversals greatly

outnumber the number of updates to a list.

java.util.concurrent package

Multi-Core Processors & ARM Processors An Overview 135 C-DAC hyPACK-2013

java.util.concurrent.locks package provides:

 A ReentrantLock reentrant mutual exclusion Lock with the

same basic behavior and semantics as the implicit monitor

lock accessed using synchronized methods and

statements, but with extended capabilities.

 The ReadWriteLock interface similarly defines locks that

may be shared among readers but are exclusive to

writers.

 The Condition interface describes condition variables that

may be associated with Locks. These are similar in usage

to the implicit monitors accessed using Object.wait, but

offer extended capabilities.

java.util.concurrent.locks package

Multi-Core Processors & ARM Processors An Overview 136 C-DAC hyPACK-2013

java.util.concurrent.atomic package provides:

 Atomic classes are designed primarily as building

blocks for implementing non-blocking data structures

and related infrastructure classes.

 AtomicBoolean, AtomicInteger, AtomicLong, and

AtomicReference classes provide access and updates

to a single variable of the corresponding type.

java.util.concurrent.atomic package

Multi-Core Processors & ARM Processors An Overview 137 C-DAC hyPACK-2013

Part-VI:
An Overview of Multi-Core Processors

OpenMP

Multi-Core Processors & ARM Processors An Overview 138 C-DAC hyPACK-2013

 Threads based parallelization

 Open MP is based on the existence of multiple threads in the

shared memory programming paradigm

 Explicit parallelization

 It is an explicit programming model, and offers full control

over parallelization to the programmer

 Compiler directive based

 All of OpenMP parallelization is supported through the use of

compiler directives

 Nested parallelism support

 The API support placement of parallel construct inside other

parallel construct

OpenMP: Programming Model

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors & ARM Processors An Overview 139 C-DAC hyPACK-2013

OpenMP is usually used to parallelize loops:

Find your most time consuming

loops.

Split them up between threads.

void main()

{

 double Res[1000];

 for(int i=0;i<1000;i++) {

do_huge_comp(Res[i]);

 }

}

#include “omp.h”

void main()

{

 double Res[1000];

#pragma omp parallel for

 for(int i=0;i<1000;i++) {

do_huge_comp(Res[i]);

 }

}

Split-up this loop between

multiple threads

Parallel Program Sequential Program

OpenMP : Work-sharing construct 'for'

Fork

Join

do/for loop

master

master

team

Multi-Core Processors & ARM Processors An Overview 140 C-DAC hyPACK-2013

 OpenMP is usually used to parallelize loops:

 Find your most time consuming loops.

 Split them up between threads.

void main()

{

 double Res[1000];

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

#include “omp.h”

void main()

{

 double Res[1000];

#pragma omp parallel for

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

Split-up this loop between

multiple threads

Parallel Program Sequential Program

OpenMP : How is OpenMP typically used? (C/C++)

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 141 C-DAC hyPACK-2013

 Fork - Join parallelism

 OpenMP uses fork and join model for parallel

execution

 OpenMP programs begin with single process:

master thread.

 FORK : Master thread creates a team of parallel

threads

 JOIN: When the team threads complete the

statements in parallel region, they synchronize

and terminate leaving master thread.

 Parallelism is added incrementally

OpenMP: Programming Model

processor processor processor processor

Memory

 Processes synchronize and

communicate with each other

through shared variables

 Supports incremental

parallelization.

 Shared Memory Model

Multi-Core Processors & ARM Processors An Overview 142 C-DAC hyPACK-2013

 Dynamic threads

 The API provides dynamic altering of number of threads (Depends on

the implementation)

OpenMP: Programming Model

How do threads interact?

 OpenMP is shared memory model.

 Threads communicate by sharing variables

 Unintended sharing of data can lead to race conditions:

 Race condition : when the program’s outcome changes as the threads

are scheduled differently

 To control race conditions: Use synchronization to protect data conflicts

Multi-Core Processors & ARM Processors An Overview 143 C-DAC hyPACK-2013

for directive identifies the iterative work-sharing construct.

#pragma omp for [clause[[,]clause]…] new-line

for-loop

Clause is one of the following:

 private(variable list)

 firstprivate (variable list)

 lastprivate (variable list)

 reduction (variable list)

 ordered , nowait

OpenMP : Work-sharing Construct

for directive

For more details on refer OpenMP on HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 144 C-DAC hyPACK-2013

Suppose we run each of these two loops in parallel over i:

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

This may give us a wrong answer ?

 Synchronization construct: Barrier

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 145 C-DAC hyPACK-2013

We need to have updated all of a[] first, before using a[]

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

All threads wait at the barrier point and only continue
 when all threads have reached the barrier point

 Synchronization construct : Barrier

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 146 C-DAC hyPACK-2013

Runtime Library Routines

 Lock Routines

 Timing Routines

 Data Environment

 Data-Sharing Attribute Clauses

 Data Copying Clauses

Conditional compilation

OpenMP 3.0 Features

For more details on programs, refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 147 C-DAC hyPACK-2013

 The internal control variables (ICVs) control the behavior of

an OpenMP program. These ICVs store information such as

the number of threads to use for future parallel regions, the

schedule to use for work sharing loops and whether nested

parallelism is enabled or not. Programs on how ICVs affect

the operation of parallel regions are illustrated in OpenMP

3.0

OpenMP 3.0 Features

Multi-Core Processors & ARM Processors An Overview 148 C-DAC hyPACK-2013

 OpenMP 3.X important features on Task Scheduling,

parallel construct, work-sharing construct, combined

parallel work-sharing Constructs, and

Synchronization constructs are discussed. Example

programs on number of threads for a parallel region,

schedule of a work-sharing loop are provided.

OpenMP 3.0 Features

Multi-Core Processors & ARM Processors An Overview 149 C-DAC hyPACK-2013

 An overview of several clauses for controlling the data

environment during the execution of parallel clause,

task work-sharing regions is discussed.

 Programs based on OpenMPI API runtime library

routines runtime library definitions, Execution

environment routines, Lock routines and portable

timer routine are supported in the Hands-on Session.

OpenMP 3.0 Features

Multi-Core Processors & ARM Processors An Overview 150 C-DAC hyPACK-2013

Internal Contorl Variables (ICVs)

 Parallel Constructs

Worsharing Constructs

Combined Parallel Work sharing Constructs

Task Construct

Task Scheduling

 Master and Synchronization Constructs

OpenMP 3.0 Features

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 151 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 OpenMP provides a layer on top of naïve threads to

facilities a variety of thread-related tasks.

 Using Directives provided by OpenMP, a programmer is

get rid of the task of initializing attribute objects, setting up

arguments to threads, partitioning iteration spaces etc….

(This may be useful when the underlying problem has a

static and /or regular task graph.)

 The overheads associated with automated generation of

threaded code from directives have been shown to be

minimal in the context of a variety of applications.

Multi-Core Processors & ARM Processors An Overview 152 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 An Artifact of Explicit threading is that data exchange is

more apparent. This helps in alleviating some of the

overheads from data movement, false sharing, and

contention.

 Explicit threading also provides a richer API in the form of

condition waits.

 Locks of different types, and increased flexibility for building

composite synchronization operations

Multi-Core Processors & ARM Processors An Overview 153 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 Compiler support on Multi-Cores play an important role

 Issues related to OpenMP performance on Multi cores

need to be addressed.

 Inter-operability of OpenMP/Pthreads on Multi-Cores

require attention -from performance point of view

 Performance evaluation and use of tools and Mathematical

libraries play an important role.

Source : Reference [4]

Multi-Core Processors & ARM Processors An Overview 154 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 An Artifact of Explicit threading is that data exchange is

more apparent. This helps in alleviating some of the

overheads from data movement, false sharing, and

contention.

 Explicit threading also provides a richer API in the form of

condition waits.

 Locks of different types, and increased flexibility for building

composite synchronization operations

Multi-Core Processors & ARM Processors An Overview 155 C-DAC hyPACK-2013

Part-VII:
An Overview of Multi-Core Processors

Intel Threading Building Blocks (TBB)

Multi-Core Processors & ARM Processors An Overview 156 C-DAC hyPACK-2013

Overview

 TBB enables developer to specify tasks instead of threads

 TBB targets threading for performance on Multi-cores

 TBB Compatible with other threading packages

 TBB emphasizes scalable, data-parallel programming

 Link libraries such as Intel's Math Kernel Library (MKL) and

Integrated Performance Primitives (IPP) library are

implemented internally using OpenMP.

 You can freely link a program using Threading Building

Blocks with the Intel MKL or Intel IPP library

Threading Building Blocks – Overview

Multi-Core Processors & ARM Processors An Overview 157 C-DAC hyPACK-2013

Features

 Provides rich set of templates

 Templates and C++ concept of generic

programming (C++ Standard Template Library

(STL)

 Doe not require special language or compilers

 Ability to use Threading Building Blocks – any

processor with any C++ Complier

 Promote Scalable Data Parallelism

Threading Building Blocks – Overview

Multi-Core Processors & ARM Processors An Overview 158 C-DAC hyPACK-2013

 Initializing and Terminating the Library

 Loop Paralleization

 Parallel_for, Parallel_reduce, Parallel_scan

(Grain size, Interval, Workload for iteration, Time

Taken)

 Automatic Grain Size (Not easy) – Performance

Issues

 Recursive Range Specifications (block_range),

Partitioning

TBB templates

Multi-Core Processors & ARM Processors An Overview 159 C-DAC hyPACK-2013

 parallel_while

 Use of an unstructured stream or pile of work.

Offers the ability to add additional work to the file

running

 pipeline (Throughput of pipeline)

 Parallel_sort

 Algorithm complexity

 Parallel algorithms for Streams

TBB templates- Advanced Algorithms

Multi-Core Processors & ARM Processors An Overview 160 C-DAC hyPACK-2013

 Static Load Balancing

Mapping for load balancing

Minimizing Interaction

 Data Sharing Overheads

 Dynamic Load Balancing

Overheads in parallel algorithms design

 Application Perspective - Parallel

Algorithms Design -TBB

How TBB can hide several task Scheduling events ?

Multi-Core Processors & ARM Processors An Overview 161 C-DAC hyPACK-2013

 Containers

 TBB provides highly concurrent containers that permit

multiple threads to invoke a method simultaneously on the

same container.

• Concurrent queue, vector, and hash map are provided.

 These can be used with the library, OpenMP, or raw threads

 Remark : Highly concurrent containers are very important because

STL containers generally are not concurrent friendly.

 TBB provides Fine-grain locking and Lock free algorithm

 Algorithm complexity

 Parallel algorithms for Streams

TBB templates- Advanced Algorithms

Multi-Core Processors & ARM Processors An Overview 162 C-DAC hyPACK-2013

 Problems in Memory Allocation

 Each Competes for global lock for each allocation

and deallocation from a single global heap

 False Sharing

 TBB offers two memory allocators

 Scalable_allocator

 Cache_aligned_allocator

 Memory Consistency and Fence

 TBB provides atomic templates

TBB Scalable Memory Allocation

Multi-Core Processors & ARM Processors An Overview 163 C-DAC hyPACK-2013

 TBB - Mutex

 Mutual exclusion will be in terms of tasks. Mutual

exclusion of tasks will lead to mutual exclusion of the

corresponding threads upon which TBB maps

defined tasks.

 When to Use Mutual Exclusion (To prevent race

conditions and other non-deterministic and

undesirable behavior of tasks)

 Mutex behavior

 TBB provides a thread-safe and portable method to

compute elapsed time

 tick_count Class

TBB Mutual Exclusion / Time

Multi-Core Processors & ARM Processors An Overview 164 C-DAC hyPACK-2013

 TBB - Task-based programming can improve the

performance

 Task Scheduler manages a thread pool and hides

complexity which is much better than Raw Native

Threads

 OverSubscription – Getting the number of threads

right is difficult

 Fair Scheduling – OS uses; round-robin fashion

 Load imbalance can be handled easily comparison to

thread-based programming

 Portability – TBB interfaces

TBB Task Scheduler

Multi-Core Processors & ARM Processors An Overview 165 C-DAC hyPACK-2013

 Maximize data locality; Minimize volume of data

 Minimize frequency of Interactions; Overlapping computations

with interactions.

 Data replication; Minimize construction and Hot spots.

 Use highly optimized collective interaction operations.

• Collective data transfers and computations

 Maximize Concurrency.

How TBB can hide several task Scheduling events ?

 Application Perspective - Parallel

Algorithms Design -TBB

 Types of Parallelism : Data parallelism and Task parallelism

Combination of Data & Task parallelism; Stream parallelism

Multi-Core Processors & ARM Processors An Overview 166 C-DAC hyPACK-2013

Benefits

 Scalability

 Data Parallel Programming – Applications

 Take advantage of all cores on Multi core

Processor

 Specify Tasks instead of Threads

 Runtime library

 Automatically schedules tasks onto threads

 Makes use of efficient processor resources

 Load balancing many tasks

Threading Building Blocks – Overview

Multi-Core Processors & ARM Processors An Overview 167 C-DAC hyPACK-2013

Benefits

 Task Scheduling

 To use TBB library, you specify tasks, not threads

 Library maps tasks onto threads in an efficient manner

• Writing Parallel_for loop – tedious using threading

packages

• Scalable program – harder ; No benefits in

Performance

 Templates can give a creditable idea of performance

with respect to problem size as the number of core

increases

Threading Building Blocks - Overview

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 168 C-DAC hyPACK-2013

Part-VIII:
An Overview of Multi-Core Processors

MPI-1.x

Multi-Core Processors & ARM Processors An Overview 169 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P

Local process

 Address space

Process Q

Address X
Address Y Send X,Q, t

Receive Y,P,t

Match

User-Level Send/receive message-passing abstraction : A data transfer from

one local address space to another occurs when a send to particular processes

matches with a receive posted by that process

For more details on programs refer HeGaPa-2012 web-page

Multi-Core Processors & ARM Processors An Overview 170 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

 On most Parallel Systems, the processes involved in the execution

of a parallel program are identified by a sequence of non-negative

integers. If there are p processes executing a program, they will

have ranks 0, 1,2, ……., p-1.

Multi-Core Processors & ARM Processors An Overview 171 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P1

If (condition)

{

…..

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P2

If (condition)

{

 Compute

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 1)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P3

If (condition)

{

Communciate

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Compute

Else

{

Communicate

}

STOP

Multi-Core Processors & ARM Processors An Overview 172 C-DAC hyPACK-2013

Message Passing with SPMD :C program

main (int args, char **argv)

{

 if (process is to become a controller process)

 {

 Controller (/* Arguments /*);

 }

 else

 {

 Worker (/* Arguments /*);

 }

}

SPMD /MPMD Program

What is MPMD (Non-SPMD)?

 Different programs run on different nodes.

 If one program controls the others then the controlling program is

called the Master and the others are called the slaves.

Multi-Core Processors & ARM Processors An Overview 173 C-DAC hyPACK-2013

Basic steps in an MPI program

 Initialize for communications

 Communicate between processors

 Exit in a “clean” fashion from the message-passing system when

done communicating.

MPI Basics

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors & ARM Processors An Overview 174 C-DAC hyPACK-2013

Format of MPI Calls

C Language Bindings

 Return_integer = MPI_Xxxxx(parameter, ...);

 Return_integer is a return code and is type integer. Upon success,

it is set to MPI_SUCCESS.

 Note that case is important

 MPI must be capitalized as must be the first character after the

underscore. Everything after that must be lower case.

 C programs should include the file mpi.h which contains

definitions for MPI constants and functions

MPI Basics
(Contd…)

Multi-Core Processors & ARM Processors An Overview 175 C-DAC hyPACK-2013

Format of MPI Calls

Fortran Language Buildings

 Call MPI_XXXXX(parameter,..., ierror)

 or

 call mpi_xxxxx(parameter,..., ierror)

 Instead of the function returning with an error code, as in C, the

Fortran versions of MPI routines usually have one additional
parameter in the calling list, ierror, which is the return code.

Upon success, ierror is set to MPI_SUCCESS.

 Note that case is not important

 Fortran programs should include the file mpif.h which contains

definitions for MPI constants and functions

MPI Basics
(Contd…)

Multi-Core Processors & ARM Processors An Overview 176 C-DAC hyPACK-2013

Exceptions to the MPI call formats are timing routines

 Timing routines

 MPI_WTIME and MPI_WTICK are functions for both C

and Fortran

 Return double-precision real values.

 These are not subroutine calls

Fortran

 Double precision MPI_WTIME()

C

 Double precision MPI_Wtime(void);

MPI Basics
(Contd…)

Multi-Core Processors & ARM Processors An Overview 177 C-DAC hyPACK-2013

MPI Messages

 Message : data (3 parameters) + envelope (3 parameters)

Data : startbuf, count, datatype

• Startbuf: address where the data starts

• Count: number of elements (items) of data in the message

Envelope : dest, tag, comm

• Destination or Source: Sending or Receiving processes

• Tag: Integer to distinguish messages

Communicator

 The communicator is communication “universe.”

 Messages are sent or received within a given “universe.”

 The default communicator is MPI_COMM_WORLD

MPI Basics

Multi-Core Processors & ARM Processors An Overview 178 C-DAC hyPACK-2013

Initializing MPI

 Must be first routine called.

 C

 int MPI_Init(int *argc,char ***argv);

 Fortran

 MPI_INIT(IERROR)

 integer IERROR

(Contd…)

MPI Basics

MPI_COMM_WORLD communicator

A communicator is MPI’s mechanism for

establishing individual communication

“universe.”

Multi-Core Processors & ARM Processors An Overview 179 C-DAC hyPACK-2013

 What is my process id number ?

MPI_COMM_RANK (Rank starts from the integer value 0 to ….)

 Fortran : call MPI_COMM_RANK (comm, rank, ierror)

 integer comm, rank, ierror

 C : int MPI_Comm_rank (MPI_Comm comm, int *rank)

(Contd…)

MPI Basics

Multi-Core Processors & ARM Processors An Overview 180 C-DAC hyPACK-2013

Questions :

 How many processes are contained within a communicator?

 How many processes am I using?

 MPI_COMM_SIZE

 Fortran : call MPI_COMM_SIZE (comm, size, ierror)

 C : int MPI_Comm_size (MPI_Comm comm, int *size)

(Contd…)

MPI Basics

 What is my process id number ?

MPI_COMM_RANK (Rank starts from the integer value 0 to ….)

 Fortran : call MPI_COMM_RANK (comm, rank, ierror)

 integer comm, rank, ierror

 C : int MPI_Comm_rank (MPI_Comm comm, int *rank)

Multi-Core Processors & ARM Processors An Overview 181 C-DAC hyPACK-2013

Exiting MPI

 C : int MPI_Finalize()

 Fortran

 MPI_FINALIZE(IERROR)

 INTEGER IERROR

Note : Must be called last by
all processes.

(Contd…)
MPI Basics

What makes an MPI Program ?

 Include files

 mpi.h (C)

 mpif.h (Fortran)

 Initiation of MPI

 MPI_INIT

 Completion of MPI

 MPI_FINALIZE

Multi-Core Processors & ARM Processors An Overview 182 C-DAC hyPACK-2013

 Process 0 Process 1

 Send Recv

 Fundamental questions answered

 To whom is data sent? What is sent?

 How does the receiver identify it?

MPI Send and MPI Receive Library Calls

 Communication between two processes

 Source process sends message to destination process

 Communication takes place within a communicator

 Destination process is identified by its rank in the communicator

Multi-Core Processors & ARM Processors An Overview 183 C-DAC hyPACK-2013

The MPI Message Passing Interface Small or Large

MPI can be small. : One can begin prog. with 6 MPI function calls

MPI_INIT Initializes MPI

MPI_COMM_SIZE Determines number of processors

MPI_COMM_RANK Determines the label of the calling process

MPI_SEND Sends a message

MPI_RECV Receives a message

MPI_FINALIZE Terminates MPI

MPI can be large

One can utilize any of 125 functions in MPI.

(Contd…)
 Is MPI Large or Small?

Multi-Core Processors & ARM Processors An Overview 184 C-DAC hyPACK-2013

MPI can be small. : One can begin prog. with 6 MPI function calls

MPI_Init (&argc, &argv); Initializes MPI

 MPI_Comm_size (MPI_COMM_WORLD, &Numprocs);

 Determines number of processors

 MPI_Comm_rank (MPI_COMM_WORLD, &MyRank);

 Determines the label of the calling process

 MPI_Send (void* buf, int count, MPI_Datatype datatype, int dest,

 int tag MPI_Comm comm) ;

 Sends a message

MPI_Recv(void*buf, int count, MPI_Datatype datatype, int source,

 int tag MPI_Comm comm,

MPI_Status *status);

 Receives a message

 MPI_Finalize(); Terminates MPI

(Contd…)

 Is MPI Large or Small?

Multi-Core Processors & ARM Processors An Overview 185 C-DAC hyPACK-2013

MPI Routines used in Hello_World Program : MPI_Send/MPI_Recv

Synopsis : C

int MPI_Send (void* buf, int count, MPI_Datatype datatype, int dest,

 int tag MPI_Comm comm) ;

int MPI_Recv(void*buf, int count, MPI_Datatype datatype, int source,

 int tag MPI_Comm comm, MPI_Status *status);

Synopsis :Fortran

 MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

 MPI_RECV (buf, count, datatype, source, tag, comm, ierror)

 <type> bufffer(*),

 integer count, datatype, dest, source, tag, comm, ierror

MPI Point-to-Point Communication

Multi-Core Processors & ARM Processors An Overview 186 C-DAC hyPACK-2013

Status is a pointer to a structure which holds various information

about the message received.

MPI_Status Status

Source process rank and the actual message tag can be found in

the two fields

Status. MPI_SOURCE

Status. MPI_TAG

Routine MPI_Get_count(&Status, MPI_INT, &C) uses information

in Status to determine the actual number of data items of a certain

datatype(i.e MPI_INT) and puts the number in C.

 Message Envelope in MPI : Status

Multi-Core Processors & ARM Processors An Overview 187 C-DAC hyPACK-2013

Synchronous: The send cannot return until the corresponding

receive has started. An application buffer is available in the

receiver side to hold the arriving message.

Buffered : Buffered send assumes the availability of buffer

space which is specified by the MPI_Buffer_attach(buffer,size)

which allocates user buffer of size bytes.

Standard : The send can be either synchronous or buffered,

depending on the implementation.

Ready: The send is certain that the corresponding receive has

already started. It does not have to wait as in the synchronous

mode.

MPI Point-to-Point Communication: Communication Modes

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors & ARM Processors An Overview 188 C-DAC hyPACK-2013

MPI Primitive Blocking Nonblocking

Standard Send MPI_Send MPI_Isend

Synchronous

Send

MPI_Ssend MPI_Issend

Buffered Send MPI_Bsend MPI_Ibsend

Ready Send MPI_Rsend MPI_Irsend

Receive MPI_Recv MPI_Irecv

Completion

Check

MPI_Wait MPI_Test

Different Send/Receive operations in MPI

MPI Point-to-Point Communication: Communication Modes

Multi-Core Processors & ARM Processors An Overview 189 C-DAC hyPACK-2013

Collective Communications

 The sending and/or receiving of messages to/from groups of

processes.

 A collective communication implies that all processes need

participate in a global communication operation.

 Involves coordinated communication within a group of processes

 No message tags used

 All collective routines block until they are locally complete

 MPI Collective Communications

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors & ARM Processors An Overview 190 C-DAC hyPACK-2013

 Communications involving a group of processes.

 Called by all processes in a communicator.

 Examples:

• Barrier synchronization.

• Broadcast, scatter, gather.

• Global sum, global maximum, etc.

 Two broad classes :

• Data movement routines

• Global computation routines

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors & ARM Processors An Overview 191 C-DAC hyPACK-2013

 All versions deliver results to all participating processes

 V -version allow the chunks to have different non-uniform data

sizes (Scatterv, Allgatherv, Gatherv)

 All reduce, Reduce , ReduceScatter, and Scan take both built-in

and user-defined combination functions

Allgather Allgatherv Allreduce

Alltoall Bcast Alltoallv

Gather Reduce Gatherv

Reduce Scatter Scan Scatter

Scatterv

Other Collective Library Cells MPI Collective Communications and Computations

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors & ARM Processors An Overview 192 C-DAC hyPACK-2013

 MPI Collective Communications

Type Routine Functionality

Data Movement MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Allgather

MPI_Allgatherv

One-to-all, Identical Message

All-to-One, Personalized messages

A generalization of MPI_Gather

A generalization of MPI_Gather

A generalization of MPI_Allgather

MPI_Scatter

MPI_Scatterv

One-to-all Personalized messages

A generalization of MPI_Scatter

MPI_Alltoall

MPI_Scatterv

All-to-All, personalized message

A generalization of MPI_Alltoall

Multi-Core Processors & ARM Processors An Overview 193 C-DAC hyPACK-2013

Message type

 A message contains a number of elements of some particular
datatype

 MPI datatypes:

 Basic types

 Derived Data types (Vectors; Structs; Others)

 Derived types can be built up from basic types

 C types are different from Fortran types

MPI Derived Datatypes

Multi-Core Processors & ARM Processors An Overview 194 C-DAC hyPACK-2013

(0,2)

(0,1)

(0,0)

(3,2)

(3,1)

(3,0)

(2,2)

(2,1)

(2,0)

(1,2)

(1,1)

(1,0)

 A two dimensional Cartesian Decomposition

 MPI provides a collection of routines for defining, examining,

and manipulating Cartesian topologies

 For example, the second process from the left and the third

from the bottom is labeled as (1,2)

 MPI Process Topologies - Cartesian topology

Multi-Core Processors & ARM Processors An Overview 195 C-DAC hyPACK-2013

MPI Communicators

 Two types of Communicators

 Intra-communicators:Collection of processes that can send messages

to each other in engage in collective communication operations

 Inter-communicators :Used for sending messages between processes

belonging to disjoint intra-communicators

 Why should we bother about inter-communicators ?

 A minimal (intra) communicator is composed of

• a group (is an ordered collection of processes. If a group consists

of p process, each process in the group is assigned a unique rank)

• a context (is a system defined object that uniquely identifies a

communicator)

 MPI Communicators

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors & ARM Processors An Overview 196 C-DAC hyPACK-2013

Part-VIII:
An Overview of Multi-Core Processors

MPI-2.x

Multi-Core Processors & ARM Processors An Overview 197 C-DAC hyPACK-2013

 Why do I/O in MPI?

 Non-parallel I/O from an MPI program

 Non-MPI parallel I/O to shared file with MPI I/O

 parallel I/O to shared file with MPI I/O

 Fortran-90 version

 Reading a file with a different number of processes

 C++ version

 Survey of advanced features in MPI I/O

Introduction to Parallel I/O in MPI-2 - Outline

Source : Reference : [4], [6], [11],[12],[25], [26]

Multi-Core Processors & ARM Processors An Overview 198 C-DAC hyPACK-2013

MPI-2: Introduction to Remote Memory Access

 Features in MPI I/O

 Remote Memory Access - Windows

 One-sided operations

 Synchronization

 Fortran 90 and MPI C++

 Balancing efficiency and portability across a wide
class of architectures

Multi-Core Processors & ARM Processors An Overview 199 C-DAC hyPACK-2013

Remote Memory Access Windows and Window Objects

Get

Put

Process 0

Process 2

Process 1

Process 3
window

= address spaces = window object

MPI-2

Multi-Core Processors & ARM Processors An Overview 200 C-DAC hyPACK-2013

MPI-2 Advantages of Remote Memory Access Operations

 Multiple data transfer with a single synchronization

operation

 like BSP model

 Bypass tag matching

 effectively precomputed as part of remote offset

 Significantly faster than send/receive on SGI Origin, for

example, provided special memory is used.

Source : Reference : [4], [6], [11], [12],[24],[25], [26]

Multi-Core Processors & ARM Processors An Overview 201 C-DAC hyPACK-2013

 Supports communication via shared memory between MPI

Processes

 Based on Message size (Short or Long Messages)

 Compromise between Performance and Memory Use

 Implementation varies as per Vendor Specification

 Works for SMPs and NUMA based shared Memory

Computer.

MPI - Shared Memory Allocation

Source : Reference : [4], [6], [11],[12],[24],[25], [26], MPI-2 or SunMPI 3.0

Multi-Core Processors & ARM Processors An Overview 202 C-DAC hyPACK-2013

 MPI-2 Specification - MPI & threads

 Use thread-safe library (For ex : libmpi_mt.so in SUN

MPI 3.0)

 When two concurrently running threads make MPI calls,

the outcome will be as if the calls executed in some

order.

 Blocking MPI calls will block the calling thread only. A

blocked calling thread will not prevent progress of other

runnable threads on the same process, nor will it

prevent them from executing MPI calls.

 Multiple sends and receives are concurrent
Reference: Sun MPI 3.0

MPI – Multithreaded Programming

Source : Reference : [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 203 C-DAC hyPACK-2013

Threads and Processes in MPI-2

 Thread systems where the operating system (the kernel) is not

involved in managing the individual threads are called user threads.

 User threads tend to be faster than kernel threads (User threads takes

smaller time to switch between the threads within the same process)

 Restriction : System calls will block all threads in the process containing

the thread, made the system call.) Not just the calling thread)

 Difficult to write truly portable multithreaded programs (Application can

not assume the the entire process will not be blocked when a thread

calls a library routine)

 The POSIX thread (Pthreads) specification does not specify whether

the threads are user or kernel; it it is upto threads implementation

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Multi-Core Processors & ARM Processors An Overview 204 C-DAC hyPACK-2013

 Mixed-Model Programming - MPI for SMP Clusters

 - MPI for Multi core Processors

 Thread safe - libmpi_mt.so

 Non-thread-safe (Default) - libmpi.so

 For programs that are not multi-threaded, the user should
use libmpi.so whenever possible for maximum

performance.

 Reference: Sun MPI 3.0

MPI-2.0 : Thread Safe Library

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 205 C-DAC hyPACK-2013

MPI-2 : Introduction to Thread Safety

 Thread Safety & Message Passing Library

– Thread safety means that multiple threads can be executing

Message Passing library calls without interfacing with one another

– Thread unsafety occurs when when the message passing

system is expected to hold certain parts of the process state.

– It is impossible to hold certain parts of the process state and it is

impossible to hold that process state for more than one thread at

time.

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 206 C-DAC hyPACK-2013

MPI-2 : Introduction to Thread Safety

 Thread Safety & Message Passing Library

– Example : The concept of “the most recently received message”
to avoid passing a status stored on the process’s stack

– That is user code will look something like

 recv(msg, type);

 src = get_src();

 len = get_len();

– Single threaded case - Woks well

– Multi-threaded case - several receives may be in progress
simultaneously

– When get_src is called, it ma not be clear for which message the

source is supposed to be returned.

– MPI provides thread safe implementations so that MPI can work
hand to hand with thread libraries

Multi-Core Processors & ARM Processors An Overview 207 C-DAC hyPACK-2013

Each thread within an MPI process may issue MPI calls;

however, threads are not separately addressable.

That is, the rank of a send or receive call identifies

a process, not a thread, meaning that no order is

defined for the case where two threads call

MPI_Recv with the same tag and communicator.

Such threads are said to be in conflict.

Note : Overheads in MPI implementation –

 How to handle conflicts and Data Races ?

 How to write thread Safe programs ?

MPI – Multithreaded Programming (Thread Safe)

Multi-Core Processors & ARM Processors An Overview 208 C-DAC hyPACK-2013

 Each thread within an MPI process may issue MPI calls;

however, threads are not separately addressable.

 If threads within the same application post conflicting

communication calls, data races will result.

– You can prevent such data races by using distinct

communicators or tags for each thread.

 Prevention of data races and conflict - User can write

thread safe programs

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 209 C-DAC hyPACK-2013

 Adhere to these guidelines:

 You must not have an operation posted in one thread

and then completed in another.

 you must not have a request serviced by more than

one thread.

 A data type or communicator must not be freed by

one thread while it is in use by another thread.

 Once MPI_Finalize has been called, subsequent calls

in any thread will fail.

MPI – Multithreaded Programming (Thread Safe)

Multi-Core Processors & ARM Processors An Overview 210 C-DAC hyPACK-2013

 Adhere to these guidelines:

 You must ensure that a sufficient number of lightweight

processes (LWPs) are available for your multithreaded

program.Failure to do so may degrade performance or

even result in deadlock.

 You cannot stub the thread calls in your multithreaded

program by omitting the threads libraries in the link line.

 The libmpi.so library automatically calls in the threads

libraries, which effectively overrides any stubs.

MPI – Multithreaded Programming (Thread Safe)

Reference: Sun MPI 3.0

Multi-Core Processors & ARM Processors An Overview 211 C-DAC hyPACK-2013

 Provides specific guidelines that apply for specific some -

routines - Collective calls and Communicator operations

 MPI_Wait, MPI_Waitall, MPI_Waitany, MPI_Waitsome

 In a program where two or more threads call one of these

routines, you must ensure that they are not waiting for

the same request. Similarly, the same request cannot

appear in the array of requests of multiple concurrent

wait calls.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : 25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 212 C-DAC hyPACK-2013

MPI_Cancel

 One thread must not cancel a request while that request is being

serviced by another thread.

MPI_Probe, MPI_Iprobe

 A call to MPI_Probe or MPI_Iprobe from one thread on a given

communicator should not have a source rank and tags that match

those of any other probes or receives on the same communicator.

Otherwise, correct matching of message to probe call may not occur.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : 25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 213 C-DAC hyPACK-2013

 Collective Calls

 Collective calls are matched on a communicator

according to the order in which the calls are issued at

each processor.

 All the processes on a given communicator must make

the same collective call.

 You can avoid the effects of this restriction on the

threads on a given processor by using a different

communicator for each thread.

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [4], [6], [11],[12],[24],[25], [26], MPI-2 or SunMPI 3.0

MPI Library Calls - Guidelines

Multi-Core Processors & ARM Processors An Overview 214 C-DAC hyPACK-2013

 Communicator Operations

 Use the same or different communicators.

 threads in different processes participating in the

same communicator operation require grouping

 Do not free a communicator in one thread if it is still

being used by another thread.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 215 C-DAC hyPACK-2013

 Communicator Operations

 Each of the communicator functions operates simultaneously with each of

the noncommunicator functions, regardless of what the parameters are

and of whether the functions are on the same or different communicators.

However, if you are using multiple instances of the same communicator

function on the same communicator, where all parameters are the same, it

cannot be determined which threads belong to which resultant

communicator. Therefore, when concurrent threads issue such calls, you

must assure that the calls are synchronized in such a way that threads in

different processes participating in the same communicator operation are

grouped. Do this either by using a different base communicator for each

call or by making the calls in single-thread mode before actually using

them within the separate threads. Do not free a communicator in one

thread if it is still being used by another thread.

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Reference: Sun MPI 3.0

Multi-Core Processors & ARM Processors An Overview 216 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 Performance tradefoffs between multi-threaded and
single-threaded code.

 I/O operations

 Against Inconsistent updates to the same memory
location from different threads

 Software locks and System locks are quite expensive

 Vendors sometimes provide single threaded /Multi-
threaded libraries

 Have I been linked with the right library ?

 DO I suffer with occasional and mysterious errors

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Thread Safety & MPI – Issues to be addressed

Multi-Core Processors & ARM Processors An Overview 217 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 MPI-2 function to initialize

 int MPI_Init_thread

 int *argc,char ***argv,int required, int *provided)

 (C-Binding)

 MPI_INIT_THREAD(required, provided, ierror)

 Fortran binding

 Regardless of of whether MPI_Init or MPI_Init_thread is

called, the MPI program must end with a call to MPI_finalize

MPI Library Calls - Guidelines

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors & ARM Processors An Overview 218 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 MPI-2 specifies four levels of thread safety

 MPI_THREAD_SINGLE: only one thread

 MPI_THREAD_FUNNELED: only one thread that makes MPI calls

 MPI_THREAD_SERIALIZED: only one thread at a time makes MPI
calls

 MPI_THREAD_MULTIPLE: any thread can make MPI calls at any
time

 MPI_Init_thread(…, required, &provided) can be used instead of
MPI_Init

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

MPI Library Calls - Guidelines

Multi-Core Processors & ARM Processors An Overview 219 C-DAC hyPACK-2013

Part-VIII:
An Overview of Multi-Core Processors

MPI-3.x

Multi-Core Processors & ARM Processors An Overview 220 C-DAC hyPACK-2013

 Increasing prevalence of multi- and many-core processors

calls for extended MPI facilities for dealing with threads as

first class MPI entities.

 This leads to issues like the Probe/Recv consistency

issue in MPI

 Efforts seeks to introduce a powerful and convenient way

of direct addressing of the threads as MPI processes.

MPI 3.0 Efforts

Multi-Core Processors & ARM Processors An Overview 221 C-DAC hyPACK-2013

MPI 3.0 Efforts

 Treating Threads as MPI Processes

 Dynamic Thread levels

 I/O threads

 Address Thread Locks & MPI

 Source : Reference : MPI-3 or SunMPI 3.0

Multi-Core Processors & ARM Processors An Overview 222 C-DAC hyPACK-2013

MPI 3.0 Thread Init/Finalize Routines

 Problem :

 MPI currently does not explicitly know threads

 Process can be mapped to different
cores/SMTs

 Thread scheduling is left to the OS

 Relevant Issues:

 Explicit Thread Init/Finalize Routines

 Allow the process manager to perform intelligent
mapping

 Optional calls - application does not necessarily
have to call

Multi-Core Processors & ARM Processors An Overview 223 C-DAC hyPACK-2013

MPI 3.0 - Dynamic Threads Levels

 Problem: MPI specifies thread-level support at Init time

 Even if a small fraction of the code uses

 THREAD-MULTIPLE, the entire code is forced to go

through locks

 Performance Impact (messaging rate)

 Efforts

 Add calls for MPI_Set_thread_level() to dynamically

change thread-level within the application

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors & ARM Processors An Overview 224 C-DAC hyPACK-2013

MPI 3.0 - Dynamic Threads Levels

 MPI_Set_thread_level(int required, int* provided)

 Hinting mechanism only

 Relevant Issues:

 If an implementation allows the thread-level reduction, but

not increase, the application might not be able to deal with it

 Asynchronous Progress Threads

 Requires synchronization with the progress thread to

change level

 Collective Operations: Some MPI implementations use

different collective operations based on the thread-level

 Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors & ARM Processors An Overview 225 C-DAC hyPACK-2013

 A new collective routine MPI_Comm_thread_register() is

introduced to create a communicator in which existing threads

become MPI processes with unique ranks.

 The existing routine MPI_Comm_free() is extended to operate on

the resulting communicators.

 Prerequisite: MPI_THREAD_MULTIPLE thread support level
Reference: Intel MPI

MPI treating Threads as MPI process

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors & ARM Processors An Overview 226 C-DAC hyPACK-2013

MPI_Comm_thread_register(comm, local_thread_index, local_num

_threads, newcomm)

IN comm original communicator

IN local_thread_index index of the calling thread (0 to local_

 num_threads – 1) on the current MPI

 process in comm

IN local_num_threads total number of threads issuing this

 call on the current MPI process in

comm

OUT newcomm new communicator based on threads
Reference: Intel MPI

MPI_comm_thread_register (basic language binding)

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

MPI treating Threads as MPI process

Multi-Core Processors & ARM Processors An Overview 227 C-DAC hyPACK-2013

C:

 int MPI_Comm_thread_register(MPI_Comm comm, int

local_thread_

Index, int_local_num_threads, MPI_Comm *newcomm)

Fortran:

MPI_COMM_THREAD_REGISTER(INTEFER COMM, INTEGER

LOCAL_THREAD_INDEX, INTEGER LOCAL_NUM_THREADS,

INTEGER NEWSOMM, INTEGER IERROR)
Reference: Intel MPI

MPI_comm_thread_register (basic language binding)

Source : Reference : Intel MPI, MPI-3, 36,37,38, 40,41

MPI treating Threads as MPI process

Multi-Core Processors & ARM Processors An Overview 228 C-DAC hyPACK-2013

!$OMP parallel num_treads(4)

call MPI_COMM_THREAD_REGISTER(&

MPI_COMM_WORLD, OMP_GET_THREAD_NUM(),

 & OMP_GET_NUM_THREADS(), NEWCOMM)

!

! Whatever MPI operations on and in NEWCOMM

!

 call MPI_COMM_FREE(NEWCOMM)

!$OMP parallel end

Example: OpenMP parallel section

Source : Reference : Intel MPI, MPI-3, 36,37,38, 40,41

MPI treating Threads as MPI process

Multi-Core Processors & ARM Processors An Overview 229 C-DAC hyPACK-2013

 MPI-2 Specification conformance

Standardized job startup mechanism (mpiexec)

 Process Spawning /attachment (Socket device only)

 One-sided communication

 Extended collective operations

File I/O

 C, C++, Fortran-99 & Fortran-90 language

Intel MPI Library : MPI-2 Features

Download v2.0

 Intel MPI : Part of the cluster Tools (free eval.)

 www.intel.com/software/products/cluster

Multi-Core Processors & ARM Processors An Overview 230 C-DAC hyPACK-2013

Device

 Selected at runtime

Shm (shared memory only)

 sock (Sockets only)

 ssm (Shared memory + sockets)

 rdma (DAPL only) DAPL = Direct Access Programming Library (DAPL*)

 rdssm (Shared memory + DAPL + sockets)

Static socket device as fallback

Intel MPI Library : MPI-2 Features

Multi-Core Processors & ARM Processors An Overview 231 C-DAC hyPACK-2013

 Environment variables for runtime control over

Process pinning

 Optimized collective operations

 Device-specific protocol thresholds

 Collective algorithm thresholds

Enhanced memory registration Cache

Platform-specific fine grain timer

mpixec process management –

• mpirun script that automates MPD startup and

cleanup

Intel MPI Library : MPI-2 Features

Multi-Core Processors & ARM Processors An Overview 232 C-DAC hyPACK-2013

Download v2.0

Intel MPI : Part of the Intel cluster Tools (free eval.)

 www.intel.co/software/products/cluster

Intel Cluster Toolkit 2.0 :

•Etnus Total View Debugger http://www.totalviewtech.com

(Tool for Multi-threaded applications – Dynamic Memory

Management tool, MPI debugging, workbench, Memory

Scape)

•Allnea DDT debugger (Distributed Debugging Tool is a

comprehensive graphical debugger for scalar, multi-

threaded and large-scale parallel applications that are

written in C, C++ and Fortran http://www.allinea.com

Intel MPI Library : MPI-2

http://www.intel.co/software/products/cluster
http://www.intel.co/software/products/cluster
http://www.intel.co/software/products/cluster
http://www.intel.co/software/products/cluster
http://www.intel.co/software/products/cluster
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Multi-Core Processors & ARM Processors An Overview 233 C-DAC hyPACK-2013

The Open MPI Project is an open source MPI-2
implementation that is developed and maintained by a
consortium of academic, research, and industry
partners. Open MPI is therefore able to combine the
expertise, technologies, and resources from all across
the High Performance Computing community in order
to build the best MPI library available. Open MPI offers
advantages for system and software vendors,
application developers and computer science
researchers

http://icl.cs.utk.edu/open-mpi/ http://www.mpi-forum.org/

Open MPI : Open Source High Performance Computing

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

Multi-Core Processors & ARM Processors An Overview 234 C-DAC hyPACK-2013

Part-IX:
An Overview of Multi-Core Processors

Prog.Env. – Compilers

Tuning & Performance

(Part-I)

Multi-Core Processors & ARM Processors An Overview 235 C-DAC hyPACK-2013

Gains from tuning categories

Tuning Category Typical Range of Gain

Source range 25-100%

Compiler Flags 5-20%

Use of libraries 25-200%

Assembly coding / tweaking 5-20%

Manual prefetching 5-30%

TLB thrashing/cache 20-100%

Using vis.inlines/micro-

vectorization

100-200%

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors & ARM Processors An Overview 236 C-DAC hyPACK-2013

Loop Optimization Techniques

 Dependence Analysis

 Transformation Techniques

 Loop distribution

 Loop Alignment

 Node Splitting

 Strip Mining

 Loop Collapsing

 Loop Fission Loop Fusion

 Wave front method

 Loop Optimizations

 Basic Loop Unrolling & Qualifying Candidates for Loop Unrolling

 Negatives of Loop Unrolling

 Outer and Inner Loop Unrolling

 Associative Transformations

 Loop Interchange

More about Loop Optimizations

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors & ARM Processors An Overview 237 C-DAC hyPACK-2013

Loop Optimizations : Basic Loop Unrolling

 Loop optimizations accomplish three things :

 Reduce loop overhead

 Increase Parallelism

 Improve memory performance patterns

 Understanding your tools and how they work is critical for using them

with peak effectiveness. For performance, a compiler is your best

friend.

 Loop unrolling is performing multiple loop iterations per pass.

 Loop unrolling is one of the most important optimizations that can

be done on a pipelined machine.

 Loop unrolling helps performance because it fattens up a loop with

calculations that can be done in parallel

 Remark : Never unroll an inner loop.

Multi-Core Processors & ARM Processors An Overview 238 C-DAC hyPACK-2013

Qualifying Candidates for Loop Unrolling

 The previous example is an ideal candidate for loop unrolling.

 Study categories of loops that are generally not prime candidates

for unrolling.

 Loops with low trip counts

 Fat loops

 Loops containing branches

 Recursive loops

 Vector reductions

 To be effective, loop unrolling requires that there be a fairly large

number of iterations in the original loop.

 When a trip count in loop is low, the preconditioning loop is doing

proportionally large amount of work.

Multi-Core Processors & ARM Processors An Overview 239 C-DAC hyPACK-2013

Qualifying candidates for Loop Unrolling

 Loop containing procedure calls

 Loop containing subroutine or function calls generally are not good

candidates for unrolling.

 First : They often contain a fair number of instructions already. The

function call can cancel many more instructions.

 Second : When the calling routine and the subroutine are compiled

separately, it is impossible for the compiler to intermix instructions.

 Last : Function call overhead is expensive. Registers have to be

saved, argument lists have to be prepared.The time spent calling and

returning from a subroutine can be much greater than that of the loop

overhead.

(Contd..)

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors & ARM Processors An Overview 240 C-DAC hyPACK-2013

Loop Unrolling Issues on Multi-Cores

 Loop unrolling always adds some run time to the program.

 If you unroll a loop and see the performance dip little, you can

assume that either:

 The loop wasn’t a good candidate for unrolling in the first place

 or

 A secondary effort absorbed your performance increase.

 Other possible reasons

 Unrolling by the wrong factor –Data Race Conditions

 Register spitting

 Instruction cache miss – False Sharing of Data

 Other hardware delays -

 Outer loop unrolling - Data Re-Use in the Caches of Multi Cores

Multi-Core Processors & ARM Processors An Overview 241 C-DAC hyPACK-2013

Critical Features Supported by x86 Compilers

Vector

SIMD

Support

Peels

Vector

Loops

Global

IPA

OpenMP Links

ACML

Lib

Profile

Guided

Feedback

Aligns

Vector

Loops

Parallel

Debuggers

Large

Array

Support

Medium

Memory

Model

PGI

GNU

Intel

Pathsc

ale

SUN

Compiler Comparisons Table

Intel Compiler use Intel MKL libraries

Multi-Core Processors & ARM Processors An Overview 242 C-DAC hyPACK-2013

 Compilers (1)
 Compilers : translate the abstract operational semantics of a

program into a form that makes effective use of a highly

complex machine architecture

 Different architectural features exist and sometimes interact in

complex ways.

 There is often trade-off between exploiting parallelism and

exploiting locality to reduce yet another widening gap the

memory wall.

 For the compiler : This means combining multiple program

transformations (polyhedral models are useful here)

 Access latency and bandwidth of the memory subsystems

have always been a bottleneck. Get worse with Multi-core..

Compiler Techniques : Background

Multi-Core Processors & ARM Processors An Overview 243 C-DAC hyPACK-2013

 Compilers (2)

 Program optimization is over huge and unstructured search

spaces: this combinational task is poorly achieved in general,

resulting in weak scalability and disappointing sustained

performance.

 Even when programming models are explicitly parallel (data

parallelism, threads, etc.,) advanced compiler technology is

needed.

 To relieve the programmer from scheduling and mapping

the application to computational cores

 For understanding the memory model and communication

details

Compiler Techniques : Background

Multi-Core Processors & ARM Processors An Overview 244 C-DAC hyPACK-2013

 Compilers (3)

 Even with annotations (e.g., OpenMP directives) or sufficient

static information, compilers have a hard time exploring the

huge and unstructured search space associated with lower

level mapping and optimization challenges.

 The compiler and run-time system are responsible for most of

the code generation decisions to map the simplified and ideal

operational semantics of the source program to the highly

complex machine architecture.

Compiler Options for Performance

Multi-Core Processors & ARM Processors An Overview 245 C-DAC hyPACK-2013

Improve usage of data cache, TLB

Use VIS instructions (templates) directly, via –xvis

option

Optimize data alignment Prevent Register Window

overflow

Creating inline assembly templates for performance

critical routines

Loop Optimizations that compilers may miss:
Restructuring for pipelining and prefetching

Loop splitting/fission

Loop Peeling

Loop interchange

Loop unrolling and tiling

Pragma directed
Source : Reference [4],[6], [7], [8], [32], 34]

Compiler Options for Performance

Multi-Core Processors & ARM Processors An Overview 246 C-DAC hyPACK-2013

Compiler optimization options:

 -xO1 thru -xO5 (default is “none”, -O implies -xO3)

 -fast:easy to use, best performance on most code,but

it assumes compile platform = run platform and makes

Floating point arithmetic simplifications.

 Understand program behavior and assert to optimizer:
-xrestrict, if only restricted pointers are passed to functions

-xalias_level, if pointers behave in certain ways

-fsimple if FP arithmetic can be simplified

 Target machine-related:
-xprefetch, -xprefetch_level

-xtarget=, -xarch=, -xcache=, -xchip=

-xvector to convert DO loops into vector

Compiler Options for Performance

Multi-Core Processors & ARM Processors An Overview 247 C-DAC hyPACK-2013

Compiler Optimization Switches

 Fortran and C compilers have different levels of optimization that can

do a fairly good job at improving a program’s performance. The level

is specified at compilation time with –O switch.

 A same level of optimization on different machines will not always

produce the same improvements (don’t be surprised!)

 –O is either default level of optimization. Safe level of optimization.

 – O2 (same as –O on some machines) simple inline optimizations

 – O3 (and –O4 on some machines) more complex optimizations

 designed to pipeline code, but may alter semantics of program
 – fast Selects the optimum combination of compilation options for

speed.

 – parallel Parallelizes loops.
 Quite often, just a few simple changes to one’s code improves

performance by a factor of 2,3, or better!

Compiler Options for Performance

Multi-Core Processors & ARM Processors An Overview 248 C-DAC hyPACK-2013

 - stackvar

 Tells the compiler to put most variables on the stack rather than

statically allocate them.

 - stackvar is almost always a good idea, and it is crucial when

parallelization.

 Concurrently running two copies of a subroutine that uses static

allocation almost never works correctly.

 You can control stack versus static allocation for each variable.

 Variables that appear in DATA, COMMON, SAVE, or

EQUIVALENCE statements will be static regardless of whether
you specify -stackvar.

Basic Compiler Techniques : Local variables on the Stack

Multi-Core Processors & ARM Processors An Overview 249 C-DAC hyPACK-2013

Basic Compiler Techniques

- fast

 Run program with a reasonable level of optimization may change

its meaning on different machines.

 It strikes balance between speed, portability, and safety.

 -fast is often a good way to et a first-cut approximation of how

fast your program can run with a reasonable level of optimization

 -fast should not be used to build the production code.

 The meaning of –fast will often change from one release to

another

 As with –native, -fast may change its meaning on

different machines

(Contd..)

Multi-Core Processors & ARM Processors An Overview 250 C-DAC hyPACK-2013

- O : Set optimization level

- fast : Select a set of flags likely to improve speed

- stackvar : put local variables on stack

- xlibmopt : link optimized libraries

- xarch : Specify instruction set architecture

- xchip : Specifies the target processor for use by the

optimizer.

- native : Compile for best performance on localhost.

- xprofile : Collects data for a profile or uses a profile to

optimize.

- fns : Turns on the SPARC nonstandard floating-point

mode.
- xunroll n : Unroll loops n times.

Multi-Core Complier Optimizations flags

Multi-Core Processors & ARM Processors An Overview 251 C-DAC hyPACK-2013

Platform Compiler Command Description

IBM

AIX

xlc_r / cc_r C (ANSI / non-ANSI)

xlc_r C++

xlf_r –qnosave

xlf90_r -qnosave

Fortran – usingIBM’sPthreadsAPI(non-

portable)

INTEL

LINUX

icc –pthread C

icpc –pthread C++

All Above

Platforms

gcc –pthread GNU C

g++ –pthread GNU C++

guidec –pthread KAIC (if installed)

kcc –pthread KAIC++ (if installed)

Multi-Core Complier Optimizations flags

Multi-Core Processors & ARM Processors An Overview 252 C-DAC hyPACK-2013

Parallel programming-Compilation switches

Automatic and directives based parallelization

Allow compiler to do automatic and directive – based parallelization
 -x autopar, -x explicitpar, -x parallel, -tell the compiler

to parallelize your program.

 xautopar: tells the compiler to do only those parallelization that it
can do automatically

 xexplicitpar: tells the compiler to do only those parallelization
that you have directed it to do with programs in the source

 xparallel: tells the compiler to parallelize both automatically
and under pragma control

 xreduction: tells the compiler that it may parallelize reduction
loops. A reduction loop is a loop that produces output with smaller
dimension than the input.

Multi-Core Processors & ARM Processors An Overview 253 C-DAC hyPACK-2013

 STEP 0: Build application using the following procedure:

 compile all files with the most aggressive optimization flags below:

 -tp k8-64 –fastsse

 if compilation fails or the application doesn’t run properly, turn off

vectorization:

 -tp k8-64 –fast –Mscalarsse

 if problems persist compile at Optimization level 1:

 -tp k8-64 –O0

 STEP 1: Profile binary and determine performance critical
routines

 STEP 2: Repeat STEP 0 on performance critical functions, one

at a time, and run binary after each step to check stability

Tuning & Performance with Compilers

Maintaining Stability while Optimizing

Multi-Core Processors & ARM Processors An Overview 254 C-DAC hyPACK-2013

 Below are 3 different sets of recommended PGI compiler
flags for flag mining application source bases:

 Most aggressive: -tp k8-64 –fastsse –Mipa=fast

 enables instruction level tuning for Opteron, O2 level
optimizations, sse scalar and vector code generation, inter-
procedural analysis, LRE optimizations and unrolling

 strongly recommended for any single precision source code

 Middle of the ground: -tp k8-64 –fast –Mscalarsse

 enables all of the most aggressive except vector code generation,
which can reorder loops and generate slightly different results

 in double precision source bases a good substitute since Opteron
has the same throughput on both scalar and vector code

 Least aggressive: -tp k8-64 –O0 (or –O1)

PGI Compiler Flags – Optimization Flags

PGI is an independent supplier of high performance scalar and parallel compilers and

tools for workstations, servers, and high-performance computing. http://www.pgroup.com/

Multi-Core Processors & ARM Processors An Overview 255 C-DAC hyPACK-2013

 -mcmodel=medium

 use if your application statically allocates a net sum of data
structures greater than 2GB

 -Mlarge_arrays

 use if any array in your application is greater than 2GB

 -KPIC

 use when linking to shared object (dynamically linked) libraries

 -mp

 process OpenMP/SGI directives/pragmas (build multi-threaded code)

 -Mconcur

 attempt auto-parallelization of your code on SMP system with
OpenMP

PGI Compiler Flags – Functionality Flags

Multi-Core Processors & ARM Processors An Overview 256 C-DAC hyPACK-2013

Below are 3 different sets of recommended PGI compiler flags for
flag mining application source bases:

 Most aggressive: -O3

 loop transformations, instruction preference tuning, cache tiling,
& SIMD code generation (CG). Generally provides the best
performance but may cause compilation failure or slow
performance in some cases

 strongly recommended for any single precision source code

 Middle of the ground: -O2

 enables most options by –O3, including SIMD CG, instruction
preferences, common sub-expression elimination, & pipelining
and unrolling.

 in double precision source bases a good substitute since
Opteron has the same throughput on both scalar and vector code

 Least aggressive: -O1

PGI Compiler Flags – Optimization Flags

Multi-Core Processors & ARM Processors An Overview 257 C-DAC hyPACK-2013

 Most aggressive: -Ofast

 Equivalent to –O3 –ipa –OPT:Ofast –fno-math-errno

 Aggressive : -O3

 optimizations for highest quality code enabled at cost of compile

time

 Some generally beneficial optimization included may hurt

performance

 Reasonable: -O2

 Extensive conservative optimizations

 Optimizations almost always beneficial

 Faster compile time

 Avoids changes which affect floating point accuracy

Pathscale Compiler Flags – Optimization Flags

http://www.pathscale.com/

PathScale Compiler Suite has been optimized for both the AMD64 and EM64T

architectures. The PathScale™ Compiler Suite is consistently proving to be the

highest performing 64-bit compilers for AMD-based Opteron.

Multi-Core Processors & ARM Processors An Overview 258 C-DAC hyPACK-2013

 - mcmodel=medium

 use if static data structures are greater than 2GB

 - ffortran-bounds-check

 (fortran) check array bounds

 - shared

 generate position independent code for calling shared
object libraries

 feedback Directed Optimization

 STEP 0: Compile binary with -fb_create_fbdata

 STEP 1: Run code collect data

 STEP 2: Recompile binary with -fb_opt fbdat

- march = (opteron|athlon64|athlon64fx)

 Optimize code for selected platform (Opteron is default)

Pathscale Compiler Flags – Functionality Flags

http://www.pathscale.com/

Multi-Core Processors & ARM Processors An Overview 259 C-DAC hyPACK-2013

PathScale 2.1 64-bit optimization flags:

F77: -O3 -LNO:fu=9OPT:div_split:fast_math:fast_sqrt -IPA:plimit=3500

F90: -Ofast -OPT:fast_math=on -WOPT:if_conv=off -LNO:fu=9:full_unroll_size=7000

Pathscale Compiler Flags – Functionality Flags

http://www.pathscale.com/

Multi-Core Processors & ARM Processors An Overview 260 C-DAC hyPACK-2013

Example: data wrap around, untuned version

jwrap = ARRAY_SIZE –1;

for(i=0; i<ARRAY_SIZE; i++)

 b[i] =(a[i]+a[jwrap])*0.5;

 jwrap = i; }

 Compiler optimizations will not be
able to determine that a [jwrap] is

a neighbor value

1 2 3 4 8 9

Loop Optimization: Neighbor Data Dependency

Example: data wrap around, tuned version:

 b[0] = (a[0] + a[ARRAY_SIZE –1]) * 0.5;

 for(i=1 ; i < ARRAY_SIZE ; i++)

 b[i] = (a[i]+a[i-1]) * 0.5;

Remark : Once the program is debugged, declare arrays to exact sizes

whenever possible. This reduces memory use and also optimizes

pipelining and cache utilization.

Multi-Core Processors & ARM Processors An Overview 261 C-DAC hyPACK-2013

Part-IX:
An Overview of Multi-Core Processors

Prog.Env. – Compilers

Tuning & Performance

(Part-II)

Multi-Core Processors & ARM Processors An Overview 262 C-DAC hyPACK-2013

 Data parallelism;

 Task parallelism;

 Combination of Data and Task

parallelism

 Static and Load Balancing

 Mapping for load balancing

 Minimizing Interaction

 Overheads in parallel algorithms

design

 Data Sharing Overheads

Source : Reference :[1], [4]

Decomposition techniques

 Recursive decomposition

 Data decomposition

 Exploratory decomposition

 Hybrid decomposition

Algorithm Overheads

Tuning & Performance on Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 263 C-DAC hyPACK-2013

 Static load-balancing

 Distribute the work among

processors prior to the execution

of the algorithm

 Matrix-Matrix Computation

 Easy to design and implement

Dynamic load-balancing

 Distribute the work among processors

 during the execution of the algorithm

 Algorithms that require dynamic load-balancing are somewhat

more complicated (Parallel Graph Partitioning)

Tuning & Performance on Multi-Core Processors

Load Balancing Techniques

Multi-Core Processors & ARM Processors An Overview 264 C-DAC hyPACK-2013

System Configuration

 System configuration (OS, Compilers, Profilers)

 Interconnection Net-work – Point-point, One-all & All-to-All
communications (Buffer Mechanism)

 Disk I/O Computations (Tuning II/O Controller)

• Hardware; Processor Choice; Interconnect Choice

• Network Card Choice (in some cases); IO Subsystem

• Software; Compiler Choice; Compiler Options

• MPI Choice; MPI Tuning; NIC Driver Tuning

• Switch Tuning; OS Choice

 Sequential code Optimization (Compiler – Code
Restructuring, Loop Optimization, Memory Allocators)

Tuning & Performance on Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 265 C-DAC hyPACK-2013

Simple Approach

 Use Compiler Switches & explore performance –
Localize the Data – Cache Utilization

 Use Profiler to understand behavior of programme

 Use Linux tool “top” to know about the CPU 7& Memory
Utilization as well as Scalability with respect to varying
size

 Threading APIs used; Locks & Heap contention

 Thread affinity – Explore the performance

 Sequential code Optimization – Use tuned libraries

 Check for Swapping (is the code Swapping ?) – Use
“top” tools

Tuning & Performance on Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 266 C-DAC hyPACK-2013

CPU

/Compiler

-O2 -O3 Aggressive Tuning

AMD/PGI

AMD

PathScale

Intel /PGI

Intel Software

Comparing compiler at various levels of Optimization

 Compiler vendors, sometimes include aggressive optimization
at a lower level (For example -O2 may include some
optimizations that other compiler vendors put in at -O3)

 Difficult to compare the same optimization levels among
Compilers

 Increasing the level of optimization doesn’t improve the
performance of the code.

 AbSoft

 Gcc

Tuning & Performance on Multi-Core Processors

Source : Reference : PGI

Multi-Core Processors & ARM Processors An Overview 267 C-DAC hyPACK-2013

Multi-Core - Types of Data Provided O/S tools

 CPU Utilization : - by privilege level, on each logical
processors and the total

 Memory Usage : Physical, virtual and page file

 Network traffic: bytes in and out, errors, broadcasts, etc.,
OS socket usage

 Disk Traffic : reads/writes, bytes read/written, merged IO
requested, average wait time, queue depth

 Process Information – started processes, context switches
/sec, scheduler queue depth

 And more !

Tuning & Performance on Multi-Core Processors

Source : Reference : PGI

Multi-Core Processors & ARM Processors An Overview 268 C-DAC hyPACK-2013

Multi-Core Sub-system – Details

Intel Compiler Optimization Switches

 Intel High-Level Optimizations (HLO)

 Intel Multiphase Optimizations

• (IPO – Interprocedural Optmizations)

• PGO –(Profile Guided Optimization) Switches

 Intel Math Kernel Library (MKL)

 Intel Integrated Performance Primitives

Tuning & Performance on Multi-Core Processors

Source : Reference : PGI

Multi-Core Processors & ARM Processors An Overview 269 C-DAC hyPACK-2013

Tuning & Performance on Multi-Core Processors

Linux Windows -

-O0 /Od Disables optimization

-g /Z1 Creates symbols

-O1 /O1 Optimize binary Code for Server Size

-O2 /O2 Optimize for Speed (default)

-O3 /O3 Optimize for Data Cache :

Loop floating point code

-axP QaxP Optimize for Intel Processors with SSE 3

Capabilities.

-parallel -Qparallel Auto-paalleization

General Optimizations (Refer PGI Compiler suite)

Source : Reference : PGI

Multi-Core Processors & ARM Processors An Overview 270 C-DAC hyPACK-2013

Multi-Core Computing Systems

 Intel

 Cray

 IBM - Cell

 AMD

 SGI

 SUN

 HP

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 271 C-DAC hyPACK-2013

Multi-Core Sub-system – Details

 CPU Utilization; Memory Usage; Network traffic, Disk
Usage, Process Information

 Intel Compiler Optimization Switches

 Intel High-Level Optimizations (HLO)

 Intel Multiphase Optimizations (IPC, PGO)

 Intel Multiphase Optimizations (PGO – Profile Guided
Optimization Switches)

 Intel Math Kernel Library (MKL)

 Intel Integrated Performance Primitives

Tuning & Performance on Multi-Core Processors

Source : Reference : Intel PGI

Multi-Core Processors & ARM Processors An Overview 272 C-DAC hyPACK-2013

Multi-Core Intel Compiler – Starting Steps

Explore using Intel Compiler

 Optimization switches – provides a away to use Intel’s new
instructions/technologies

• Vectorizition – compiler switches + compiler directive allow
certain loops to be paralleliszed via instruction parallelism
(SIMD instructions)

 Multipass Optimizations (IPO, PGO) – provides a away to tune
across function/files and use actual execution feedback to
guide compiler optimizations.

 Explore using libraries that have already tuned common
operations /functions

• Intel’s Math Kernel Library (MKL) – math functions

• Intel’s Integrated Performance Primitives (IPP), graphic
media functions

Tuning & Performance on Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 273 C-DAC hyPACK-2013

Multi-Core Intel Compiler – Starting Steps

Explore using Intel Compiler

 Explore tuning how memory is used if critical to application

 Understand object creation/destruction – objects be reused ?

 Loops : Understand how memory is accessed (patterns and
alignment)

• Many different memory tuing techniques can be applies
depending on type of performance issue

• Discussed in Addressing Common Performance Section

 Data organization/structures : Is data being handled optimally

• Remove loop invariant code from hotspots

 Do only what is absolutely necessary in hotspots

• Use Intel’s Math Kernel Library (MKL) – math functions

Tuning & Performance on Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 274 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

 On most Parallel Systems, the processes involved in the execution

of a parallel program are identified by a sequence of non-negative

integers. If there are p processes executing a program, they will

have ranks 0, 1,2, ……., p-1.

Multi-Core Processors & ARM Processors An Overview 275 C-DAC hyPACK-2013

Interconnection Networks – Latency Bandwidth

 TCP

 GiGE,

 GigE with Jumbo Frames,

 GAMMA, Level 5 GigE

 10 Gigabit Ethernet

 100 gigabit Ethernet

 Myrinet

 Infiniband

 PathScale (Infinipath)

 Quadrics

 Dolphin

• I/O time for Codes (CFD /Seismic Codes)

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 276 C-DAC hyPACK-2013

MPI Libraries (Open Source)

 Open-source

 MPICH1 (Standard)

 MPICH2 (Standard)

 LAM

 Open-MPI (*)

 GAMMA-MPI

 FT-MPI

 LA-MPI

 LA-MPI

 PACX-MPI

 MVAPICH

(*) OpenMPI combines the best features of LAM, FT-MPI, LA-
MPI, and PACX-MPI. It supports TCP, Myrinet, Infiniband
networks. http://icl.cs.utk.edu/open-mpi/

 OpenMPI has addition of the fault tolerance capability of
FT-MPI.

 This will allow an MPI code to lose a node and then add a
new node to finish the computations without lose of data.

 OOMPI

 MPICH-GM

 MVICH

 MP_Lite

Tuning & Performance on Multi-Core Processor Clusters

http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/
http://icl.cs.utk.edu/open-mpi/

Multi-Core Processors & ARM Processors An Overview 277 C-DAC hyPACK-2013

Test the following MPI Libraries (Open Source)

 Open-source

 MPICH1 (Standard)

 MPICH2 (Standard)

 LAM

 MPICH-GM (forMyrinet)

 MVAPICH (for Infiniband)

 Atleast one commercial MPI

 Choice of Compilers -Computing systems – Price /
Performance

 Choice of MPI libraries Computing Systems – Price /
Performance

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 278 C-DAC hyPACK-2013

Interconnection Networks – Latency Bandwidth

 TCP

 GiGE,

 GigE with Jumbo Frames,

 GAMMA, Level 5 GigE

 10 Gigabit Ethernet

 100 gigabit Ethernet

 Myrinet

 Infiniband

 PathScale (Infinipath)

 Quadrics

 Dolphin

• I/O time for Codes (CFD /Seismic Codes)

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 279 C-DAC hyPACK-2013

 MPI Library calls & MPI algorithms implementation

• MPI Point-to-Point communication Calls;

• MPI collective Communications,

• MPI Communication & Computation Library Calls

• MPI-2 library Calls

• MPI I/O library Calls

 Communication overheads for all MPI library calls

 MPI 3.0 Thread enabled MPI

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 280 C-DAC hyPACK-2013

MPI Primitive Blocking Nonblocking

Standard Send MPI_Send MPI_Isend

Synchronous

Send

MPI_Ssend MPI_Issend

Buffered Send MPI_Bsend MPI_Ibsend

Ready Send MPI_Rsend MPI_Irsend

Receive MPI_Recv MPI_Irecv

Completion

Check

MPI_Wait MPI_Test

Different Send/Receive operations in MPI

MPI Point-to-Point Communication: Communication Modes

Multi-Core Processors & ARM Processors An Overview 281 C-DAC hyPACK-2013

 MPI Collective Communications

Type Routine Functionality

Data Movement MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Allgather

MPI_Allgatherv

One-to-all, Identical Message

All-to-One, Personalized messages

A generalization of MPI_Gather

A generalization of MPI_Gather

A generalization of MPI_Allgather

MPI_Scatter

MPI_Scatterv

One-to-all Personalized messages

A generalization of MPI_Scatter

MPI_Alltoall

MPI_Scatterv

All-to-All, personalized message

A generalization of MPI_Alltoall

Multi-Core Processors & ARM Processors An Overview 282 C-DAC hyPACK-2013

 Commercial Code tuning

• File System

• Network (TCP Buffers NIC, Switches)

• L1 Cache /L2 Cache on Multi-Core Processors

• Compiler Switches

• MPI Libraries

• OS & Memory Usage (80 %)

 Scalability of computing Systems & Performance
Issues are Challenging

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 283 C-DAC hyPACK-2013

 Performance tradefoffs between multi-threaded and
single-threaded code.

 I/O operations

 Against Inconsistent updates to the same memory
location from different threads

 Software locks and System locks are quite expensive

 Vendors sometimes provide single threaded /Multi-
threaded libraries

 Have I been linked with the right library ?

 DO I suffer with occasional and mysterious errors

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Thread Safety & MPI – Issues to be addressed

Tuning & Performance on Multi-Core Processor Clusters

Multi-Core Processors & ARM Processors An Overview 284 C-DAC hyPACK-2013

Part-X:
An Overview of Multi-Core Processors

Benchmarks

Multi-Core Processors & ARM Processors An Overview 285 C-DAC hyPACK-2013

Approaches to measure performance

 Several Approaches exist to measure performance of a Multicore

System

 Summarize several key architecture of a given computer

system and relate them in order to get measure of its

performance

 Most of the measures are based on some engineering or

design considerations rather theoretical calculations

 Define set of programs and observe the system’s run times

on those programs

Performance Characteristics

Multi-Core Processors & ARM Processors An Overview 286 C-DAC hyPACK-2013

Peak Performance

 Defined as the MFLOPS rate which the manufacturer guarantees

the computer will never exceed

 It is obtained by taking the clock rate of the given system an

dividing it by the number of clock cycles a floating point

instruction requires

 Peak Performance calculations assume the maximum number of

operations that the hardware can execute in parallel or concurrently

 Peak Performance is a rough hardware measure; it essentially

reflects the cost of the system

 There are some (rare) instances where peak performance can give

a creditable idea of performance

Performance Characteristics: Peak Performance

Multi-Core Processors & ARM Processors An Overview 287 C-DAC hyPACK-2013

Sustained Performance

 It may be defined as the highest MFLOPS rate that can actual

program achieved doing something recognizably useful for certain

length of time

 It essentially provide an upper bound on what a programmer may

be able to achieve

 Efficiency rate = The achieved (sustained) performance divided

 by the peak performance

Note : The advantage of this number is its independent of any

 absolute speed.

Performance Characteristics: Sustained Performance

Multi-Core Processors & ARM Processors An Overview 288 C-DAC hyPACK-2013

Benchmark Classification

 Benchmarks can be classified according to applications

 Scientific Computing

 Commercial applications

 Network services

 Multi media applications

 Signal processing

 Benchmark can also be classified as

 Macro benchmarks and Micro benchmarks

Performance: Benchmarks Classification

Multi-Core Processors & ARM Processors An Overview 289 C-DAC hyPACK-2013

NAS Parallel Computing (CFD)

PARKBENCH Parallel Computing

SPEC A mixed benchmark family

Splash Parallel Computing

STAP Signal Processing

TPC Commercial Applications

Name Area

Performance: Macro Benchmarks
(Contd…)

Macro Benchmarks

 Measures the performance of computer system as a whole.

 Compares different systems with respect to an application class,

and is useful for the system BUYER. However, macro

benchmarks do not reveal why a system performs well or badly.

Multi-Core Processors & ARM Processors An Overview 290 C-DAC hyPACK-2013

Micro Benchmarks : Synthetic kernels & measure a specific aspect of

computer system (CPU speed, Memory speed, I/O speed, Operating

system performance, Networking)

Performance: Micro Benchmarks
(Contd…)

LMBENCH

STREAM Memory Bandwidth

System Calls and data

movement operations in UNIX

Numerical Computing

(Linear Algebra)

LAPACK; ScaLAPACK;

LINPACK; BLASBench;

HPCC suite Benchmarks

Name Area

Source : http://www.netlib.org

Multi-Core Processors & ARM Processors An Overview 291 C-DAC hyPACK-2013

Micro/Macro Benchmarks for Multi Core Processors

Benchmarks on Multi Core Systems
(Contd…)

LMBENCH

STREAM Memory Bandwidth

System Calls & Data movement

in Unix/Linux Environment

Numerical Computing

(Linear Algebra)

 SuperLU

 HPCC Suite (Top-500)

Name Area

I/O -Bench

TIO-Bench

I/O Benchmarks

Thread I/O Benchmarks

NAMD Nanoscale Molecular Dynamics

 NAS Computational Fluid Dynamics

LLCBench Low Level Cache Benchmarks

Multi-Core Processors & ARM Processors An Overview 292 C-DAC hyPACK-2013

LLCBench

– BLASBench : equivalent to HPCC-DGEMM. DGEMM (double

precision Matrix into Matrix Multiplication) achieved performance of

4.7 Gflops, which is equivalent to 90 % of the peak performance

(5.2 Gflops)

– MpBench – MPI benchmarks executed (Equivalent version of

HPCC-HLRS Suites available)

– CacheBench – Low level Cache Benchmarks executed

Benchmarks on Multi Core Systems

Multi-Core Processors & ARM Processors An Overview 293 C-DAC hyPACK-2013

 The Stream is a simple synthetic benchmark maintained by John

McCalpin of SGI.

 It measures sustainable memory bandwidth (in MBs) and the

corresponding computation rate.

 The motivation for developing the STREAM benchmark is that

processors are getting faster more quickly than memory, and

more programs will be limited in performance by the memory

bandwidth, rather than by the processor speed.

 The benchmark is designed to work with data sets much

larger than the available cache

 The STREAM Benchmark performs four operations for

number of iterations with unit stride access.

Micro Benchmarks: STREAM

Multi-Core Processors & ARM Processors An Overview 294 C-DAC hyPACK-2013

 EEMBC, the Embedded Microprocessor Benchmark

Consortium,

• Itis a non-profit corporation formed to standardize on

real-world, embedded benchmark software to help

designers select the right embedded processors for

their systems.

 EEMBC is a collection of "algorithms" and "applications"

organized into benchmark suites targeting

telecommunications, networking, digital media, Java,

automotive/industrial, consumer, and office equipment

products.

EEMC Benchmarks

Source : http://www.eembc.org/

Multi-Core Processors & ARM Processors An Overview 295 C-DAC hyPACK-2013

 EEMBC, the Embedded Microprocessor Benchmark

Consortium,

 An additional suite of benchmarks, called MultiBench,

specifically targets the capabilities of multicore processors

based on an SMP architecture.

 These benchmarks may be obtained by joining EEMBC's

open membership or through a corporate or university

licensing program.

 The EEMBC Technology Center manages development of

new benchmark software and certifies benchmark test

results.

EEMC Benchmarks

Source : http://www.eembc.org/

Multi-Core Processors & ARM Processors An Overview 296 C-DAC hyPACK-2013

 Benchmark Scores

• Automotive Consumer Digital Entertainment Java/CLDC

 Software Licensing and Membership

• AutoBench, ConsumerBench, DENBench, GrinderBench (Java)

 Hypervisors

• MultiBench, Networking, OABench, TeleBench, HyperBench

 Power/Energy

• EnergyBench

EEMC Benchmarks

Source : http://www.eembc.org/

Multi-Core Processors & ARM Processors An Overview 297 C-DAC hyPACK-2013

 MultiBench™ 1.0 Multicore Benchmark Software

• Extends EEMBC benchmark scope to analyze multicore architectures,

memory bottlenecks, OS scheduling support, efficiency of synchronization,

and other related system functions.

• Measures the impact of parallelization and scalability across both data

processing and computationally intensive tasks

• Provides an analytical tool for optimizing programs for a specific processor

• Leverages EEMBC’s industry-standard, application-focused benchmarks in

hundreds of workload combinations

• First generation targets the evaluation and future development of scalable

SMP architectures

•MultiBench™ is a suite of embedded benchmarks that allows

processor and system designers to analyze, test, and improve
multicore architectures and platforms. MultiBench uses standardized
workloads and a test harness that provides compatibility with a wide
variety of multicore embedded processors and operating systems.

EEMC Benchmarks

Multi-Core Processors & ARM Processors An Overview 298 C-DAC hyPACK-2013

Path Scale Compiler Benchmarks

• SPEC@CPU2000

• SPEC@Int2000

• SPEC@fp2000

• SPEC ompM2001 suite of OpenMP Benchmarks

 Pathscale Compilers publish SPEC results on SPEC

web-site

 AMD SPEC Results for Dual Core Opteron using

PathScale Compilers

 IBM, HP, Fujitsu-Siemens, Sun and AMD use

PathScale, PGI Compliers to get performance on

AMD64-based Linux Systems.

http://www.pathscale.com/

Source : Reference : PGI

mailto:SPEC@fp2000

Multi-Core Processors & ARM Processors An Overview 299 C-DAC hyPACK-2013

 Complier Optimization

 CPU Usage : Floating Point Optimization & Register Use

 Cache : Data Locality – Cache Interleaving

 TLB : Maximum use the data on page /page swapping

 Memory bandwidth – minimize the access the higher levels

of memory

 Core : Use all the cores available using threads & address

the thread affinity issues.

Performance of Math Kernel Libraries

• Atlas

• Intel MKL www.intel.com/software/products/mkl

Multi-Core Processors & ARM Processors An Overview 300 C-DAC hyPACK-2013

 Intel ‘s Engineering, Scientific and financial mathematical

Library Intel MKL www.intel.com/software/products/mkl

• Solvers (BLAS, LINPACK)

• Eigenvector/Eigenvalue solver (BLAS, LINPACK)

• Some Quantum Chemistry – (dgemm Matrix library)

• PDEs, Signal processing, Seismic, Solid State Physics

(FFTs)

• General scientific, financial [vector transcendental

functions (VML), and vector random number generators

(VSL)

• Sparse Solvers (PARDISO, DSS * ISS)

Intel Performance Libraries - Intel Math Kernel Library

(Intel MKL)

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Multi-Core Processors & ARM Processors An Overview 301 C-DAC hyPACK-2013

 Intel ‘s Engineering, Scientific and financial mathematical

Library

 Address :

• Solvers (BLAS, LINPACK)

• Eigenvector/Eigenvalue solver (BLAS, LINPACK)

• some Quantum Chemistry – (dgemm Matrix library)

• PDEs, Signal processing, Seismic, solid State Physics

(FFTs)

• General scientific, financial [vector transcendental

functions (VML), and vector random number

generators (VSL)

Intel Performance Libraries - Intel Math Kernel Library

(Intel MKL)

Multi-Core Processors & ARM Processors An Overview 302 C-DAC hyPACK-2013

Micro Benchmarks: ScaLAPACK

ScaLAPACK

LAPACK PB-BLAS Parallel BLAS

Optimized BLACS libraries

for Multi Cores /Clusters

Highly tuned Sun Performance

libraries for SMPs (BLAS , ,)

Communication Primitives

(MPI, Intel MPI)

(Contd…)

Source : http://www.netlib.org

Multi-Core Processors & ARM Processors An Overview 303 C-DAC hyPACK-2013

 BLAS, IMSL, NAG, LINPACK, ScaLAPACK LAPACK, etc.

Calls to these math libraries can often simplify coding.

They are portable across different platforms

They are usually fine-tuned to the specific hardware as well as

to the sizes of the array variables that are sent to them

– Example : Intel MKL & AMD Opteron ACML

 User can often parallelize at a higher level by running the

performance subroutines serially.

 It also has more favorable cache behavior

 Synchronization points may be less

 Performance gain is expected but depends on the

problem size.

Multi Core Processors Performance: Use of MATH Libraries

Multi-Core Processors & ARM Processors An Overview 304 C-DAC hyPACK-2013

Mathematical Libraries (Benchmarks)

 Linear Algebra (LA)

 Basic Linear Algebra Subroutines (BLAS)

• Level 1 (vector-vector operations)

• Level 2 (matrix-vector operations)

• Level 3 (matrix-matrix operations)

• Routines involving sparse vectors

 Linear Algebra PACKage (LAPACK)

• leverage BLAS to perform complex operations

• 28 Threaded LAPACK routines

• Fast Fourier Transforms (FFTs)

 1D, 2D, single, double, r-r, r-c, c-r, c-c support

• C and Fortran interfaces

Multi-Core Processors & ARM Processors An Overview 305 C-DAC hyPACK-2013

Features

 BLAS, LAPACK, FFT Performance

 Open MP Performance

 AMD : ACML 2.5 /2.X or 3.X

 Intel : MKL

 IBM : Power –5 / Power -6 /Power -7 ESSL

Mathematical Libraries (Benchmarks)

 How good is Benchmark performance?

Multi-Core Processors & ARM Processors An Overview 306 C-DAC hyPACK-2013

 ATLAS (Automatically Tuned Linear Algebra Software)

http://www.netlib.org/atlas

 GoToBLAS :The GOTO library is an optimised

implementation of BLAS routines, developed by Kazushige

Goto at the University of Texas at Austin, providing an

alternative to MKL or SCSL

 SCSL : Scientific Computing Software Library (is a

comprehensive collection of scientific and mathematical

functions)

 PLASMA : PLASMA is to address the performance

shortcomings of the LAPACK and ScaLAPACK libraries on

multicore processors and multi-socket systems of multicore

processors p

 PLASMA : Parallel Linear Algebra Software for Multi-Core

Architecture Ref: http://icl.cs.utk.edu/plasma

Mathematical Libraries (Benchmarks)

Multi-Core Processors & ARM Processors An Overview 307 C-DAC hyPACK-2013

Comp System Conf. Intel Caneland (Quad Socket Quad Core)

CPU Quad-Core Genuine Intel(R) CPU - Tigerton

No of Sockets /Cores 4 Sockets (Total : 16 Cores)

Clock-Speed 2.4 GHz per Core

Peak(Perf.) 153.6 Gflops

Memory/Core 4 GB per Core

Memory type FBDIMM

Total Memory 64 GB

Cache L1 = 128 KB; L2 = 8 MB Per socket shared

OS Red Hat Enterprise Linux Server release 5 (Tikanga)

x86_64 (64 bit)

Compilers Intel 10.0(icc; fce; OpenMP)

MPI Intel (/opt/intel/ict/3.0.1/mpi/3.0/bin64)

Math Libraries Math Kernel Library 9.1

Intel Caneland (Quad Core) System Configuration

Multi-Core Processors & ARM Processors An Overview 308 C-DAC hyPACK-2013

Multi Core

(CPUs)

HPL Matrix Size/

Block size/ (P,Q)

Peak Perf

(Gflops)

Sust. Perf

(Gflops)

Utilization

(%)

4 40960/120(2,2) 38.4 32.54 84.73

8 42240/120(4,2) 76.8 60.72 79.06

16 40960/200(4,4) 153.6 97.09 63.20

83456/200(4,4)
Used 56 GB

153.6$ 116.2 76.0

88000/200(4,4)

 * 64 GB can be used

153.6*

122.3 79.4

Top500 : Benchmark on Multi Core Systems

Used Env : Intel 10.0(icc, MPI); Compiler Flag : -O3, -funroll-loops,-

fomit-frame-pointer.

For Top-500, algorithm parameters, tuning & performance of Compiler optimisations are

not tried to extract the sustained Performance.

Multi-Core Processors & ARM Processors An Overview 309 C-DAC hyPACK-2013

System Details Multi Core : IWILL H205 SunFire 4600

CPU Dual-Core AMD Opteron (tm)

Processor 8218

Dual-Core AMD Opteron(tm)

Processor 885

No of

Sockets/Cores

4 Sockets (Total : 8 Cores) 8 Sockets (Total : 16 Cores)

Clock-Speed 2.6 GHz per core 2.6 GHz per core

Peak(Perf.) 41.6 Gflops 83.2 Gflops

Memory/Core 1 GB per core 4 GB per core

Memory type DDR2 DDR2

Total Memory 8 GB 64 GB

Cache L1 = 128 KB; L2 = 1 MB L1 = 128 KB; L2 = 1 MB

OS Cent OS 4.4 x86_64 (64 bit) CentOS 4.4 (Final) x86_64 (64 bit)

Compilers Intel 9.1(icc; fce; OpenMP) Intel 9.1(icc; fce; OpenMP)

MPI mpicc:Intel MPI 2 .0 7 gcc/gfortran

mpiicc : Intel MPI 2.0 /icc, ifort

mpicc:Intel MPI 2 .0 7 gcc/gfortran

mpiicc : Intel MPI 2.0 /icc, ifort

Math Libraries ACML 3.5.0 ACML 3.5.0

Dual Core System : Configuration & Prog. Env

Multi-Core Processors & ARM Processors An Overview 310 C-DAC hyPACK-2013

System Details Multi Core : HP DL485 DELL PowerEdge 6950

CPU Dual-Core AMD Opteron (tm)

Processor 8200 SE

 Dual-Core AMD Opteron™

Processor 8218

No of

Sockets/Cores

4 Sockets (total 8 Cores) 4 Sockets (total 8 Cores)

Clock-Speed 2.8 GHz per core 2.6 GHz per core

Peak Performance 44.8 Gflops 41.2 Gflops

Memory/Core 2 GB per core 2 GB per core

Memory type DDR2 667 MHz DDR2 667 MHz

Total Memory 16 GB 16 GB

Cache L1 = 64 KB; L2 = 1 MB L1 =128 KB; L2 = 2 MB

OS Cent OS 4.4 x86_64 (64 bit) Cent OS 4.4 x86_64 (64 bit)

Compilers Intel 9.1(icc; fce; OpenMP) Intel 9.1(icc; fce; OpenMP)

MPI mpicc:Intel MPI 2 .0 7 gcc/gfortran

mpiicc : Intel MPI 2.0 /icc, ifort

mpicc:Intel MPI 2 .0 7 gcc/gfortran

mpiicc : Intel MPI 2.0 /icc, ifort

Math Libraries ACML 3.5.0 ACML 3.5.0

Dual Core Processors : Configuration & Prog. Env

Multi-Core Processors & ARM Processors An Overview 311 C-DAC hyPACK-2013

ACML 3.5.0
Libraries

IWILL

SunFire

HP DL485

DELL

Programming Environment Details Computing System

Rule 1 :The same Prog. environment is used for execution of Benchmark

Rule 2 :Process (Job) binding to particular CPU(s) is not considered

Rule 3 :Algorithmic parameters are not FULLY optimised

Intel MPI 2.0 MPI

- O3, -ip -funroll-loops, Flags

Intel 9.1.(icc; fce; OpenMP) Compilers

Remarks 1 :For selective Benchmark suites (HPCC), the input problem

parameters are same on the target systems. Tuning &

Performance Optimisation is not carried out

Cent OS 4.4 x86_64 (64 bit), Kernel 2.6.9 Operating System

Dual Core Procesors - Prog. Env & Benchmark Rules

Multi-Core Processors & ARM Processors An Overview 312 C-DAC hyPACK-2013

Comp.

System

Multi Core

(CPUs)

Matrix Size/

Block size/ (P,Q)

Peak Perf

(Gflops)

Sust. Perf

(Gflops)

Utilization

(%)

HP-

DL585

1 24000/160(1,1) 5.6 4.95 87.5

2 38400/160(2,1) 11.2 9.6 85.8

4 38400/160(2,2) 22.4 19.2 85.5

8 40448/160(4,2) 44.8 36.9 82.4

SunFireX 1 46080/128(1,1) 5.2 4.60 88.46

2 46080/128(2,1) 10.4 8.94 86

4 52000/160(2,2) 20.8 18.01 86.58

8 56320/128(4,2) 41.6 35.37 85.02

16 72000/192(8,2) 83.2 65.66 78.91

Dual Cores: HPCC – (Top-500) : Results & Performance

Algorithm parameters, tuning & performance Compiler optimisations are not

tried to extract the sustained performance.

Multi-Core Processors & ARM Processors An Overview 313 C-DAC hyPACK-2013

70

72

74

76

78

80

82

84

86

88

90

1 2 4 8 16
Number of Cores

U
ti

li
z
a
ti

o
n

SunFireX

HP-DL-585

Minimum and Maximum
Performance differ by 2-4 %

Choice of HPL Problem
Size parameters play an

important role

• Memory per Core

• L1 Cache

• Tuned Compilers

• Mathematical Kernels

• Operative System

• Process Affinity

Issues to be addressed for
Performance Enhancements

DELL

Dual Cores: HPCC – (Top-500) : Results & Performance

Algorithm parameters, tuning & performance of

Compiler optimisations are not tried to extract the

sustained performance.

Multi-Core Processors & ARM Processors An Overview 314 C-DAC hyPACK-2013

Utilization (%)

Sust. Perf

(Gflops)

Peak Perf

(Gflops)

Matrix Size/ Block

size/ (P,Q)

Multi Core (CPUs) Computing

System

76.7 31.7 41.6 30208/128(8,1) 8

82.1 17.1 20.8 25600 /120(4,1) 4

84.2 8.76 10.4 25600/128/(2,1) 2

86.5 4.498 5.2 25600/128(1,1) 1 IWILL

75.54 33.84 44.8 30208/128(8,1) 8

82.27 18.43 22.4 25600 /120(4,1) 4

82.91 9.286 11.2 25600/128 (2,1) 2

86.87 4.86 5.6 25600/128(1,1) 1 HP-DL585

76.9 32.0 41.6 30208/128(8,1) 8

83.2 17.3 20.8 25600 /120(4,1) 4

84.6 8.799 10.4 25600/128/ (2,1) 2

88.5 4.60 5.2 25600/128(1,1) 1 SunFireX

71.15 29.6 41.6 30208/128(8,1) 8

82.45 17.15 20.8 25600 /120(4,1) 4

85.00 8.84 10.4 25600/128 (2,1) 2

87.88 4.57 5.2 25600/128(1,1) 1 DELL

PowerEdge

6950

Dual Cores: HPCC –Top 500 : Performance

For Top-500, algorithm parameters, tuning & performance of Compiler optimisations are not tried to extract the

sustained Performance. Input Parameters on IWILL /SUNFIRE /HP DL585 /DELL are precisely the same.

Multi-Core Processors & ARM Processors An Overview 315 C-DAC hyPACK-2013

Part-XI:
An Overview of Multi-Core Processors

Prog.Env. - Software tools Overview

Multi-Core Processors & ARM Processors An Overview 316 C-DAC hyPACK-2013

 AMD Code Analyst Performance Analyzer for Linux

 (Profiling & pipeline simulation;

 timer-based, event-based, & thread profiling)

 AMD PMU Extension Driver

 AMD Performance Libraries

• AMD Core Math Library (ACML)

• A set of C/C++ and Fortran algorithms, focusing on Basic Linear
Algebra (BLAS), Linear Algebra (LAPACK), Fast Fourier
Transforms (FFTs), and other math functions tuned for 32-bit and
64-bit performance on Opteron processors.

• ACML – GPU

• AMD String Library; SSEPlus Project; AMD LibM

 AMD SmNow ; APML Tools; DMTF DASH

Visit http://developer.amd.com/cpu/Pages/default.aspx

AMD Software Products on Multi-core Processors

http://developer.amd.com/cpu/Pages/default.aspx

Multi-Core Processors & ARM Processors An Overview 317 C-DAC hyPACK-2013

 GCC & GNU Tools on AMD

 x86 Open64 compiler Suite

 GCC & GNU

• GCC 4.1.2 Downloads

• GCC 4.2 Downloads

• ACML – GPU

 x86 open64 compiler suite

 AMD Lightweight Profiling Specification

Visit http://developer.amd.com/cpu/Pages/default.aspx

AMD Software Products on Multi-core Processors

http://developer.amd.com/cpu/Pages/default.aspx

Multi-Core Processors & ARM Processors An Overview 318 C-DAC hyPACK-2013

 HP-MPI

 HP & Platform LSF

 HP UPC : Universal Parallel compiler

 HPC Library - Multi-Core Optimization

Visit http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html

 http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html

HP Software Products on Multi-core Processors

http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/hpc/us/en/linux-value-pack.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html
http://h20338.www2.hp.com/HPC/cache/277914-0-0-0-121.html

Multi-Core Processors & ARM Processors An Overview 319 C-DAC hyPACK-2013

Parallel Environment is a high-function development and
execution environment for parallel applications (distributed-
memory, message-passing applications running across
multiple nodes).

It is designed to help organizations develop, test, debug,
tune and run high-performance parallel applications written
in C, C++ and Fortran on Power Systems clusters. Parallel
Environment runs on AIX® or Linux®.

Visit http://www.ibm.com/developerworks/aix/

 http://www-03.ibm.com/systems/software/parallel/index.html

IBM Prog. Env. on Multi-core Processors

http://www.ibm.com/developerworks/aix/
http://www-03.ibm.com/systems/software/parallel/index.html
http://www-03.ibm.com/systems/software/parallel/index.html
http://www-03.ibm.com/systems/software/parallel/index.html

Multi-Core Processors & ARM Processors An Overview 320 C-DAC hyPACK-2013

 Parallel Environment includes the following components:

• The Parallel Operating Environment (POE) for
submitting and managing jobs.

• IBM's MPI and LAPI libraries for communication
between parallel tasks.

• A parallel debugger (pdb) for debugging parallel
programs.

• IBM High Performance Computing Toolkit for analyzing
performance of parallel and serial applications.

Visit http://www.ibm.com/developerworks/aix/

 http://www-03.ibm.com/systems/software/parallel/index.html

IBM Prog. Env. on Multi-core Processors

http://www.ibm.com/developerworks/aix/
http://www-03.ibm.com/systems/software/parallel/index.html
http://www-03.ibm.com/systems/software/parallel/index.html
http://www-03.ibm.com/systems/software/parallel/index.html
http://www-03.ibm.com/systems/software/parallel/index.html

Multi-Core Processors & ARM Processors An Overview 321 C-DAC hyPACK-2013

Intel® C++ and FORTRAN Compilers: Generate highly optimized
executable code for Intel® 64 and IA-32 processors.

Intel® VTune™ Performance Analyzer: Collects & displays Intel
architecture specific performance data from system-wide to specific
source lines.

Intel® Performance Libraries: Consists of set of software libraries
optimized for Intel processors. These include the Intel® Math Kernel
Library (Intel® MKL) and the Intel Integrated Performance Primitives
(Intel® IPP).

Intel® Threading Tools: These tools help debug and optimize
threaded code performance. They are the Intel® Thread Checker
and Thread Profiler.

Intel Performance Tuning Utility & several other tools posted on
www.whatif.intel.com.

Visit http://www.intel.com/software/products

Intel Software Products on Multi-core Processors

http://www.intel.com/software/products

Multi-Core Processors & ARM Processors An Overview 322 C-DAC hyPACK-2013

• VTune Performance Analyzer

• Intel Performance Libraries

• OpenMP (Intel OpenMP)

• Threading Building Block (TBB)

• Intel Thread Checker

• Intel Thread Checker

• Intel Debugger

• Intel Thread Profiler

• Intel VTune Performance Analyzer

• Intel Thread Checker

Analysis &

Design

Debugging

Tuning

Testing

Intel : Performance Improvement Cycle

Sour : http://www.intel.com/software/products

http://www.intel.com/software/products

Multi-Core Processors & ARM Processors An Overview 323 C-DAC hyPACK-2013

 Detect the potential errors.

 Filter out specific types of Diagnostics

 Identify critical source locations

 Get tips to improve the robustness

Intel® Thread Checker detects data races, deadlocks,

stalls, and other threading issues. It can detect the

potential for these errors even if the error does not

occur during an analysis session.

Intel Thread Checker : Features

Multi-Core Processors & ARM Processors An Overview 324 C-DAC hyPACK-2013

 Pinpoint the function, context, line, variable, and call stack in

the source code to aid analysis and repair of bugs

 Identify nearly impossible-to-find data races and deadlocks

using an advanced error detection engine. Helps to reduce

untraceable errors.

 Instrumental for effective design of threaded applications

 Errors do not need to actually occur to be detected. Make

the code as more robust

Intel® Thread Checker detects data races, deadlocks, stalls,

and other threading issues. It can detect the potential for these

errors even if the error does not occur during an analysis

session.

Intel Thread Checker : Benefits

Multi-Core Processors & ARM Processors An Overview 325 C-DAC hyPACK-2013

Identify bottlenecks that limit the parallel performance of

your multi threaded application.

Locate synchronization delays, stalled threads, excessive

blocking time, and ineffective utilization of processors.

Find the best sections of code to optimize for sequential

performance and for threaded performance.

Compare scalability across different numbers of

processors or using different threading methods.

Intel® Thread Profiler helps you to improve the

performance of applications threaded with Windows

API, OpenMP, or POSIX threads (Pthreads).

Intel Thread Profiler

Multi-Core Processors & ARM Processors An Overview 326 C-DAC hyPACK-2013

The VTune™ Performance Analyzer provides information

on the performance characteristics of given code . The

VTune analyzer shows you the performance issues,

enabling you to focus your tuning effort and get the best

performance boost in the least amount of time.

Intel Vtune Performance Analyzer

Sampling

Call graph

Counter Monitor

Monitor Performance

Multi-Core Processors & ARM Processors An Overview 327 C-DAC hyPACK-2013

Intel Vtune Performance Analyzer

 VTune Performance Analyzer related to threading

performance:

• Improving the efficiency of computation

• Improving your threading Model

 Determine what parts of your application (if any) that, when

threaded, will speed up your app

• CPU-bound apps can potentially run twice as fast on

dual-core processors

• Memory bound apps may potentially run 50% faster

• I/O bound applications may not run any faster threading

model

Multi-Core Processors & ARM Processors An Overview 328 C-DAC hyPACK-2013

 The Intel® C++ Application Debugger (Intel ® IDB 11. 0is

part of Intel Compiler packages

 Command line and GUI Interface is supported

 Features

• Enhanced Thread Awareness

• Thread Specific Breakpoint Handling

• SIMD SSE Window

• OpenMP Windows

• Thread Control & Thread Synchronization Breakpoint

• Thread Group ware breakpoint

Intel Debugger 11.0 for Linux

Multi-Core Processors & ARM Processors An Overview 329 C-DAC hyPACK-2013

Dedicated OpenMP Info Windows.

Intel Vtune Performance Analyzer

Theads

Teams

Tasks

Tasks spawn trees

Barriers*

Taskwaits

Locks

Multi-Core Processors & ARM Processors An Overview 330 C-DAC hyPACK-2013

Intel Scalable Memory Allocator

 The allocator requests

memory from the OS

in 1MB chunks and

divides each chunk

into 16K-byte aligned

blocks. These blocks

are initially placed in

the global heap of free

blocks.

Multi-Core Processors & ARM Processors An Overview 331 C-DAC hyPACK-2013

Total View

 Etnus Total View Debugger http://www.totalviewtech.com

(Tool for Multi-threaded applications – Dynamic Memory

Management tool, MPI debugging, workbench, Memory

Scape)

Allinea DDT Debugger

 Allinea DDT debugger (Distributed Debugging Tool is a

comprehensive graphical debugger for scalar, multi-

threaded and large-scale parallel applications that are

written in C, C++ and Fortran http://www.allinea.com

 Debugger tools on Multi-Core Processors

http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.totalviewtech.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Multi-Core Processors & ARM Processors An Overview 332 C-DAC hyPACK-2013

Performance Profiler tools

 Google PerfTool

Multi-threaded applications in C++ with templates. Includes

TCMalloc, heap-checker, heap-profiler and cpu-profiler

Works with STL

 Perf Tools is a collection of a high-performance multi-

threaded malloc() implementation, and performance

analysis tools. http://code.google.com/p/google-perftools

PerTools :

 PerfTools help one to identify spots in a program that are

responsible for CPU consumption.
 http://minos.phy.bnl.gov/~bviren/minos/software/prof/PerfTools/doc/

http://code.google.com/p/google-perftools
http://code.google.com/p/google-perftools
http://code.google.com/p/google-perftools
http://minos.phy.bnl.gov/~bviren/minos/software/prof/PerfTools/doc/

Multi-Core Processors & ARM Processors An Overview 333 C-DAC hyPACK-2013

 Binary-level measurement and analysis

 Support top down performance analysis

 Scalability bottlenecks on large scale parallel systems (MPI)

 Scaling on multi-core processors – Performance analysis of

multi-threaded code

 Combine multiple profiles – multiple threads, multiple

processes, multiple executions

 Visualization – explore performance data from multiple

perspectives

 Path Profiling – hardware counter overflows (Use PAPI)

 Unwinding Optimized code

• Use binary analysis

 Low Overhead of tool

 Tool Performance for codes having weak/ strong scaling

 http://hpctoolkit.org/documentation.html

HPC Tool Kit

http://hpctoolkit.org/documentation.html

Multi-Core Processors & ARM Processors An Overview 334 C-DAC hyPACK-2013

mpiP is a lightweight profiling library for MPI applications.

Because it only collects statistical information about MPI

functions,

 All the information captured by mpiP is task-local. It only

uses communication during report generation, typically at

the end of the experiment, to merge results from all of the

tasks into one output file.

 Gathers MPI information through the MPI profiling layer,

mpiP is a link-time library.

 Low Overhead of tool

 Tool Performance for codes having weak/ strong scaling

http://sourceforge.net/projects/mpip

MPI Profiling Library

http://sourceforge.net/projects/mpip

Multi-Core Processors & ARM Processors An Overview 335 C-DAC hyPACK-2013

 Performance Visualization for Parallel Programs. Jumpshot

is a Java-based visualization tool for doing postmortem

performance analysis.

 http://www.mcs.anl.gov/research/projects/perfvis/s
oftware/viewers/index.htm

MPI Jumpshot

http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm

Multi-Core Processors & ARM Processors An Overview 336 C-DAC hyPACK-2013

 KOJAK is a performance-analysis tool for parallel

applications supporting the programming models MPI,

OpenMP, SHMEM, and combinations thereof.

 Its functionality addresses the entire analysis process

including instrumentation, post-processing of performance

data, and result presentation.

 It is based on the idea of automatically searching event

traces of parallel applications for execution patterns

indicating inefficient behavior.

 The results are made available to the user in a flexible

graphical user interface, where they can be investigated on

varying levels of granularity.

 http://icl.cs.utk.edu/kojak/

Performance Analysis tool : KOJAK

http://icl.cs.utk.edu/kojak/

Multi-Core Processors & ARM Processors An Overview 337 C-DAC hyPACK-2013

 SCALASCA project (SCalable performance Analysis of

LArge SCale Applications), we have developed a scalable

trace analysis tool based on the KOJAK approach that

exploits both distributed memory and parallel processing

capabilities available on modern large-scale systems.

 SCALASCA analyzes separate local trace files in parallel by

replaying the original communication on as many CPUs as

have been used to execute the target application itself.

 http://icl.cs.utk.edu/scalasca/

Scalable Performance Analysis tool : SCALASCA

http://icl.cs.utk.edu/scalasca/

Multi-Core Processors & ARM Processors An Overview 338 C-DAC hyPACK-2013

 Absoft Fortran represents the highest performing 64-bit

compiler available for HPC, Linux, Windows and MacOS

environments. Utilizing Cray/SGI technology and advanced

optimizations tuned for the individual high performance

features of the AMD64 & Intel Xeon EM64T single and

multi-core processors

 Absoft Supports OpenMP, auto-parallelization, auto-

vectorization

 Absoft compilers support 64-bit or 32-bit code generation,

are fully compatible with gnu tool chain or system tools

(MPI, C++, Debuggers)

http://www.absoft.com/

Absoft Compilers for HPC

http://www.absoft.com/

Multi-Core Processors & ARM Processors An Overview 339 C-DAC hyPACK-2013

top – b

top - 15:22:45 up 4:19, 5 users, load average: 0.00, 0.03, 0.00

Tasks: 60 total, 1 running, 59 sleeping, 0 stopped, 0 zombie

Cpu(s): 3.8%us, 2.9% sy, 0.0% ni, 89.6% id, 3.3% wa, 0.4% hi, 0.0% si

Mem: 515896k total, 495572k used, 20324k free, 13936k buffers

Swap: 909676k total, 4k used, 909672k free, 377608k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1
root 16 0 1544 476 404 S 0.0 0.1 0:01.35 init

 2 root 34 19 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/0

 3 root 10 –5 0 0 0 S 0.0 0.0 0:00.11 events/0

Top Linux Tool

time top -b -n 1; top –p 4360 4358

 Monitoring resource usage, optimization our system, identifying

memory leak. Top provide almost everything we need to monitor our

system's resource usage within single shot.

http://www.linuxforums.org/articles/using-top-more-efficiently_89.html

Multi-Core Processors & ARM Processors An Overview 340 C-DAC hyPACK-2013

What is PAPI ?

 PAPI is an acronym for Performance Application

Programming interface.

 PAPI is a specification of a cross-platform interface to

hardware performance counters on modern

microprocessors. These counters exist as a small set of

registers that count events, which are occurrences of

specific signals related to a processor's function.

Source : http://icl.cs.utk.edu/papi/index.html

http://icl.cs.utk.edu/papi/index.html

Multi-Core Processors & ARM Processors An Overview 341 C-DAC hyPACK-2013

 The purpose of the PAPI is to design, standardize and
implement a portable API to access the hardware
performance monitor counters found on most modern
microprocessors.

 PAPI can

 Provide a solid foundation for cross platform
performance analysis tools

 Characterize application and system workload on the
CPU

 simulate the performance tool development

 simulate research on more sophisticated feedback
driven compilation techniques

 Why PAPI ?

Source : http://icl.cs.utk.edu/papi/index.html

http://icl.cs.utk.edu/papi/index.html

Multi-Core Processors & ARM Processors An Overview 342 C-DAC hyPACK-2013

Hardware Performance Counters ?

 Hardware performance counters, or Hardware counters are a set of

special-purpose registers built in modern microprocessors to store

the counts of hardware-related activities within computer systems.

 Compared to software profilers, hardware counters provide low-

overhead access to a wealth of detailed performance information

related to CPU's function units, caches and main memory etc.

Processor # HC

Intel Pentium 18

IA-64 4

Power 4 8

AMD-Athlon 4

Following table shows some examples of hardware counters

Multi-Core Processors & ARM Processors An Overview 343 C-DAC hyPACK-2013

PAPI Architecture

Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counters

Operating System

Kernel Extension
PAPI Machine Dependent Substrate

Machine
Specific

Layer

Portable
Layer

Multi-Core Processors & ARM Processors An Overview 344 C-DAC hyPACK-2013

 Installation of PAPI on Linux-x86 the kernel be patched
and recompiled with the PerfCtr patch

 Include the header file “papi.h” for C programs and
“fpapi.h” for Fortran programs

 Compiling with PAPI : Use –L<PAPI PATH>/lib–
lpapi with the compilation process of the application.

 Using PAPI in an application requires a few steps :

Including the event definition

Initializing the PAPI lib

Setting up the performance counters

Linking with PAPI lib

 Using PAPI

Multi-Core Processors & ARM Processors An Overview 345 C-DAC hyPACK-2013

 Relevant hardware counter data:

 Total cycles

 Total instructions

 Floating point operations

 Load/store instructions

 Cycles stalled

 waiting for memory access

 waiting for resource

 Conditional branch instructions

 executed

 mispredicted

 Using PAPI

Multi-Core Processors & ARM Processors An Overview 346 C-DAC hyPACK-2013

1. Optimize compiler switches

2. Integrate libraries

3. Profile

4. Optimize blocks of code that dominate execution
time by using hardware counter data to
determine why the bottlenecks exist

5. Always examine correctness at every stage!

6. Go To 3…

 Using PAPI : How do I optimize my application ?

Multi-Core Processors & ARM Processors An Overview 347 C-DAC hyPACK-2013

 Using PAPI Utilities

 papi_avail

 It is a utility program that provides availability and detail

information for PAPI preset events.

 Available options are –a, -d, –t,

 –e <event_name>

 papi_cost

 Computes execution time cost for basic PAPI operations

 Computes min, max, mean std. Deviation of execution times for

PAPI start/stop pairs and for PAPI reads.

 papi_mem_info

 Utility program provides information on the memory architecture

Commands available in bin dir of PAPI Installation:

Multi-Core Processors & ARM Processors An Overview 348 C-DAC hyPACK-2013

 Events are occurrences of specific signals related to a
processor’s function.

Ex: cache misses, number of floating point operations

 Preset events are mappings from symbolic names to
machine specific definitions for a particular hardware
resource.

 Ex: PAPI_TOT_CYC (I.e Total Cycles), PAPI_FLOPS

 Native events comprise the set of all events that are
countable by the CPU.

 Using PAPI : Events

Multi-Core Processors & ARM Processors An Overview 349 C-DAC hyPACK-2013

 PAPI provides two APIs to access the underlying counter

hardware:

 The low level interface manages hardware events in

user defined groups called EventSets. (PAPI low

level)

 The high level interface simply provides the ability to

start, stop and read the counters for a specified list of

events. (PAPI high level)

 Using PAPI : PAPI library Interface

Multi-Core Processors & ARM Processors An Overview 350 C-DAC hyPACK-2013

 PAPI must be able to support both explicit (library calls)

and implicit (compiler directives) threading models.

 PAPI only supports thread level measurements only if the

threads have a scheduling entity known and handled by

the operating system’s kernel.

 Thread support in the PAPI library can be initialized by

calling the function

 PAPI_thread_init(handle)

 handle -- Pointer to a routine that returns the

current thread ID.

Advanced PAPI features : PAPI with Threads

Multi-Core Processors & ARM Processors An Overview 351 C-DAC hyPACK-2013

 PAPI_thread_init(handle)

 Thread support in PAPI is initialised

 PAPI_thread_id()

 get the thread identifier of the current thread

 PAPI_get_thr_specific(tag, ptr)

 retrieve the pointer from the array with index tag

 PAPI_set_thr_specific(tag, ptr)

 save ptr into an array indexed by tag

API’s for Threads

Advanced PAPI features : PAPI with Threads

Multi-Core Processors & ARM Processors An Overview 352 C-DAC hyPACK-2013

Part-XII:
An Overview of Xeon Mulit-Core Systems

Multi-Core Processors & ARM Processors An Overview 353 C-DAC hyPACK-2013

System 1 : Intel Sandy Bridge Server

 Intel Software Development Platform (Intel SDP) MAK F1 Family.

 Platform : Intel (r) Many Integrated Core Architecture

 Platform Code Name : Knights Ferry

 CPU Chipset Codename : Westmere EP/ Tylersburg UP

 Board Codename : Sandy Core.

 CPU : Intel Xeon X5680 Westmere 3.33GHz 12MB L3 Cache
LGA 1366 130W Six-Core Server Processor BX80614X5680

Intel Xeon-Host : system configuration

Source : www.cdac.in/ Intel

http://www.cdac.in/

Multi-Core Processors & ARM Processors An Overview 354 C-DAC hyPACK-2013

System 2 : Super Micro SYS-7047GR-TPRF Server
 Chipset : Intel C602 Chipset,

 Mother board : Super X9DRG-QF,

 CPU : Intel Xeon processor E5-2643 (quad core) (up to 150W TDP),
Support for Xeon Phi - 5110P.

 Memory : 32 GB DDR3 ECC Registered memory(1600 MHz ECC
supported DDR3 SDRAM 72-bit, 240-pin gold-plated DIMMs),

 Expansion slot : with 4x PCI-E 3.0 x16 (double-width), 2x PCI-E x8),

 IPMI : Support for IPMI (Support for Intelligent Platform Management
Interface v.2.0, IPMI 2.0 with virtual media over LAN and KVM-over-LAN
support),

 Power : 1620W high-efficiency redundant power supply w/PMBus.

 Storage : SATA 3.0 6Gbps with RAID 0,1 support ,1 TB SATA Hard Disk,

 Network : Intel i350 Dual Port Gigabit Ethernet withsupport of Supports
10BASE-T, 100BASE-TX, and1000BASE-T, RJ45 output and 1x Realtek
RTL8201N\PHY (dedicated IPMI port)

Intel Xeon-Host : system configuration

Multi-Core Processors & ARM Processors An Overview 355 C-DAC hyPACK-2013

Intel Xeon-Host : Benchmarks Performance

Systems 3 : Host : Xeon (Memory Bandwidth (BW) - Xeon: 8
bytes/channel * 4 channels * 2 sockets * 1.6 GHz = 102.4 GB/s)

• Node : Intel-R2208GZ; Intel Xeon E52670;

• Core Frequency : 2.6GHz;

• Cores per Node : 16 ;

• Peak Performance /Node : 2.35 TF;

• Memory : 64 GB;

PARAM YUVA-II Intel Xeon- Node

Source : www.cdac.in/ Intel

http://www.cdac.in/

Multi-Core Processors & ARM Processors An Overview 356 C-DAC hyPACK-2013

Xeon Node Memory Bandwidth :
8 bytes/channel * 4 channels * 2 sockets * 1.6 GHz = 102.4 GB/s)
Experiment Results : Achieved Bandwidth : 70 % ~75 % Effective bandwidth
can be improved in the range of 10% to 15% with some optimizations

Data Size
(MegaBytes)

No. of Cores
(OpenMP)

Sustained Bandwidth
(GB/sec)

1024 16 72.64

(*) = Bandwidth results were gathered using untuned and unoptimized
versions of benchmark (In-house developed) and Intel Prog. Env

Source : http://www.intel.com; Intel Xeon-Phi books, conferences, Web sites,
Xeon-Phi Technical Reports http://www.cdac.in/

PARAM YUVA-II Intel Xeon- Node Benchmarks(*)

http://www.intel.in/content/dam/www/public/us/en/documents/perfo
rmance-briefs/xeon-phi-product-family-performance-brief.pdf

PARAM YUVA Node : Intel-R2208GZ; Intel Xeon E52670; Core Frequency : 2.6GHz; Cores per
Node : 16 ; Peak Performance /Node : 2.35 TF; Memory : 64 GB;

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/
http://www.cdac.in/

Multi-Core Processors & ARM Processors An Overview 357 C-DAC hyPACK-2013

Efficient, Deterministic, Declarative, Restrictive
Expressiveness based language

Parallel Prog. Languages (OpenMP, PGAS,
Intel TBB, Cilk Plus, OpenACC, CUDA)

Low-level APIs (MPI, Pthreads, OpenCL, Verilog)

Machine code, Assembly

Computation
al Science

Data
Informatics

Information
Technology

Very-high
level

High level

Low-level

Very
low-level

Applications

 Heterogeneous
Hardware M

u
lt

i-
to

-M
ay

-C
o

re
 S

ys
te

m
s
–

U
M

A
 &

 N
U

M
A

 S
ys

te
m

s

S
o

ft
w

ar
e

T
h

re
ad

in
g

Source : NVIDIA, AMD, SGI, Intel, IBM Alter, Xilinux & References

H
yb

ri
d

 C
o

m
p

u
ti

n
g

GPUs Coprocessors FPGAs

Prog.API - Multi-Core Systems with Devices

Multi-Core Processors & ARM Processors An Overview 358 C-DAC hyPACK-2013

Part-XII:
An Overview of Arm Multi-Core System

Multi-Core Processors & ARM Processors An Overview 359 C-DAC hyPACK-2013

Carma , the board includes the company's
Tegra 3 quad-core ARM A9 processor, a
Quadro 1000M GPU with 96 cores (good for
270 single-precision GFlops), as well as a PCIe
X4 link, one Gigabit Ethernet interface, one
SATA connector, three USB 2.0 interfaces as
well as a Display port and HDMI. 2GB GPU
Memory

 It uses the Tegra 3 chip as the basis and, thus, has four ARM

cores and an NVIDIA GPU.

 In addition, the platform has 2 GB of DDR3 RAM (random access
memory) as well.

 CUDA toolkit and a Ubuntu Linux-based OS

NVIDIA ARM With Carma DevKit

Source : www.nvidia.com

Multi-Core Processors & ARM Processors An Overview 360 C-DAC hyPACK-2013

Mini-ITX motherboard designed for developers

 Features a Tegra 3 SoC, 2GB RAM, low power Kepler-based
GPU (1GB RAM & 2 SMX or 384 CUDA cores, MXM/PCIe FF),
10W

 Supports CUDA 5.0

NVIDIA ARM With KAYLA DevKit

Source : www.nvidia.com

Multi-Core Processors & ARM Processors An Overview 361 C-DAC hyPACK-2013

 Introducing the Kayla DevKit for computing on the ARM architecture –
where supercomputing meets mobile computing.

 The Kayla DevKit hardware is composed of mini-ITX carrier board and
NVIDIA® GeForce® GT640/GDDR5 PCI-e card.

 The mini-ITX carrier board is powered by NVIDIA Tegra 3 Quad-core ARM
processor while GT640/GDDR5 enables Kepler GK208 for the next
generation of CUDA and OpenGL application. Pre-installed with CUDA 5
and supporting OpenGL 4.3.

 Kayla provides ARM application development across the widest range of
application types.

 Kayla brings all modern visual benefits to mobile processor, and accelerate
application development to next generation Logan SOC.

NVIDIA ARM With KAYLA DevKit

Multi-Core Processors & ARM Processors An Overview 362 C-DAC hyPACK-2013

Form Factor
Kayla mITX
Buy Now

CPU
NVIDIA® Tegra® 3 ARM Cortex
A9 Quad-Core with NEON

GPU

NVIDIA® GeForce®
GT640/GDDR5 (TO BE
PURCHASED SEPARATELY) Buy
Now

Memory 2GB DRAM

CPU - GPU Interface PCI Express x16 / x4

Network 1x Gigabit Ethernet

Storage 1x SATA 2.0 Connector

USB 2x USB 2.0

Software
Linux Ubuntu Derivative OS
CUDA 5 Toolkit

NVIDIA ARM With KAYLA DevKit

http://shop.seco.com/gpudevkit/gpudevkit-detail.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.newegg.com/Product/Product.aspx?Item=N82E16814121771&nm_mc=OTC-Channel&cm_mmc=OTC-channel-_-Video+Card+-+Nvidia-_-ASUS-_-14121771&srccode=cii_7240466&cpncode=26-20938146&DEPA=0&refer=channel&CMP=OTC-
http://www.newegg.com/Product/Product.aspx?Item=N82E16814121771&nm_mc=OTC-Channel&cm_mmc=OTC-channel-_-Video+Card+-+Nvidia-_-ASUS-_-14121771&srccode=cii_7240466&cpncode=26-20938146&DEPA=0&refer=channel&CMP=OTC-

Multi-Core Processors & ARM Processors An Overview 363 C-DAC hyPACK-2013

 An Overview of Multi-Core Architectures, Programming on
Multi-Core Processors , Tuning & Performance of
Software threading, & Multi-Core Software tools, Xeon
(Sandy Bridge) multi-Core System & ARM Multi-core
Systems are discussed.

Conclusions

An Overview of Multi-Core Processors

Multi-Core Processors & ARM Processors An Overview 364 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 365 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors & ARM Processors An Overview 366 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors & ARM Processors An Overview 367 C-DAC hyPACK-2013

32. http://www.erc.msstate.edu/mpi/

33. http://www.arc.unm.edu/workshop/mpi/mpi.html

34. http://www.mcs.anl.gov/mpi/mpich

35. The MPI home page, with links to specifications for MPI-1 and MPI-2 standards :
http://www.mpi–forum.org

36. Hybrid Programming Working Group Proposals, Argonne National Laboratory, Chiacago (2007-2008)

37. TRAC Link : https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid

38. Threads and MPI Software, Intel Software Products and Services 2008 - 2009

39. Sun MPI 3.0 Guide November 2007

40. Treating threads as MPI processes thru Registration/deregistration –Intel Software Products and
Services 2008 - 2009

41. Intel MPI library 3.2 - http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/

42. http://www.cdac.in/opecg2009/

43. PGI Compilers http://www.pgi.com

References

http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.mcs.anl.gov/mpi/mpich
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.cdac.in/opecg2009/
http://www.pgi.com/

Multi-Core Processors & ARM Processors An Overview 368 C-DAC hyPACK-2013

 Thank You
 Any questions ?

