
1 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Lecture Topic:

GPU Computing – CUDA / OpenACC

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-4 : GPUs)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

2 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Lecture Outline

Following topics will be discussed

 Part-I : An introduction to OpenACC

 Part-II : The OpenACC Pragmas

 Part-III: OpenACC Basic Examples

 Part-IV : Summary

Source : NVIDIA & References given in the presentation

An Overview of OpenACC

Venue : CMSD, UoHYD ; Date : Oct 15-18, 2013

3 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Introduction to OpenACC

 OpenACC: http://www.openacc-standard.org/
 Source : NVIDIA, NVIDIA-PGI & References

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

4 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

3 Ways to Accelerate Applications

Applications

Libraries
Open ACC
Directives

Programming
Languages

“Drop-in”
Acceleration

Easily Accelerate
Applications

Maximum
Flexibility

Source : NVIDIA, PGI, CRAY, CAPS, & References given in the presentation

5 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

“OpenACC will enable programmers to easily develop

portable applications that maximize the performance and

power efficiency benefits of the hybrid CPU/GPU architecture

of Titan.”

 --Buddy Bland, Titan Project Director,

Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought

together by members of the OpenMP Working Group on

Accelerators, as well as many others. We look forward to

releasing a version of this proposal in the next release of

OpenMP.”

 --Michael Wong, CEO

OpenMP Directives Board
Source : NVIDIA & References given in the presentation

OpenACC : Open Prog. Stanadard for Par. Comp.

6 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Easy: Directives are the easy path to accelerate
 compute intensive applications

Open: OpenACC is an open GPU directives standard,
 making GPU programming straightforward and
 portable across parallel and multi-core
 processors

Powerful: GPU Directives allow complete access to the
 massive parallel power of a GPU

OpenACC : The standard for GPU Devices

Source : NVIDIA & References given in the presentation

7 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

OpenACC : High-level, with low-level access

 Compiler directives to specify parallel regions in C, C++,
Fortran
 OpenACC compilers offload parallel regions from host to accelerator
 Portable across OSes, host CPUs, accelerators, and compilers

 Create high-level heterogeneous programs
 Without explicit accelerator initialization,
 Without explicit data or program transfers between host and

accelerator

 Programming model allows programmers to start simple
 Enhance with additional guidance for compiler on loop mappings,

data location, and other performance details

 Compatible with other GPU languages and libraries
 Interoperate between CUDA C/Fortran and GPU libraries
 e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Source : NVIDIA & References given in the presentation

8 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Full OpenACC 1.0 Specification available
online http://www.openacc-standard.org

 Quick reference card also available

 Beta implementations available now from

PGI, Cray, and CAPS

 Information is given in References

OpenACC : High-level, with low-level access

Source : NVIDIA & References given in the presentation

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

9 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Source : NVIDIA & References given in the presentation

OpenACC Basic Concepts

11 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Familiar to OpenMP Programmers

Source : NVIDIA & References given in the presentation

12 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

Compile and run

C:

pgcc –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c

Fortran:
pgf90 –acc -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.f90

Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Accelerator kernel generated

 9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

OpenACC Compile & Run

Source : NVIDIA & References given in the presentation

13 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Accelerator programming API standard to program

accelerators

 Portable across operating systems and various types of

host CPUs and GPU accelerators.

 Allows parallel programmers to provide simple hints,

known as “directives,” to the compiler, identifying which

areas of code to accelerate, without requiring

programmers to modify or adapt the underlying code

itself.

 Aimed at incremental development of accelerator code

 Effort driven by vendors with the input from users/

applications

What is OpenACC?

Source : NVIDIA & References given in the presentation

14 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The current vendors support OpenACC are: Cray: High-
Level GPU directives

 PGI: PGI accelerator directives

 CAPS Enterprise: HMPP

 NVIDIA: CUDA, OpenCL

 Others: As this defacto standard gains traction

 Strong interaction with the OpenMP accelerator
subcomittee with input from other institutions

OpenACC Vendor Support

Source : NVIDIA & References given in the presentation

15 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Phase 1: First Standardization of High-Level GPU

directives. [Short-term, Mid-term]

 Heavily influenced by NVIDIA hardware.

 Phase 2: Experiences from OpenACC will drive the

effort of OpenMP for Accelerators

 More general solution

 Might take years to develop

 Better interoperability with OpenMP

Impact of OpenACC

Source : NVIDIA & References given in the presentation

16 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Directives facilitate code development for

accelerators

 Provide the functionality to:

 Initiate accelerator startup/shutdown

 Manage data or program transfers between host

(CPU) and accelerator

 Scope data between accelerator and host (CPU)

 Manage the work between the accelerator and host.

 Map computations (loops) onto accelerators

 Fine-tune code for performance

Overview of the OpenACC directives

Source : NVIDIA & References given in the presentation

17 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Bulk of computations executed in CPU, compute

intensive regions offloaded to accelerators

 Accelerators execute parallel regions:

 Use work-sharing and kernel directives

 Specification of coarse and fine grain parallelization

 The host is responsible for

 Allocation of memory in accelerator

 Initiating data transfer

 Sending the code to the accelerator

 Waiting for completion

 Transfer the results back to host

 De-allocating memory

 Queue sequences of operations executed by the device

Execution Model

Source : NVIDIA & References given in the presentation

18 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Parallelism:

 Support coarse-grain parallelism

⁻ Fully parallel across execution units

⁻ Limited synchronizations across

⁻ coarse-grain parallelism

 Support for fine-grain parallelism

⁻ Often implemented as SIMD

⁻ Vector operations

 Programmer need to understand the differences

between them.

⁻ Efficiently map parallelism to accelerator

⁻ Understand synchronizations available

 Compiler may detect data hazards

⁻ Does not guarantee correctness of the code

 Execution Model

Source : NVIDIA & References given in the presentation

19 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Host + Accelerator memory may have completely
separate memories
 Host may not be able to read/write device memory that

is not mapped to a shared virtual addressed.

 All data transfers must be initiated by host
 Typically using direct memory accesses (DMAs)

 Data movement is implicit and managed by compiler

 Device may implement weak consistency memory model
 Among different execution units

 Within execution unit: memory coherency guaranteed
by barrier

Memory Model

Source : NVIDIA & References given in the presentation

20 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Programmer must be aware of:

 Memory bandwidth affects compute intensity

 Limited device memory

 Assumptions about cache:

• Accelerators may have software or hardware

managed cache

• May be limited to read only data

 Caches are managed by the compiler with hints by the

programmer

 Compiler may auto-scope variables based on static

information or enforce runtime checks.

Memory Model (2)

Source : NVIDIA & References given in the presentation

21 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Accelerator Parallel Region / Kernels Directives

 Loop Directives

 Data Declaration Directives

 Data Regions Directives

 Cache directives

 Wait / update directives

 Runtime Library Routines

 Environment variables

Categories of OpenACC APIs

Source : NVIDIA & References given in the presentation

22 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 C/C++:

#pragma acc directive-name [clause [,clause]…] new-line

 Fortran:

!$acc directive-name [clause [, clause]…]

c$acc directive-name [clause [, clause]…]

*$acc directive-name [clause [, clause]…]

Directives Format

Source : NVIDIA & References given in the presentation

23 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Starts parallel execution on accelerator

 Specified by:

 #pragma acc parallel [clause [,clause]…] new-line

structured block

 When encountered:

 Gangs of workers threads are created to execute on

accelerator

 One worker in each gang begins executing the code

following the structured block

 Number of gangs/workers remains constant in parallel

region

OpenACC Parallel Directive

Source : NVIDIA & References given in the presentation

24 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

CPU

Thread
CPU

Thread

Accelerator Parallel Region

Worker

Threads

W-line

OpenACC Parallel Directive

Source : NVIDIA & References given in the presentation

25 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc parallel directive are:
 if(condition)

 async [(scalar-integer-expression)]

 num_gangs (scalar-integer-expression)

 num_workers (scalar-integer-expression)

 vector_length (scalar-integer-expression)

 reduction (operator:list)

 copy (list)

 copyout (list)

 create (list)

 private (list)

 firstprivate (list)

OpenACC Parallel Directive (2)

Source : NVIDIA & References given in the presentation

26 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc parallel directive are:
 present (list)

 present_or_copy (list)

 present_or_copyin (list)

 present_or_copyout (list)

 present_or_create (list)

 deviceprt (list)

 If async is not present, there is an implicit barrier at
the end of accelerator parallel region.

 present_or_copy default for aggregate types (arrays)

 private or copy default for scalar variables

OpenACC Parallel Directive (3)

Source : NVIDIA & References given in the presentation

27 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Defines a region of a program that is to be

compiled into a sequence of kernels for

execution on the accelerator

 Each loop nest will be a different kernel

 Kernels launched in order in device

 Specified by:
 #pragma acc kernels [clause [,clause]…] new-line

 structured block

OpenACC Kernel Directive

Source : NVIDIA & References given in the presentation

28 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Kernels directive may not contain nested parallel or
kernel directive

 Configuration of gangs and worker thread may be
different for each kernel

 The clauses for the !$acc kernels directive are: if(
condition)
 async [(scalar-integer-expression)]

 copy (list)

 copyin (list)

 copyout (list)

 create (list)

 private (list)

 firstprivate (list)

OpenACC Kernel Directive (2)

Source : NVIDIA & References given in the presentation

29 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc kernels directive are: present
(list)
 present_or_copy (list)

 present_or_copyin (list)

 present_or_copyout (list)

 present_or_create (list)

 deviceprt (list)

 If async is present, kernels or parallel region will
execute asynchronous on accelerator

 present_or_copy default for aggregate types (arrays)

 private or copy default for scalar variables

OpenACC Kernel Directive (3)

Source : NVIDIA & References given in the presentation

30 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 if clause
 Optional clause to decide if code should be executed on

accelerator or host

 async clause
 Specifies that a parallel accelerator or kernels regions should

be executed asynchronously

 The host will evaluate the integer expression of the async
clause to test or wait for completion with the wait directive

 num_gangs clause
 Specifies the number of gangs that will be executed in the

accelerator parallel region

 num_workers clause
 Specifies the number of workers within each gang for a

accelerator parallel region

OpenACC Parallel/Kernel Clauses

Source : NVIDIA & References given in the presentation

31 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 vector_length clause
 Specifies the vector length to use for the vector or SIMD

operations within each worker of a gang

 private clause
 A copy of each item on the list will be created for each gang

 firstprivate clause

 A copy of each item on the list will be created for each gang and
initialized with the value of the item in the host

 reduction clause
 Specifies a reduction operation to be perform across gangs

using a private copy for each gang.

 Support for: +, *, max, min, &, |, &&, ||

 Other operators available in Fortran: .neqv., .eqv.

OpenACC Parallel/Kernel Clauses

Source : NVIDIA & References given in the presentation

32 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The data construct defines scalars, arrays and

subarrays to be allocated in the accelerator

memory for the duration of the region.

 Can be used to control if data should be copied-

in or out from the host

 Specified by:

 #pragma acc data [clause [,clause]…] new-line

 structured block

OpenACC Data Directive

Source : NVIDIA & References given in the presentation

33 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc data directive are:
 if(condition)
 copy (list)
 copyin (list)
 copyout (list)
 create (list)
 present (list)
 present_or_copy (list)
 present_or_copyin (list)
 present_or_copyout (list)
 present_or_create (list)
 deviceptr (list)

OpenACC Data Directive

Source : NVIDIA & References given in the presentation

34 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 copy clause
 Specifies items that need to be copied-in from the host to

accelerator, and then copy-out at the end of the region
 Allocates accelerator memory for the copy items.

 copy-in clause
 Specifies items that need to be copied-in to the accelerator

memory
 Allocates accelerator memory for the copy-in items

 copy-out clause
 Specifies items that need to be copied-out to the accelerator

memory
 Allocates accelerator memory for the copy-out items

OpenACC Data Directive

Source : NVIDIA , PGI & References given in the presentation

35 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 create clause
 Specifies items that need to allocated (created) in the

accelerator memory
 The values of such items are not needed by the host

 copy-in clause
 Specifies items that need to be copied-in to the accelerator

memory
 Allocates accelerator memory for the copy-in items

 present clause
 Specifies items are already present in the accelerator memory
 The items were already allocated on other data, parallel or

kernel regions. (i.e. inter-procedural calls)

OpenACC Data Directive (2)

Source : NVIDIA & References given in the presentation

36 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 present_or_copy clause
 Tests if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-in and out its
value from/to the host

 present_or_copyin clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-in its value from
the host

 present_or_copyout clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator and copy-out its value to
the host

 present_or_create clause
 Test if a data item is already present in the accelerator. If not, it

will allocate the item in the accelerator (no initialization)

OpenACC Data Directive (3)

Source : NVIDIA & References given in the presentation

37 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used to describe what type of parallelism to use to
execute the loop in the accelerator.

 Can be used to declare loop-private variables,
arrays and reduction operations.

 Specified by:

 #pragma acc loop [clause [,clause]…] new-line for

loop

OpenACC Loop Directive

Source : NVIDIA & References given in the presentation

38 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc loop directive are:
 collapse (n)
 gang [(scalar-integer-expression)]
 worker [(scalar-integer-expression)]
 vector [(scalar-integer-expression)]
 seq
 independent
 private (list)
 reduction (operator : list)

 collapse directive
 Specifies how many tightly nested loops are associated

with the loop construct

OpenACC Loop Directive (2)

Source : NVIDIA & References given in the presentation

39 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 gang clause
 Within a parallel region: it specifies that the loop iteration need to

be distributed among gangs.
 Within a kernel region: that the loop iteration need to be

distributed among gangs. It can also be used to specify how many
gangs will execute the iteration of a loop

 worker clause
 Within a parallel region: it specifies that the loop iteration need to

be distributed among workers of a gang.
 Within a kernel region: that the loop iteration need to be

distributed among workers of a gang. It can also be used to

specify how many workers of a gang will execute the iteration of a
loop

 seq clause
 Specifies that a loop needs to be executed sequentially by the

accelerator

 OpenACC Loop Clauses

Source : NVIDIA & References given in the presentation

40 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 vector clause
 Within a parallel region: specifies that the loop iterations need to

be in vector or SIMD mode. It will use the vector length specified
by the parallel region

 Within a kernel region: specifies that the loop iterations need to
be in vector or SIMD mode. If an argument is specified, the
iterations will be processed in vector strips of that length.

 independent clause
 Specifies that there are no data dependences in the loop

 private clause
 Specifies that a copy of each item on the list will be created for

each iterations of the loop.

 reduction clause
 Specifies that a reduction need to be perform associated to a

gang, worker or vector

OpenACC Loop Clauses

Source : NVIDIA & References given in the presentation

41 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Specifies array elements or subarrays that should
be fetched into the highest level of the cache for
the body of the loop.

 Specified by:
 #pragma acc cache(list) new-line

OpenACC Cache Directive

Source : NVIDIA & References given in the presentation

42 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Some directives can be combined into a single
one

 Combined directives are specified by:

 #pragma acc parallel loop [clause [,clause]…] new-line
 for loop
 #pragma acc kernels loop [clause [,clause]…] new-line
 for loop

OpenACC Combined Directive

Source : NVIDIA & References given in the presentation

43 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used in the variable declaration section of program
to specify that a variable should be allocated, copy-
in/out in an implicit data region of a function,
subroutine or program .

 If specified within a Fortran Module, the implicit
data region is valid for the whole program.

 Specified by:
 #pragma acc declare [clause [,clause]…] new-line

OpenACC Declare Directive

Source : NVIDIA & References given in the presentation

44 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 The clauses for the !$acc data directive are: copy
(list)
 copyin (list)
 copyout (list)
 create (list)
 present (list)
 present_or_copy (list)
 present_or_copyin (list)
 present_or_copyout (list)
 present_or_create (list)
 deviceptr (list)
 device_resident (list)

OpenACC Declare Directive (2)

Source : NVIDIA & References given in the presentation

45 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Used within a data region to update / synchronize

the values of the arrays on both the host or

accelerator

 Specified by:
 #pragma acc update [clause [,clause]…] new-line

 The clauses for the !$acc update directive are:
 host (list)

 device (list)

 if (condition)

 async [(scalar-integer-expression)]

OpenACC Update Directive

Source : NVIDIA & References given in the presentation

46 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 It causes the program to wait for completion of an

asynchronous activity such as an accelerator

parallel, kernel region or update directive

 Specified by:
 #pragma acc wait [(scalar-integer-expression)] new-

line

 It will test and evaluate the integer expression for

completion

 If no argument is specified, the host process will

wait until all asynchronous activities have

completed

 Can be specified per CPU/Thread basis.

OpenACC Wait Directive

Source : NVIDIA & References given in the presentation

47 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 int acc_get_num_devices(acc_device_t)
 void acc_set_device_type(acc_device_t)
 acc_device_t acc_get_device_type()
 acc_set_device_num(int, acc_device_t)
 int acc_get_device_num(acc_device_t)
 int acc_async_test(int)
 int acc_async_test_all()
 void acc_async_wait(int)
 void acc_async_wait_all()
 void acc_init(acc_device_t)
 void acc_shutdown (acc_device_t)
 int acc_on_device(acc_device_t)
 void* acc_malloc(size_t)
 void acc_free(void*)

OpenACC runtime calls

setenv ACC_DEVICE_TYPE
NVIDIA setenv
ACC_DEVUCE_NUM 1
Environment Variables

Source : NVIDIA & References given in the presentation

48 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Some vendors will provide implementations of
OpenACC at the end of this year.

 The OpenACC Cray implementation is available

 Use OpenACC as the standard GPU programming

directives

 applications users are starting to use

 Visit References for runtime calls

OpenACC runtime calls

Source : NVIDIA & References given in the presentation

49 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

1. OpenACC: www.openacc-standard.org/

2. GPU Computing with OpenACC Directives Presented by John Urbanic,

Pittsburgh Supercomputing Center Authored by Mark Harris NVIDIA Corporation

3. Cray OpenACC http://www.openacc-standard.org/content/cray-even

4. CAPS – OpenACC : http://www.caps-entreprise.com/index.php

5. http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36 CAPS

OpenACC COMPILER

6. PGI OpenACC : www.pgroup.com/resources/accel.htm
7. http://www.opengpu.net/EN/attachments/154_HiPEAC2012_OpenGPU_nVidia.pdf

OPENACC DIRECTIVES FOR ACCELERATORS –NVIDIA

8. http://www.pgroup.com/doc/openACC_gs.pdf PGI OpenACC Compilers Getting Started

Guide Version 12.3

9. Introduction to OpenACC; Oscar Hernandez, Richard Graham, Computer Science and

Mathematics (CSM), Application Performance Tools Group,Oak Ridge National

Laboratories, U.S Dept. of Energy

10. GPU Programming with CUDA and OpenACC; Axel Koehler – NVIDIA

11. http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf The OpenACC™ API QUICK RE

FEREN CE GUIDE

12. http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf The OpenACC™ Application

Programming Interface Version 1.0 November, 2011

References Acknowledgement s

References :

Source : NVIDIA & References given in the presentation

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.openacc-standard.org/content/cray-even
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/index.php
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.caps-entreprise.com/fr/page/index.php?id=148&p_p=36
http://www.pgroup.com/resources/accel.htm
http://www.opengpu.net/EN/attachments/154_HiPEAC2012_OpenGPU_nVidia.pdf
http://www.pgroup.com/doc/openACC_gs.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.nvidia.com/docs/IO/116711/OpenACC-API.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

50 C-DAC hyPACK-2013 HPC - GPU Prog. CUDA/OpenACC

 Any Questions?
 OpenACC: http://www.openacc-standard.org/
 Source : NVIDIA & References

Questions

Source : NVIDIA & References given in the presentation

Thank You

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

