
1 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Lecture Topic:
An Overview of CUDA enabled GPUs

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-4 : GPUs)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

2 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Lecture Outline

Following topics will be discussed

 An overview of CUDA enabled NVIDIA GPU

 Tuning & Performance Issues on NVIDIA GPUs

 An Overview of CUDA 4.x/5.0 & -Fermi /Kepler GK110

Source : NVIDIA, References given in the presentation

An Overview of CUDA enabled NVIDIA GPUs

3 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA enabled NVIDIS GPUs

Part-1

Source & Acknowledgements : NVIDIA, References

4 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Source & Acknowledgements : NVIDIA, References

Computing - CPU/GPU

5 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Floating-Point Operations per Second and Memory Bandwidth for the CPU and GPU

Computing - CPU/GPU

Source & Acknowledgements : NVIDIA, References

6 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Why Are GPUs So Fast?

 GPU originally specialized for math-intensive, highly

parallel computation

 So, more transistors can be devoted to data

processing rather than data caching and flow control

 Commodity industry: provides economies of scale

 Competitive industry: fuels innovation

Control

Cache

DRAM DRAM

ALU ALU

ALU ALU

CPU GPU

AMD

NVIDIA

Source : NVIDIA, References

7 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Scale to 100’s of cores, 1000’s of parallel

threads

Let programmers focus on parallel

algorithms & Re-writing the Code

• Not on the mechanics of a parallel

programming language

Enable heterogeneous systems (i.e. CPU

+ GPU)

• CPU and GPU are separate devices

with separate DRAMs

Some Design Goals

GPU Computing : Think in Parallel

0 1 2 3 4 5 6 7

……

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

8 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Computing drives new applications

• Reducing “Time to Discovery”

• 100 x Speedup changes science &

research methods

New applications drive the future of GPUs

• Drives new GPU capabilities

• Drives hunger for more performance

GPU Computing : Think in Parallel

Performance = parallel hardware

 +

 scalable parallel program

Application

CPU GPU

Source & Acknowledgements : NVIDIA, References

9 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Computing : Think in Parallel

 The GPU is a data-parallel processor

• Thousands of parallel threads

• Thousands of data elements to process

• All data processed by the same program

 SPMD computation model

• Contrast with task parallelism and ILP

 Best results when you “Think Data Parallel”

• Design your algorithm for data-parallelism

• Understand parallel algorithmic complexity and efficiency

• Use data-parallel algorithmic primitives as building blocks

 Speedups of 8 x to 30x are quite common

for certain class of applications

Application

CPU GPU

Source : NVIDIA, AMD, References

Source & Acknowledgements : NVIDIA, References

10 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

•Performance /(Cost/Watt); Power for Core

•Structured Parallelism enables more flops less watts

Optimized for structured parallel execution

• Extensive ALU counts & Memory Bandwidth

• Cooperative multi-threading hides latency

Shared Instructions Resources

Fixed function units for parallel workloads dispatch

Extensive exploitations of Locality

GPU Computing : Think in Parallel

Why Are GPUs So Fast?

Source : NVIDIA, AMD, References

11 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

• GPU spends its translators on ALUs, not memory

Do more computation on the GPU to avoid costly data

transfers

• Even low parallelism computations can sometimes

be faster than transferring back and forth to host

GPU Computing : Think in Parallel

GPU Computing : Optimise Algorithms for the GPU

Source & Acknowledgements : NVIDIA, References

12 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Partition your computation to keep the GPU

multiprocessors equally busy

• Many threads, many thread blocks

Keep resource usage low enough to support

multiple active thread blocks per multiprocessor

• Registers, shared memory

GPU Computing : Use Parallelism Efficiently

GPU Computing : Think in Parallel

Source : NVIDIA,AMD, References

13 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Hundreds of times faster than global

memory

Threads can cooperate via shared memory

Use one/ a few threads to load/computer

data shared by all threads

Use it to avoid non-coalesced access

• Stage loads and stores in shared

memory to re-order non-coalesceable

addressing

• Matrix transpose example later

GPU Computing : Think in Parallel

GPU Computing : Take Advantage of Shared Memory

Application

CPU GPU

Source & Acknowledgements : NVIDIA, References

14 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU Challenges with regard to Scientific Computing

GPU Programming : Two Main Challenges

 Example : Matrix Computations

• To port an existing scientific
application to a GPU

Challenge 1 : Programmability

 The user must focus considerable effort on optimizing
performance by manually orchestrating data movement
and managing thread level parallelism on GPU.

 GPU memory exists on the card itself
• Must send matrix array over PCI-Express Bus

 Send A, B, C to GPU over PCIe

Perform GPU-based computations on A,B, C

 Read result C from GPU over PCIe

Source : NVIDIA, AMD, References

Application

CPU GPU

15 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Challenge 2 : Accuracy

 Example : Non-Scientific Computation - Video Games (Frames)
(A single bit difference in a rendered pixel in a real-time graphics
program may be discarded when generating subsequence
frames)

 Scientific Computing : Single bit error - Propagates overall error

 Past History : Most GPUs support single/double precision, 32 bit
/64-bit floating point operation, - all GPUs have necessarily
implemented the full IEEE Standard for Binary Floating-Point
Arithmetic (IEEE 754)

GPU Programming : Two Main Challenges

Source : NVIDIA, AMD, References

Source & Acknowledgements : NVIDIA, References

16 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A CUDA kernel is executed by an array of threads

• All threads run the same code

• Each thread has an ID that it uses to compute

memory addresses and make control decisions

Arrays of Parallel Threads

0 1 2 3 4 5 6 7

……

float x = input[threadID];

float y = func(x);

output[threadID] = y;

……

threadID

NVIDIA - GPU Computing CUDA Kernels and Threads

Source : NVIDIA

17 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Solution: GPU Computing – NVIDIA CUDA

• NEW: GPU Computing with CUDA

 CUDA = Compute Unified Driver Architecture

 Co-designed hardware & software for direct GPU

computing

• Hardware: fully general data-parallel architecture

 General thread launch

 Global load-store

 Parallel data cache

• Software: program the GPU in C

 Scalable data-parallel execution/

 memory model

 Scalar architecture

 Integers, bit operations

 Single / Double

precision C with

powerful extensions

 CUDA 4.0 /CUDA 5.0

Source & Acknowledgements : NVIDIA, References

18 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Several multiprocessors (MP), each with:

- several simple cores

- small shared memory

The threads executing

in the same MP must

execute the same

instruction

Shared memory must be

used to prevent the

high latency of the

global device memory

GPU : Architecture

Source & Acknowledgements : NVIDIA, References

19 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GPU Computing Architecture is a separate

HW interface that can be plugged into the desktops /

workstations / servers with little effort.

G80 series GPUs /Tesla deliver FEW HUNDRED to

TERAFLOPS on compiled parallel C applications

GeForce 8800 Tesla S870
Tesla D870

Glance at NVIDIA GPU’s

Source : NVIDIA, References

20 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

512 MB/256-bit GDDR3

@ 900 MHz

16x PCI-Express

SLI Connector

DVI x 2

sVideo

TV Out
Single slot cooling

GeForce 8800 GT Card

Source : NVIDIA, References

21 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Reflects the memory hierarchy
of the device

All threads from a single block
are executed in the same MP

Shared memory:
- Used for communication
and synchronization of
thread of the same block

How to map neuronal processing
and communications into
CUDA threads?

GPU Thread Organisation

Source & Acknowledgements : NVIDIA, References

22 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

To a CUDA Developer,

• The computing system consists of a host, which is a

traditional central processing unit (CPU) such as Intel,

AMD, IBM, Cray multi-core architecture and one more

devices, which are massively parallel processors equipped

with a large number of arithmetic execution units.

Computing depends upon the concept of Data Parallelism

 Image Processing, Video Frames, Physics, Aero dynamics,

Chemistry, Bio-Informatics

• Regular Computations and Irregular Computations.

Source & Acknowledgements : NVIDIA, References

23 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Data Parallelism

• It refers to the program property whereby many

arithmetic operations can be safely performed on the

data structure in a simultaneous manner.

 The concept of Data Parallelism is applied to typical

matrix-matrix computation.

Source & Acknowledgements : NVIDIA, References

24 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 NEW: GPU Computing with CUDA

• CUDA = Compute Unified Device Architecture

• Co-designed hardware & software for direct

GPU computing

 Hardware: fully general data-parallel architecture

• General thread launch; Global load-store

• Parallel data cache

 Software: program the GPU in C /C++

• Scalable data-parallel execution/ memory

model; Single/Double precision

 Hundreds of times faster than global memory

 Use one/ a few threads to load/computer data

shared by all thread

C
P
U

G
P
U

Application

CUDA
Libraries

CUDA Runtime

CUDA Driver

Compute Unified Device
Architecture Software Stack

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

25 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

C/C++ CUDA

Applications

CPU Code EDG

Open64

PTX Code

PTX to Target

Translator

CPU . . . CPU

Target Code

float4 me =

sx[gtid];

me.x += me.y * me.z;

id.global.v4.f31

mad.f32

{$f1,$f3,$f5,$f7),

[$r9+0};

$f1, $f5, $f3, $f1;

CUDA’s compilation process. Source code written for the host

CPU follows a fairly traditional path and allows developers to

choose their own C/C++ compiler, but preparing the GPU’s

source code for execution requires additional steps. Among the

unusual links in the CUDA tool chain are the EDG preprocessor,

which separates the CPU and GPU source code; the Open54

compiler, originally created for itanium; and Nvidia’s PTX-to-

Target Translator, which converts Open64’s assembly-language

output into executable code for specific Nvidia GPUs.

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

26 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Software Development

CUDA Optimized Libraries:

math.h, FFT, BLAS, …
Integrated CPU + GPU

C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing (PTX)
CPU Host Code

CUDA

Driver
Profile Standard C Compiler

GPU CPU

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

27 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Optimized Libraries:

math, h, FFT, BLAS, …

Nvidia Assembly for

Computing (PTX)

Cuda

Driver

GPU

Nvidia C Compiler

Cuda

Driver

Integrated CPU + GPU

CPU Host Code

Standard C Compiler

Compiler

NVIDIA CUDA platform for parallel processing on Nvidia

GPUs. Key elements are common C/C++ source code with

different compiler forks for CPUs and GPUs; function libraries

that simplify programming; and a hardware-abstraction

mechanism that hides the details of the GPU architecture from

programmers.

CUDA Performance Advantage

Source : NVIDIA, References

28 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA is Designed to Support Various Languages and Application

Programming Interfaces

NVIDIA GPU Computing - CUDA Kernels and Threads

Source & Acknowledgements : NVIDIA, References

29 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GeForce GPU

Source & Acknowledgements : NVIDIA, References

30 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

An approach to Writing CUDA Kernels

Use algorithms that can expose substantial

parallelism, you’ll need thousands of threads…

Identify ideal GPU memory system to use for

kernel data for best performance

Minimize host/GPU DMA transfers, use pinned

memory buffers when appropriate

Optimal kernels involve many trade-offs, easier to

explore through experimentation with

microbenchmarks based key components of the

real science code, without the baggage

Analyze the real-world use cases and select the

kernel(s) that best match, by size, parameters, etc.

Source : NVIDIA, References

31 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 SPA

 Streaming Processor Array (variable across

GeForce 8-series, 8 in GeForce8800)

 TPC

 Texture Processor Cluster (2 SM + TEX)

 SM

 Streaming Multiprocessor (8 SP)

 Multi-threaded processor core

 Fundamental processing unit for CUDA thread

block

 SP

 Streaming Processor

 Scalar ALU for a single CUDA thread

Processor Terminology

Source : NVIDIA, References

32 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Quick terminology review

 Thread: concurrent code and associated state executed on the

CUDA device (in parallel with other threads)

 The unit of parallelism in CUDA

 Note difference from CPU threads: creation cost, resource

usage, and switching cost of GPU threads is much smaller

Warp: a group of threads executed physically in parallel (SIMD)

 Thread Block: a group of threads that are execute together and

can share memory on a single multiprocessor

 Grid: a group of thread blocks that execute a single CUDA program

logically in parallel

 Device: GPU Host: CPU

 SM: Multiprocessor
Source : NVIDIA, References

33 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Data Parallelism : It refers to the program

property whereby many arithmetic

operations can be safely performed on the

data structure in a simultaneous manner

Example : The concept of Data Parallelism is

applied to typical matrix-matrix computation.

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure Data parallelism in matrix multiplication.

Each element of the product

matrix P is generated by

performing a dot product

between a row of input

matrix M and a column of

input matrix N as shown in

figure.
Source & Acknowledgements : NVIDIA, References

34 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure Data parallelism in matrix multiplication.

In figure, highlighted elements of a matrix

P is generated by taking the dot product of

the highlighted row of matrix M and the

highlighted column of matrix N

 Note : Dot product operations

for computing different matrix

P elements can be

simultaneously performed.

• None of these dot products

will affect the results of each

other.

Source & Acknowledgements : NVIDIA, References

35 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA – Data Parallelism

Source : NVIDIA

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure : Data parallelism in matrix

Multiplication.

For P = (1000 X 1000); M = (1000 X 1000) &

N = (1000 X 1000)

 The number of dot products : 1,000,000

 Each dot product involves 1000 multiply and

1000 accumulate arithmetic operations

Note :

1. Data Parallelism in real

application is not as simple

as matrix-matrix

multiplication.

2. Different forms of Data

parallelism exists in several

applications

36 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA - Quick terminology review

CUDA is a development platform designed for writing and

running general-purpose applications on the nVIDIA GPU

• Similar to Graphics applications, CUDA applications can

be accelerated by data-parallel computation of millions of

threads.

A thread here is an instance of a kernel, namely a program

running on the GPU.

GPU platform can be regarded as a single instruction, multiple

data (SIMD) parallel machine rather than graphics hardware

• Keeping SIMD in mind, there is no need to understand

the graphics pipeline to execute programs on this highly

threaded architecture.
Source & Acknowledgements : NVIDIA, References

37 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA PROGRAM STRCUTURE

A CUDA program consists of one or more phases that are

executed on either the host (CPU) or a device such as GPU.

• The phases that exhibit little or no data parallelism are

implemented in the host code.

• The phases rich amount of data parallelism are

implemented in the device code.

A CUDA program is a unified source code encompassing both

host and device code.

The NVIDIA C Compiler (nvcc) separates the two during the

compilation process. The host-code is straight ANSI C code

 The device code is written using ANSCI key-words for

labeling data-parallel functions called kernels and their

associated data structures. Source & Acknowledgements : NVIDIA, References

38 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The device code is complied by the nvcc and executed on

a GPU device.

• Refer CUDA Software Development Kit (SDK) are

implemented in the host code.

About Kernel function :

• Generate a large number of threads to exploit

parallelism

• In Matrix into Matrix Multiplication algorithm, the kernel

that uses one thread to compute one element of output

matrix P would generate 1,000,000 threads when it is

invoked.

CUDA PROGRAM STRCUTURE

Source & Acknowledgements : NVIDIA, References

39 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA PROGRAM STRCUTURE

Remarks :

CUDA threads are of much lighter weight than the CPU

threads

 It can be assumed that these threads take very few cycles

to generate and schedule due to efficient hardware support.

• Note : CPU threads that typically require thousands of

clock cycles to generate and schedule.

• When kernel function is invoked or launched, all the

threads that are generated take advantage of data

parallelism.

• All the threads that are generated by a kernel during an

invocation are collectively called a grid.
Source & Acknowledgements : NVIDIA, References

40 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

. . .

Grid 0

. . .

Grid 1

CPU serial code

GPU parallel kernel

Kernel<<<nBIK, nTid>>>(args);

CPU serial code

GPU parallel kernel

Kernel<<<nBIK, nTid>>>(args);

Execution of a CUDA program.

CUDA PROGRAM STRCUTURE

Figure shows the execution of two grids of threads. When all the

threads of a kernel complete their execution, the corresponding grid

terminates, and the execution continues on the host until another

kernel is invoked. Source & Acknowledgements : NVIDIA, References

41 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA STRUCTURE

int main (void) {

 Step 1 : // allocate and the initialize the matrices M,N, P

 // I/O read the input matrices M & N

 ………….

 Step 2 : // M * N on the device

 MatrixMultiplication (M,N,P, Width)

 Step 3 : // I/O to write the Output matrix P

 // Free matrices M,N, P

………

return 0;

}

Source : NVIDIA

A simple main function for the matrix multiplication example

Example 1. : Matrix Multiplication

42 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M P

N

WIDTH WIDTH

W
ID

T
H

W

ID
T

H

Figure A simple matrix multiplication function with only host code.

k

j

k

j

Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 for (int i = 0; i < Width; ++i)

 for (int j = 0; j < Width; ++j) {

 float sum = 0;

 for (int k = 0; k < Width: ++k) {

 float a = M[i * Width + k];

 float b = N[k * Width + j];

 sum += a = b;

 }

 P[i * width + j] = sum;

 }

}

NVIDIA :CUDA STRUCTURE

Example : Matrix Multiplication

43 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

Placement of two-dimensional array elements into the linear address system memory.

NVIDIA :CUDA STRUCTURE

Note : 4 x 4 matrix is placed into 16 consecutive memory locations (Simple code can

be written using Standard C language.)

Example : Matrix Multiplication

44 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised host code simple matrix multiplication that moves the matrix

multiplication to a device

Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 …………………

 Step 1: // Allocate device memory for M, N, and P

 // copy M and N to allocate device memory locations

 Step 2: // Kernel invocation code – to have the device to

 // perform the actual matrix multiplication

 Step 3: // copy P from the device memory

 // free device matrices

}

NVIDIA :CUDA STRUCTURE

Example 2: Matrix Multiplication

Source & Acknowledgements : NVIDIA, References

45 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

–Processor:

–Set of Multi-Processors (MP)

–Set of Scalar Processor (SP)

–Memory:

–High b/w global memory

–Fast shared memory (per SP)

–Execution:

–Kernel program on GPU

–Threads scheduling in warps

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Off-Chip Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

CUDA Architecture

CUDA Device Memories and Data Transfer

Source & Acknowledgements : NVIDIA, References

46 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Off-Chip Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

 Host CPU

CPU initialize data

Launches kernel

Threads work on sub-

streams

Basic Implementation on GPU

CUDA Device Memories and Data Transfer

Source & Acknowledgements

: NVIDIA, References

Source & Acknowledgements : NVIDIA, References

47 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

CUDA device memory model & Data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

 global memory & constant

memory -devices host

code can transfer to and

from the device, as

illustrated by the bi-

directional arrows between

these memories and host

Host memory is not shown in the figure

Source & Acknowledgements : NVIDIA, References

48 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA device memory model & data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

CUDA API functions for device global memory management

• cudaMalloc()

— Allocates object in the device

global memory
— Two parameters

• Address of a pointer to the

allocated object

• Size of allocated object terms of

bytes

• cudaFree ()

— Frees object from device global

memory

• Pointer to freed object

Source & Acknowledgements : NVIDIA, References

49 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised host code simple matrix multiplication that moves the

matrix multiplication to a device
Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 …………………

 Step 1: // Allocate device memory for M, N, and P

 // copy M and N to allocate device memory locations

 Step 2: // Kernel invocation code – to have the device to

 // perform the actual matrix multiplication

 Step 3: // copy P from the device memory

 // free device matrices

}

NVIDIA :CUDA STRUCTURE

Example : Matrix Multiplication

Source & Acknowledgements : NVIDIA, References

50 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA device memory model & data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

Constant
Memory

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

CUDA API functions for data transfer between memories

• cudaMemcpy()

— Memory data transfer

— Requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

— Host to Host

— Host to Device

— Device to Host

— Device to Device

• Transfer is asynchronous

Source & Acknowledgements : NVIDIA, References

51 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

cudaMalloc() : Called from the host code to allocate a piece of global

memory for an object.

 float* Md

 int size = Width * Width *sizeof(float);

 cudaMalloc((void**)&Md, size);

 …………….

 cudaFree(Md);

 …………………

1. The first parameter of the cudaMalloc() function is the address of a

pointer variable that must point to the allocated object after allocation
2. The second parameter of cudaMalloc()function gives size of the

obejct to be allocated.
3. After the computation, cudaFree() is called with pointer Md as input to

free the storage space for the Matrix from the device global memory.

NVIDIA :CUDA STRUCTURE

Device Memory & Data transfer

52 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Programming Environment : Two symbolic constants

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost);

are predefined constants of the CUDA Programming Environment.

Note : The cudaMemcpy() function takes four parameters

1. The first parameter is a pointer destination location for the copy operation

2. The second parameter points to the source data object to be copied

3. The third parameter specifies the number of bytes to be copied

4. The fourth parameter indicates the types of memory involved in the copy:

from the host memory to host memory; from host memory to device

memory; from device memory to host memory

Note : Please note that cudaMemcpy() cannot be used to copy between

different GPUs to multi-GPU systems.

NVIDA :CUDA STRUCTURE

Device Memory & Data transfer

Source & Acknowledgements : NVIDIA, References

53 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The revised MatrixMultiplication() function Code
Void MatrixMultiplication(float* M,float* N,float* P,int Width)

{

 int size = Width * Width *sizeof(float);

 float* Md, Nd, Pd;

 Step 1. // Transfer of M and N to device memory

 cudaMalloc((void**)&Md, size);

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 cudaMalloc((void**)&Nd, size);

 cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc ((void**) &Pd, size)

 Step 2. // Kernel Invocation code

 ………………….

 Step 3. // Transfer P from device to host

 cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost);

 // free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree(Pd);

}

NVIDIA :CUDA STRUCTURE

Device Memory & Data transfer

Source & Acknowledgements : NVIDIA, References

54 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA STRUCTURE

KERNEL FUNCTIONS AND THREADING

CUDA kernel function is declared by “__global__” keyword

 This function will be executed on the device and can only

called from the host to generate a grid of threads on a

device.

 Besides “__global__” , there are two other keywords tha can

be used in front of a function declaration.

 __device__ float DeviceFun()

 __global__ void KernelFun()

 __host__ float HostFunc()

55 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

KERNEL FUNCTIONS AND THREADING

CUDA extensions to C function declaration

 __device__ float DeviceFun() : Declared as a CUDA device

function)

 __global__ void KernelFun() :Declared as a CUDA kernel

function)

 __host__ float HostFunc() :Declared as a CUDA host function)

Executed
 on the :

 Only calling
from the :

__device__ float DeviceFun() device device

__global__ void KernelFun() device host

 __host__ float HostFunc() host host

NVIDIA :CUDA STRUCTURE

Source & Acknowledgements : NVIDIA, References

56 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The MatrixMultiplication() Kernel function
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

{

 // 2D Thread ID

 Int tx = threadId.x;

 Int ty = threadId.y;

 // P value stores the Pd element that is computed by the

 // thread

 float Pvalue = 0;

 for (int k = 0; k < width; ++k) {

 float Mdelement = Md[ty * width + k];

 float Ndelement = Nd[k * width + tx];

 Pvalue += Mdelement * Ndelement;

 }

 // Write the matrix to device memory each thread writes one

 // element

 Pd[ty*Width + tx] = Pvalue;

 } // Limitation : Can handle only matrices of 16 elements in

each dimension

NVIDIA :CUDA THREAD ORGANIZATION

KERNEL FUNCTIONS AND THREADING

57 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The MatrixMultiplication() Kernel function
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd,

int Width)

 Dot product loop uses threadIdx.x and threadIdx.y to identify the row

of Md and column of Nd to work on

Limitations

 Can handle only matrices of 16 elements in each dimension (Due to fact

that the kernel function does not use blockIdx)

 Limited to using only one block of threads

 It is assumed that each block can have upto 512 threads, we can limit to

16 X 16 because 32 X 32 requires more than 512 threads per block.

 Question : How to accommodate larger matrices ? (Hint : Use

multiple thread blocks)

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

58 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x & threadIdx.y

• Refer to the thread indices of a thread (Different threads will
see different values in their threadIdx.x and

threadIdx.y variables)

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates reflect a

multi-dimensional organization for the threads.

• CUDA threading hardware generates all of the
threadIdx.x and threadIdx.y variables for each thread.

• These work on particular part of data structure of the designed

code and with these thread indices allow a thread to access the

hardware registers at runtime that provides the identifying

coordinates to the thread.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

59 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x; threadIdx.y in CUDA matrix multiplication

Each thread uses its threadIdx.x and threadIdx.y to identify

the row of Md and the column of Nd to perform the dot product

operation.

Each thread also uses its threadIdx.x and threadIdx.y

values to select the Pd element that it is responsible for; for
example threadId2,2 will perform a dot product between column 2

of Nd and row 3 of Md and write the result into element (2,3) of Pd.

This way, the threads collectively generate all the elements of the Pd

matrix.

When a kernel is invoked or launched, it is executed as grid of

parallel threads & each CUDA thread grid typically is comprised of

thousands to millions of lightweight GPU threads per kernel

invocation.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

60 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A multidimensional example of CUDA grid

organization.

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Kernel 1

Kernel 2

Host

Block (1, 1)

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1)

Thread

(0, 0, 1)
Thread

(1, 0, 0)
Thread

(2, 0, 0)
Thread

(3, 0, 0)

Thread

(0, 1, 0)
Thread

(1,1, 0)
Thread

(2, 1, 0)
Thread

(3, 1, 0)

NVIDIA :KERNEL FUNCTIONS AND THREADING

A Thread block

— A thread block is a batch of

threads that can co-operate with

other by

• Synchronizing their

execution

For hazard-free shared

memory accesses

— Efficiently sharing data through

a low-latency shared memory
 Cop-operation - thread blocks

— Two threads from two different

blocks can not cooperate

Source & Acknowledgements : NVIDIA, References

61 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

// Kernel definition

global void VecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x;

 c(i) = A[i] + B[i];

}

int main ()

{

 ...

 // Kernel invocation with N Threads

 VecAdd<<<1, N>>>(A, B, C);

 ...

}

Kernel

NVIDIA :CUDA Thread Organisation

Ex : Vector Vector Addition

62 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Threads in a grid – CUDA

Threads in a grid are organized into a two-level hierarchy, as

illustrated in figure (Refer earlier slide)

At the top level, each grid consists of one or more thread blocks.

All blocks in a grid have the same number of threads

• Example : In figure (Refer earlier slide), Grid 1 is organized

as a 2 X 2 array of 4 blocks.

- Each block has a unique two-dimensional co-ordinate given

by the CUDA specific keywords blockIdx.x and

blockId.y

- All thread blocks must have the same number of threads

organized in the same manner Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

63 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

Each thread block is, in turn, organized as a three

dimensional array of threads with a total size up to 512 threads

The coordinates of threads in a block are uniquely defined three

thread indices : threadIdx.x, threadIdx.y and

threadIdx.z

Note : Not all applications will use all three (3) dimensions of a

thread block

Example : (Refer earlier slide)

- Each thread block is organized into a 4 x 2 x 2 three-

dimensional array of threads

- This gives a Grid one (1) a total of 4 x 16 = 64 threads

Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

64 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

 Example of host code that launches a kernel

 //Setup the execution configuration

 dim3 dimBlock(Width, Width);

 dim3 dimGrid(1,1);

 // Launch the device computation threads !
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width);

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

65 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Observations - Example 4: (Refer earlier slide 40)

 Code does not use any block index in accessing input and

output data.

 Threads with the same threadIdx values from different

blocks would end-up accessing the same input and output data

elements.

 As a result, the kernel can use only one thread block.

 The theadIdx.x and threadIdx.y values are used to

organize the block into a row-dimensional array of threads.

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

66 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Observations - Example 4: (Refer earlier slide 40)

Because a thread block can have only up to 512 threads, each

thread calculates one element of the product matrix in Example 4,

the code can only calculate a product matrix upto 512 elements.

 Conclusions :

1. The solution is not scalable & not acceptable due to choice of

one thread block

2. To have a sufficient amount of data parallelism to benefit

from execution on a device use of multiple blocks is required.

Question to be addressed

 How to set the grid and thread block dimensions ?

 How to specify execution configuration parameters ?
Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA THREAD ORGANIZATION

67 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Organization of Each Thread block in a grid

 //Setup the execution configuration

 dim3 dimBlock(Width, Width);

 dim3 dimGrid(1,1);

 // Launch the device computation threads !
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width);

KERNEL FUNCTIONS AND THREADING

• Two struct variable of type dim3 are declared

• The first is for describing the configuration of blocks,

which are defined as 16 x 16 groups of threads.

• The second variable, dimGrid, describes the

configuration of the grid.

In this example, we have only (1 X 1) block in each grid.

NVIDIA :CUDA THREAD ORGANIZATION

Source & Acknowledgements : NVIDIA, References

68 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Threads

Part-2

Source & Acknowledgements : NVIDIA, References

69 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 All threads in a grid execute the same kernel

Rely on unique coordinates to distinguish themselves from

each other and to identity the appropriate portion of the data to

process.

 The threads are organized into a two-level hierarchy using unique

coordinates

 blockIdx (for block index) and

 threadIdx (for thread index)

 (Assigned to them by the CUDA runtime system)

 The gridDim and blockDim are additional built-in,

pre-initialized variables that can be accessed within kernel

functions

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

70 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 All threads in a grid execute the same kernel

Rely on unique coordinates to distinguish themselves from

each other and to identity the appropriate portion of the data to

process.

 Size /Dimension of Grid or Block

The blockIdx and threadIdx appear as built-in,

preinitialized variables that can be accessed within kernel

functions

CUDA Thread Organization

 The yellow color box of each threads block in Figure shows a

fragment of the kernel code

 Part of the input data is read and

 Part of the output data is write

NVIDIA :CUDA – Thread Organization

71 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 The example figure consists of N thread blocks, each with a

blockIdx.x value ranges from 0 to N-1

Each block in-turn consists of M threads, each with a

threadIDx.x value ranges from 0 to M-1.

 All blocks at each grid level are organized as a one-dimensional

(1D) array

 All threads within each block level are organized as a 1D array

and each grid has a total of N*M threads

Example : The black box of each thread block in figure 6 shows a

fragment of the kernel code.
• The code fragment uses the

 Int threadI = blockId.x + blockDim.x + threadIdx.x;

 to identify the part of (a) input data to read from and (b) the part of the (b) output

data structure to write to.

NVIDIA :CUDA – Thread Organization

72 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Dim3 dimGrid(128, 1,1);

Dim3 dimBlock(32,1,1,);

Kernel Function <<< dimGrid, dimBlock >>> (…);

You can also use
Kernel Function << 128, 32 >>> (…);

 The values of gridDim.x and gridDim.y can

range from 1 to 65535

 The values of gridDim.x and gridDim.y can be

calculated based on other variables at kernel launch

time.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

73 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Kernel launches a grid of thread blocks

• Threads within a block cooperate via shared memory

• Threads within a block can synchronize

• Threads in different blocks cannot cooperate

Allows programs to transparently scale to different GPUs

Thread Batching

Shared Memory

Thread Block 0

Grid

. . .

Shared Memory

Thread Block 1

Shared Memory

Thread Block n

NVIDIA GPU Computing - CUDA Kernels and Threads

Source : NVIDIA

74 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization

 The example figure consists of N thread blocks, each with a

blockIdx.x value ranges from 0 to N-1

Each block in-turn consists of M threads, each with a

threadIDx.x value ranges from 0 to M-1.

Example : The code fragment uses the

 Int threadI = blockId.x + blockDim.x + threadIdx.x;

 to identify the part of (a) input data to read from and (b) the part of the (b) output

data structure to write to.

Thread 3 of Block 0 has a threadId value of 0*M + 3

Thread 3 of Block 1 has a threadId value of 1*M + 3

Thread 3 of Block 2 has a threadId value of 2*M + 3

Thread 3 of Block 3 has a threadId value of 3*M + 3

Thread 3 of Block 4 has a threadId value of 4*M + 3

Thread 3 of Block 5 has a threadId value of 5*M + 3

NVIDIA :CUDA – Thread Organization

75 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Organization
 The example figure consists of N thread blocks, each with a blockIdx.x

value ranges from 0 to N-1

 Each block in-turn consists of M threads, each with a threadIDx.x value

ranges from 0 to M-1.

 Each grid has a total of N*M threads

Example : Assume a each grid 128 blocks (N = 128) and each block has 32

(M=32)threads and a total of 128*32 = 4096 threads in the grid.

 Access to blockDim in the kernel function returns 32

NVIDA :CUDA – Thread Organization

Thread 3 of Block 0 has a threadId value of 0*32 + 3 = 3

Thread 3 of Block 4 has a threadId value of 4*32 + 3 = 131

Thread 3 of Block 20 has a threadId value of 20*32 + 3 = 643

Thread 3 of Block 40 has a threadId value of 40*32 +3 = 1283

Thread 10 of Block 80 has a threadId value of 80*32+10 = 2570

Thread 3 of Block 100 has a threadId value of 100*32+3 = 3203

Thread 15 of Block 102 has a threadId value of 102*32+15 = 3279

Thread 16 of Block 120 has a threadId value of 120*32+16 = 3856

76 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Management – An Overview

0 1 2 3 M-1

Thread block 0

theadIdx.x 0 1 2 3 M-1

Thread block 1

theadIdx.x

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

NVIDIA :CUDA THREAD ORGANIZATION

77 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Thread Management – An Overview

0 1 2 3 M-1

Thread block 3

theadIdx.x 0 1 2 3 M-1

Thread block N-1

theadIdx.x

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

output[threadID] = y;

 …………..

Int threadID =

 blockId.x + blockDim.x + threadIdx.x;

 ………

 float x = input[threadID];

 float y = func(x);

 output[threadID] = y;

 …………..

.….

NVIDIA :CUDA THREAD ORGANIZATION

78 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Each thread of the 4096 threads has its own unique

threaded value

 Kernel code uses threadID variable to index into the input[]

array and output[] arrays.

 If we assume that both arrays are declared with 4096

elements, then each thread may take one of the input[] of

elements and produce one of the output[] elements

 Performance depends upon input[] array and output[]

arrays

NVIDIA :CUDA – Thread Organization

79 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid ; Host Code to launch the kernel

 Dim3 dimGrid(128, 1,1);

 Dim3 dimBlock(32,1,1,);

 Kernel Function <<< dimGrid, dimBlock >>> (…);

 The execution configuration parameters are
 between <<< and >>>

 The Scalar values can also be used for the execution

configuration parameters if a gird or a block has only one
dimension. For example

 Kernel Function << 128, 32 >>> (…);

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

80 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid

 In CUDA, a grid is organized as a 2D array or blocks.

 Grid Organization is determined by the execution of

configuration provided at kernel launch)
 dim3 dimGrid(128, 1,1);

• The first parameter - specifies the dimensions of each block in terms

of number of blocks

• The second parameter specifies the dimensions of each block in

terms of number of threads

 Each such parameter is a dim3 type, which is essentially a

C struct with three unsigned integer filed : x,y,and z.

• The third parameter –grid dimension parameter is set to 1 for

clarity. (Because of grids are 2D array of blocks dimensions)

 The exact organization of a grid is determined by the

execution configuration provided at kernel launch.

NVIDIA :CUDA – Thread Organization

81 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Grid ; Host Code to launch the kernel
 Dim3 dimGrid(128, 1,1);

 Dim3 dimBlock(32,1,1,);

 Kernel Function <<< dimGrid, dimBlock >>> (…);

 The values of gridDim.x and gridDim.y can range from 1

to 65535

 The values of gridDim.x and gridDim.y can be calculated

based on other variables at kernel launch time.

 All threads in a block share the same blockIdx value.

• blockIdx.x value ranges between 0 and gridDim.x-1

• blockIdx.y value ranges between 0 and gridDim.y-1

 Remark : Once a kernel is launched, its dimensions can not

change.

NVIDIA :CUDA – Thread Organization

82 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks

 In CUDA, a each thread block is organized into a 3D

array of threads

 All blocks in a grid have the same dimensions.

 Each threadIdx consists of three components : the

x-coordinate threadIdx.x,

 y-coordinate threadIdx.y, and

 z-coordinate threadIdx.z

 The exact organization of a thread block is determined by

the execution configuration provided at kernel launch.

NVIDIA :CUDA – Thread Organization

83 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks
 dim3 dimBlock(32, 1, 1);

 The first parameter - specifies the total terms of number of

blocks

 The second and third parameter specifies the number of

threads in each dimension

 The configuration parameter can be accessed as a pre-
defined C struct variable, blockDim

 Remark : The total size of a block is limited to 512 threads,

with flexibility in distribution these elements into the three

dimensions as long as the total number of threads does

not exceed 512.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

84 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A multidimensional example of CUDA grid

organization.

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Kernel 1

Kernel 2

Host

Block (1, 1)

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1)

Thread

(0, 0, 1)
Thread

(1, 0, 0)
Thread

(2, 0, 0)
Thread

(3, 0, 0)

Thread

(0, 1, 0)
Thread

(1,1, 0)
Thread

(2, 1, 0)
Thread

(3, 1, 0)

Dim3 dimGrid(2, 1,1);

Dim3 dimBlock(4,2,1,);

Kernel Function

 <<<

 dimGrid, dimBlock

 >>>

 (……);

NVIDIA :CUDA – Thread Organization

85 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Automatic Scalability : A multi-threaded program is partitioned into blocks of

threads that execute independently from each other, so that a GPU with more cores

will automatically execute the program in less time than a GPU with fewer cores.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

86 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Grid of Thread Blocks : Blocks are organized into a one-dimensional, two-

dimensional, or three-dimensional grid of thread blocks as illustrated by

Figure. The number of thread blocks in a grid is usually dictated by the size of

the data being processed or the number of processors in the system, which it

can greatly exceed.

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

87 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heterogeneous Programming

NVIDIA :CUDA – Structure

Source & Acknowledgements : NVIDIA, References

88 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Synchronization

Part-3

Source & Acknowledgements : NVIDIA, References

89 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block 2

Block 0

Block 4

Block 6

Block 3

Block 1

Block 5

Block 7

 Kernel grid

time

Device

Block 2

Block 0

Block 4

Block 6

Block 3

Block 1

Block 5

Block 7

Block 2

Block 6

Block 3

Block 7

Block 1

Block 5

Block 0

Block 4

Device

Each block can execute in any order relative to other

blocks

Transparent Scalability for CUDA programs allowed by the lack of

synchronization constraints between locks

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

 CUDA allows threads in the same block to coordinate their activities using

barrier synchronization function __syncthreads().

 Call to _synchtreads(), ensures that all threads in a block have completed

a phase of their execution of the kernel before any moves on to the next

phase.

90 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

 In CUDA a __syncthreads() statement must be executed by all threads in

a block.

 Call to __syncthreads(), ensures that all threads in a block have

completed a phase of their execution of the kernel before any moves on to

the next phase.

Issues in CUDA Barrier Synchronization

 Use of __synthread() statement in “if” statement

Use of __synthread() statement in “if-then-else” statement

thread may perform execution of “then” path OR “if” path OR “else”

path, and this leads to waiting of threads at barrier synchronization

points. This results waiting for each other thread.

The ability to synchronize also imposes execution constraints on threads

within a block.

91 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

Issues in CUDA Barrier Synchronization : How to avoid excessive long

waiting time ?

 The threads in a each block should execute close time proximity with

each other.

 CUDA runtime systems satisfy this constraint by assigning execution

resources to all threads in a block as a unit, that is when a thread o a

block is assigned to an execution resources.

• This ensures the time proximity of all threads in a block an prevents

excessive waiting time during synchronization

Source & Acknowledgements : NVIDIA, References

92 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Synchronization and transparent scalability

Issues in CUDA Barrier Synchronization : How to avoid excessive long

waiting time ?

CUDA runtime can execute blocks in any order relative to each other

because none of them must wait for each other.

 Remark : The ability to execute the same application ode at a wide

range of speeds allows the production of a wide range of implementation

according to the cost, power, and performance requirements of particular

market segment.

 In CUDA one can execute large number of blocks at the same time,

subject to more resources exist for typical high-end implementation

Source & Acknowledgements : NVIDIA, References

93 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA : CUDA Threads Organisation

Thread Assignment :

 Once the kernel is launched, CUDA runtime system

generates the corresponding grid of threads.

 These threads are assigned to execution resources on a

block-by-block basis.

 Thread block assignment to streaming multiprocessors

(SMs)

Source & Acknowledgements : NVIDIA, References

94 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread block assignment to streaming multiprocessors (SMs)

NVIDIA : CUDA Threads Organisation

Thread Assignment :

SM 0

MT IU

SP

Shared

Memory

SP

SP

SP

SM 1

MT IU

SP

Shared

Memory

SP

SP

SP

t0, t1, t2,…,tm
Blocks

Blocks

t0, t1 ,12,…,tm

Source & Acknowledgements : NVIDIA, References

95 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Threads are assigned to SMs in

block

 Up to 8 Blocks to each SM as

resource allows

 Threads run concurrently

 SM assigns/maintains thread

id #s

 SM manages/schedules

thread execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Source : NVIDIA, References

NVIDIA : CUDA Threads Organisation

96 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Streaming Multiprocessor (SM)

 8 Streaming Processors (SP)

 2 Super Function Units (SFU)

 Multi-threaded instruction dispatch

 1 to 512 threads active

 Shared instruction fetch per 32

threads

 Cover latency of texture/memory

loads

 20+ GFLOPS (24 GFLOPS in G92)

 16 KB shared memory

 DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

Streaming Multiprocessor (SM)

Source : NVIDIA, References

97 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GT200 GPU Block Diagram GT200 : Tesla C1060/ S1070

Blocks partitioned into warps for thread scheduling

t1,t2,t3,…,t31

Streaming Multiprocessor
Instruction L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Block 1 Warps

t1,t2,t3,….t31

Block 2 Warps

t1,t2,t3,,…,t31

Block 3 Warps

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

Source & Acknowledgements : NVIDIA, References

98 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Execution resources are organized into streaming multiprocessors

 NVIDIA GT200 implementation features

• 30 Streaming Multi-Processors (SMs)

• 8 Threading blocks can be assigned to each SM as long as there are

enough execution resources to satisfy the needs of all the blocks.

• Each threading block can have atmost 512 threads

• 240 thread blocks can be simultaneously assigned to SMs

• Upto 1024 threads can be assigned to each SM

• Maximum of 30720 threads can be simultaneously residing in the SM

 Most grids contain many more than 240 blocks.

 The runtime system maintains a list of blocks that need to execute and assign new

blocks to SMs as they complete execution of blocks previously assigned to them.

 Note : In situations with an insufficient amount if any one or more types of

resources needed for the simultaneous execution of 8 blocks , the CUDA runtime

automatically reduces the number of blocks assigned to each SM until the resource

usage is under the limit.

NVIDIA : CUDA Threads Organisation

Thread Assignment

99 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Three thread blocks assigned to each SM.

 One of the SM resource limitations is the number of threads that can be

simultaneously tracked and scheduled.

 Hardware resources are required for SMs to maintain the thread, block IDs, and

track their execution status.

 Upto 1024 threads can be assigned to each SM.

• 4 blocks of 256 threads each, 8 blocks of 128 threads each .. (16 blocks of

64 threads each is not possible.)

 Execution resources are organized into streaming multiprocessors

 NVIDIA GT80 implementation features

• 16 Streaming Multi-Processors (SMs)

• 8 Threading blocks can be assigned to each SM as long as there are

enough execution resources to satisfy the needs of all the blocks.

• Each threading block can have atmost 256 threads

• Upto 768 threads can be assigned to each SM (3 blocks of 256 each; 6

blocks of 128 threads each)

• Maximum of 12288 threads can be simultaneously residing in the SM

NVIDIA : CUDA Threads Organisation

Thread Assignment

Source & Acknowledgements : NVIDIA, References

100 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks
Ex : A multi-dimensional example of CUDA grid organization

 The grid consists of four blocks organized into a 2 X 2 array

• Each block is in figure is labeled with (blockIdx.x,

blockIdx.y)

• Ex : Block (1,0) has blockIdx.x = 1, and blockIdx.y = 0

 In CUDA, total size of block is limited to 512 threads, with

flexibility in distributing these elements into the three

dimensions as long as the total number of threads does not

exceed 512 threads. (****)

 Ex : (512,1,1,), (8,16,2) and (16,16,2) are allowable blockDim

values, but (32,32,1) is not allowable because the total number

of threads would be 1024.

NVIDIA :CUDA – Thread Organization

101 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Grid- thread blocks

Ex : A multi-dimensional example of CUDA grid organization

 Grid consists of 4 blocks of 16 threads each, with a grand

total of 64 threads in the grid.

 Each thread block is organized into 4 X 2 X 2 arrays of threads

(16 threads). (Only one block is shown because of all thread

blocks in the grid have same dimension.)

 block (1,10) to show its 16 threads;

 thread (2,1,0) has
 blockIdx.x = 2, blockIdx.y = 1, blockIdx.z = 0

 CUDA grid contain thousands to million of threads

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

102 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

threadIdx.x & threadIdx.y

• Refer to the thread indices of a thread (Different threads will see
different values in their threadIdx.x and threadIdx.y

variables)

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates

reflect a multi-dimensional organization for the threads.

• CUDA threading hardware generates all of the threadIdx.x

and threadIdx.y variables for each thread.

• These work on particular part of data structure of the designed

code and with these thread indices allow a thread to access the

hardware registers at runtime that provides the identifying

coordinates to the thread.

Source : NVIDIA

KERNEL FUNCTIONS AND THREADING

NVIDIA :CUDA – Thread Organization

103 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

 TILE_WIDTH

Pdsub

15
 Matrix Multiplication using multiple blocks by tiling Pd

012 ….TILE WIDTH-1

xb
0 1 2

TILE WIDTH-1

by ty
0

1

2

0

1

2

tx

W
ID

T
H

W

ID
T

H

T
IL

E
_

W
ID

T
H

NVIDIA :CUDA – Thread Organization

• USING blockIdx AND threadIdx

— Break Pd into square tiles

— All the Pd element s of a tile are computed

by a block of threads

• Keep dimensions of these Pd tiles

small, we can increase the total number

of threads in each block to 512 which is

maximum allowable block size.

104 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

For convenience sake,

 threadIdx.x and threadIdx.y as tx and ty; and

blockIdx.x and blockIdx.y as bx and by.

• Each thread calculates one Pd element. The difference is

that it must uses its blockIdx.x values to identify its

element inside the tile.

• Each thread uses both threadIdx and blockIdx to

identify the Pd element to work on.

• All threads calculating the Pd elements within a tile have

the same blockIdx values

Source : NVIDIA

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

105 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Assume that the dimensions of a block are square and are
specified by the variable TILE_WIDTH

 Each dimensions of Pd is now divided into section s of

TILE_WIDTH elements each and each block handles such

a section.

• Thread can find x index and y index of Pd element i.e.

x = bx + TILE_WIDTH + tx

 y = by + TILE_WIDTH + ty

Pd element at respective column & row can be computed.

Source : NVIDIA

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

106 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Assume that the dimensions of a block are square and are
specified by the variable TILE_WIDTH

 Each dimensions of Pd is now divided into section s of

TILE_WIDTH elements each and each block handles such

a section.

• Thread can find x index and y index of Pd element i.e.

x = bx + TILE_WIDTH + tx

 y = by + TILE_WIDTH + ty

Pd element at respective column & row can be computed.

USING blockIdx AND threadIdx

NVIDIA :CUDA – Thread Organization

Source & Acknowledgements : NVIDIA, References

107 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Using Multiple blocks to

 calculate Pd.

USING blockIdx AND threadIdx

Pd0, 0 Pd1, 0 Pd2, 0 Pd3, 0

Pd0, 1 Pd1, 1 Pd2, 1 Pd3, 1

Pd0, 2 Pd1, 2 Pd2, 2 Pd3, 2

Pd0, 3 Pd1, 3 Pd2, 3 Pd3, 3

Block(0,0) Block(1,0)

Block(1,1)
Block(0,1)

• Using Multiple blocks to calculate Pd.

— Break Pd into 4 tiles

— Each dimension of Pd is now divided

into sections of 2 elements

— Each block needs to calculate 4 Pd

elements
• Identify the indices for the Pd element

Thread (0,0) of block (0,0) calculates

Pd0,0 whereas thread (0,0) of block

(1,0) calculates Pd2,0

• Identify the row (y) of Md and the column

(x) of index of Nd for input values using

TILE_WIDTH

Ex : Matrix Multiplication

• For the row index of Md used by thread (tx,ty)

of block (bx,by) is (by*TILE_WIDTH + ty)

• For the clumn index of Nd used by the same is

(bx*TILE_WIDTH + tx)

NVIDIA :CUDA THREAD ORGANIZATION

108 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Nd1, 0

Nd1, 1

Nd1, 2

Nd1, 3

Nd0, 0

Nd0, 1

Nd0, 2

Nd0, 3

Md0, 1 Md1, 1
Md2, 1 Md3, 1

Md0, 0 Md1, 0
Md2, 0 Md3, 0

Pd2, 0

Pd2, 1

Pd2, 2

Pd2, 3

Pd3, 0

Pd3, 1

Pd3, 2

Pd3, 3

Pd1, 2 Pd0, 2

Pd0, 3 Pd1, 3

Pd0, 0 Pd1, 0

Pd0, 1 Pd1, 1

 Matrix multiplication actions of one thread block

NVIDIA :CUDA Thread Organisation

USING blockIdx AND threadIdx

Ex : Matrix Multiplication

• Threads in block (0,0) produce four dot products

• Thread (0,0) generates Pd0,0 by calculating the dot

product of row 0 of Md and column 1 of Nd

• The arrows of Pd0,0, Pd1,0, Pd0,1 and Pd1,1 shows the

row and column used for generating their result value.

109 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA Thread Organisation

Ex : Matrix Matrix Addition

// Kernel definition

global void MatAdd(float A[N][N], float B[N][N],

 float C[N][N])

{

 int i = blockIdx.x * blockDim.x + threadIdx.x

 int j = blockIdx.y * blockDim.y + threadIdx.y

 if (i < N && j < N)

 c[i][j] = A[i][j] + B[i][j];

}

int main()

{

 ...

 // Kernel invocation

 dim3 threadsPerBlock(16, 16);

 dim3 numBlocks(N / threadsPerBlock.x, N/ threadPerBlock.y);

 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

 …

}

110 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread Hierarchy

NVIDIA :CUDA Thread Organisation

Ex : Matrix Matrix Addition

// Kernel definition

global void MatAdd(float A[N][N], float B[N][N],

 float C[N][N])

{

 int i = threadIdx.x;

 int j = threadIdx.y;

 c[i][j] = A[i][j] + B[i][j];

}

int main()

{

 ...

 // Kernel invocation with one block of N * N * 1 threads

 int numBlocks = 1;

 dim3 threadsPerBlock(N, N);

 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

 ...

}

111 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd,

int Width)

{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y *TILE_WIDTH + threadIdx.y;

 // Calculate the column index of the Pd element and N
 int Col = blockIdx.x *TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;

 // each thread computes one element of the block sub-matrix
 for(int k = 0; k < Width; ++k)

 Pvalue +- Md[Row*Width+k] * Nd[k*Width+Col)];

 Pd[Row*Width_col] = Pvalue;

}

NVIDIA :CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

112 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA – Thread Organization

Step 1 : Each thread uses its blockIdx and threadIdx

values to identity the row index (Row) and the column index

(Col) of the Pd element that is responsible for.

 Step 2 : Performs a dot product on the row of Md and

column of Nd to generate the value of the Pd element. It

eventually writes the Pd value to the appropriate global

memory locations.

 Note : This kernel can handle matrices upto 16 X 65,535

elements in each dimension.

 For large matrices, one can divide the Pd matrix into sub-

matrices of a size permitted by the kernel Source : NVIDIA

Summary of matrix multiplication kernel using multiple-blocks:

113 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA :CUDA – Thread Organization

For large matrices, one can divide the Pd matrix into sub-

matrices of a size permitted by the kernel

Each submatrix can be processed by an ample number of

blocks (65,535 X 65,535). All of these blocks can run in

parallel provided new design of GPUs which can

accommodate large number of execution resources.

Summary of matrix multiplication kernel using multiple-blocks:

Source & Acknowledgements : NVIDIA, References

114 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Case Study :

 G200 : Number of warps per SM may increased up to 32.

 The warp scheduling is used for long-latency hiding (long latency

operations) refers to access of global memory access

 Zero-overhead thread scheduling takes place in CUDA, in which

selection of ready warps for execution does not introduce any idle time

into the execution timeline.

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

115 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Revised Host code for launching the revised kernel

// Setup the execution configuration
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);

 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads;
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Note : dimGrid receives the value of Width/TILE_WIDTH for both

the x dimension and y dimension.

 Md, Nd, and Pd array as 1D array with row major layout

 The calculation of indices used to access Md, Nd and Pd is the

same

NVIDIA : CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

116 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array

Texture Processor

Cluster

SM

SM

SM

Streaming Multiprocessor

Instruction L1 Data L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Constant Cache

64 KB, read-only

Special

Function Unit

SIN, EXP,

RSQRT, Etc..

Streaming

Processor

ADD, SUB,

MAD, Etc…

FP64 Unit

NVIDIA GT200 GPU Block Diagram GT200 :

Tesla Architecture incorporated in Tesla C1060 & S1070 products.

NVIDIA – GPU Computing Products - History

Sour

ce :

NVI

DIA,

Refe

rence

s

117 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Once a thread block is assigned to each SM, it is further divided into 32-

thread units called warps.

 (Knowledge of warps can be helpful in understanding and optimizing the

performance of CUDA applications on particular generations of CUDA

devices.

 The warp is the unit of thread scheduling in SMs

 Each warp consists of 32 threads of consecutive threadIx values

• Threads 0 through 31 from the first warp, threads 32 through 63 second

warp, and so on…..

 Ex : Three blocks (Block 1, Block2, & Block 3) are assigned to an SM

 and each block is further divided into warps for scheduling.

• If each block has 256 threads, then we can determine that each block

has 256/32 or 8 warps.

• With 4 blocks in each SM, we have 8 x 3 = 24 warps in each SM

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

118 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 G80 : In each SM maximum number of threads is 768, equivalent to

24 warps.

 G200 : Number of warps per SM may increased up to 32.

 The warp scheduling is used for long-latency hiding (long latency

operations) refers to access of global memory access

 Zero-overhead thread scheduling takes place in CUDA, in which

selection of ready warps for execution does not introduce any idle time

into the execution timeline.

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

Source & Acknowledgements : NVIDIA, References

119 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix – Matrix Multiplication; G200 : Number of warps per SM is 32 and

the number of threads that can be assigned to each SM is 1024 & the

number of threads assigned to each thread block is 512

Pros & Cons of choice of “different thread blocks” for the GT200

 Case Study -1 : 8 X 8 thread blocks : Each block has 64 threads, &

12 (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited

and hence 64x 8 = 512 threads in each SM is possible.

• This shows SM execution resources will likely to be under utilized as

there will be fewer warps

 Case Study -2 : 16 X 16 thread blocks : Each block has 256 threads,

& 4 (1024/256) blocks fully occupy an SM (8 blocks in each SM are

limited and it s well within the limits. Good choice for performance.

 Case Study -3 : 32 X 32 thread blocks : Each block has 1024 thread

which exceeds the limitation of up to 512 threads per block

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

120 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA GT200 GPU Block Diagram GT200 : Tesla C1060/ S1070

Blocks partitioned into warps for thread scheduling

t1,t2,t3,…,t31

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array
Constant Cache

64 KB, read-only

Special

Function Unit
SIN, EXP,

RSQRT, Etc..

Streaming

Processor
ADD, SUB,

MAD, Etc…

FP64 Unit Texture Processor

Cluster

SM

SM

SM

Streaming Multiprocessor
Instruction L1 Data L1

Instruction Fetch/Dispatch

Shared Memory

FP64 Unit (double precision)

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Sour

ce :

NVI

DIA,

Refe

renc

es

Block 1 Warps

t1,t2,t3,….t31

Block 2 Warps

t1,t2,t3,,…,t31

Block 3 Warps

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

121 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix – Matrix Multiplication; G200 : Number of warps per SM is 32 and

the number of threads that can be assigned to each SM is 1024 & the

number of threads assigned to each thread block is 512

Pros & Cons of choice of “different thread blocks” for the GT200

 Case Study -1 : 8 X 8 thread blocks : Each block has 64 threads, &

12 (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited

and hence 64x 8 = 512 threads in each SM is possible.

• This shows SM execution resources will likely to be under utilized as

there will be fewer warps

 Case Study -2 : 16 X 16 thread blocks : Each block has 256 threads,

& 4 (1024/256) blocks fully occupy an SM (8 blocks in each SM are

limited and it s well within the limits. Good choice for performance.

 Case Study -3 : 32 X 32 thread blocks : Each block has 1024 thread

which exceeds the limitation of up to 512 threads per block

Thread Scheduling : In CUDA it is an specific hardware implementation

NVIDIA : CUDA Thread Scheduling & Latency Tolerance

122 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Memories

Part-4

Source & Acknowledgements : NVIDIA, References

123 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Memory Hierarchy

NVIDIA :CUDA – Memory Hierarchy

124 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDA :CUDA - Quick terminology review

CUDA exposes the memory hierarchy to developers,

allowing them to maximize application performance by

optimizing data access

The GPU is implemented on a graphics card with video

memory, called device memory

• The video memory (off-chip) memory is separated from

the GPU, and it takes at least 400 clock-cycles to fetch

data from that memory.

• Two groups of memory on a graphics card.

 On-chip (shared) memory is almost fast as registers.

 Off-chip (device) memory takes 400-600 clock cycles

/store data.
Source : NVIDIA

125 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Ex : Matrix – Matrix Multiplication : Memory access calculation for

matrix-matrix commutations – “for” loop based on CGMA

 Compute to Global Memory Access (CGMA) ratio : Number of floating

point calculations performed for each access to the global memory within

a region of a CUDA program

• The ratio of floating-point calculation to the global memory access

operations is 1 to 1. or 1.0

 The CGMA ratio has major implications on the performance of a CUDA

kernel.

• Ex : NVIDIA G*80 supports 86.4 gigabytes per second (GB/s) of

global memory access bandwidth.

• The highest achievable floating-point calculation throughput is limited

by the rate at which the input data can be loaded from the global

memory.

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

126 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Ex : Matrix – Matrix Multiplication : Memory access calculation for matrix-

matrix computations – “for” loop based on CGMA

 With 4 bytes in each single precision floating-point datum, one can expect

to load not more than 21.6 (86.4/4) giga single-precision data per second.

 With a CGMA ration of 1.0, the matrix multiplication kernel will execute at

no more than 21.6 billion floating point operations per second (gigaflops),

as each floating operation requires one single-precision global memory

datum.

 The achieved is fraction of the peak performance of 367 gigaflops for the

G80

How CGMA ratio is increased to achieve a higher level of performance

for the kernel ?

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

127 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

CUDA device memory model & Data transfer

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

NVIDA :CUDA DEVICE MEMORIES & DATA TRANSFER

 global memory & constant

memory -devices host

code can transfer to and

from the device, as

illustrated by the bi-

directional arrows between

these memories and host

Host memory is not shown in the figure

Source & Acknowledgements : NVIDIA, References

128 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Global memory and constant memory can be written (W) and (R) by the

host by calling application programming interface (API) functions.

 The constant memory supports short-latency, high-bandwidth, read-only

access by the device when all threads simultaneously access the same

location.

 Registers and shared memory are on-chip memories.

 Variables that reside in these types of memory can be accesses at very

high speed in a highly parallel manner.

 Registers are allocated to individual threads; each thread can only

access its own registers.

 A kernel function typically uses registers to hold frequently accesses

variables that are private to each thread.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types

129 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Shared memory is allocated to thread blocks ; all threads in a block can

access variables in the shared memory locations allocated to the block.

 Shared memory is an efficient means for threads to co-operate by sharing

their input data and the intermediate results of their work by declaring a

CUDA variable in one of the CUDA memory types, A CUDA programmer

dictate the visibility and access speed of the variable.

 CUDA syntax for declaring program variables into the various devices

memory.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types - Shared Memory

CUDA Variable Type Qualifiers

Variable Declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel

Automatic array variables Local Threads Kernel

 __device__, __shared__, int SharedVar; Shared Block Kernel

__device__, int GlobalVar; Global Grid Application

__Device__, ___constant__, int ConstVar; Constant Grid Application

130 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SCOPE :
 Each declaration gives its declared CUDA variable a scope and

lifetime.

 Scope identifies the range of threads of a block, or by all threads of

all grids.

 If the scope of a variable is a single thread, a private version of the

variable will be created for every thread; each thread can only access

its private version of the variable.

 For Example : if a kernel declares a variable whose scope is a thread

and it is launched with 1 million threads, then 1 million versions of

the variable will be created so each thread initializes and used its own

version of the variable.

CUDA : Importance of Memory Access Efficiency

CUDA Device Memory Types - Shared Memory

131 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

• Device code can:

— R/W per-thread registers

— R/W per-thread local

memory

— R/W per-block shared

memory

— R/W per-grid global

memory

— Read only per-gold

constant

— Host code can

— Transfer data

 to/from per-grid

 global and constant

 memories

Overview of the CUDA device memory model .

CUDA Device Memory Types

CUDA : Importance of Memory Access Efficiency

Source & Acknowledgements : NVIDIA, References

132 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Block (0, 0)

(Device) Grid

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Global
Memory

Constant
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0)

Host

• Device code can:

— R/W per-thread registers

— R/W per-thread local memory

— R/W per-block shared memory

— R/W per-grid global memory

— Read only per-gold constant

— Host code can

— Transfer data to/from per-grid global

and constant memories

Figure 3.7 Overview of the CUDA device memory model .

133 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd,

int Width)

{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y *TILE_WIDTH + threadIdx.y;

 // Calculate the column index of the Pd element and N
 int Col = blockIdx.x *TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;

 // each thread computes one element of the block sub-matrix
 for(int k = 0; k < Width; ++k)

 Pvalue +- Md[Row*Width+k] * Nd[k*Width+Col)];

 Pd[Row*Width_col] = Pvalue;

}

NVIDIA :CUDA Thread Organisation

Revised matrix multiplication kernel using multiple blocks

134 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix Multiplication

without Shared

Memory

NVIDIA :CUDA – Use of Memory

135 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Matrix Multiplication

with Shared Memory

NVIDIA :CUDA – Use of Memory

136 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Nd1, 0

Nd1, 1

Nd1, 2

Nd1, 3

Nd0, 0

Nd0, 1

Nd0, 2

Nd0, 3

Md0, 1 Md1, 1
Md2, 1 Md3, 1

Md0, 0 Md1, 0
Md2, 0 Md3, 0

Pd2, 0

Pd2, 1

Pd2, 2

Pd2, 3

Pd3, 0

Pd3, 1

Pd3, 2

Pd3, 3

Pd1, 2 Pd0, 2

Pd0, 3 Pd1, 3

Pd0, 0 Pd1, 0

Pd0, 1 Pd1, 1

Figure Matrix multiplication actions of one thread block.

CUDA Programming Structure

137 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Execution

Part-5

Source & Acknowledgements : NVIDIA, References

138 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

T(0, 0) T(1, 0) T(2, 0) T(3, 0)

T(0, 1) T(1, 1) T(2, 1) T(3, 1)

T(0, 2) T(1, 2) T(2, 2) T(3, 2)

T(0, 3) T(1, 3) T(2, 3) T(3, 3)

T0, 0 T1, 0 T2, 0 T3, 0 T0, 2 T1, 2 T2, 2 T3, 2 T0, 3 T1, 3 T2, 3 T3, 3
T1, 1 T2, 1 T3, 1

T0, 1

Placing threads into linear order

Logical 2-D

organization

CUDA Thread Execution - Performance

Warp Parallelism

 Single Instruction – Multiple thread (SIMT)

 Constructs Using

 If-then-else

 Diverge in

 Execution

139 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A simple sum reduction kernel.

1. _shared_float partialSum[]

2. Unsingned int t = threadsIdx.x;

3. for (unsigned int stride = 1;

4. stride < blockDim.X; stride *=2)

5. {

6. __syncthreads ();

7. If (t % (2*stride) == 0)

8. partialSum[t] + = partialSum[t +stride];

9. }

CUDA Thread Execution - Performance

Source & Acknowledgements : NVIDIA, References

140 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

0 1 2 3 4 5 6 7 8 9 10 11

0+1 2+3 4+5 6+7 8+9 10+11

0…3 4…7 8…11

0…7 8…15

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

1

2

3

Iterations
Array elements

A Deduction of the sum reduction kernel.

CUDA Thread Execution - Performance

141 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

A kernel with les thread divergence.

1. _shared_float partialSum[]

2. Unsingned int t = threadsIdx.x;

3. for (unsigned int stride = 1;

4. stride < blockDim.X; stride *=2)

5. {

6. __syncthreads ();

7. If (t < stride)

8. partialSum[t] + = partialSum[t +stride];

9. }

CUDA Thread Execution - Performance

142 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

0 1 2 3 … 253 254 255 256 257 258 …

0+256 256+511 1

2

3

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

Execution of the revised algorithm.

CUDA Thread Execution - Performance

143 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Nd

WIDTH

Coalesced

W
ID

T
H

Not coalesced

Thread 1

Thread 2

A B

Memory access pattern for coalescing.

CUDA Thread Execution - Performance

Global Memory Bandwidth
 Kernel performance is related to

accessing data in the global

memory

 Use of Memory Coalescing

 Move the data from the

 global memory into shared

memories and registers.

 Memory Coalescing technique is

 used in conjunction with tiling

 technique

144 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

Placing matrix elements order into linear order.

Linearized order in increasing address

CUDA Thread Execution - Performance

Global Memory Bandwidth

145 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

A coalesced access pattern.

Load iteration 1

T(0) T(1) T(2) T(3)

Load iteration 2

T(0) T(1) T(2) T(3)

Global Memory Bandwidth

Access

direction in

kernel code

CUDA Thread Execution - Performance

146 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

M0, 0 M1, 0 M2, 0 M3, 0

M0, 1 M1, 1 M2, 1 M3, 1

M0, 2 M1, 2 M2, 2 M3, 2

M0, 3 M1, 3 M2, 3 M3, 3

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3

M

M1, 1 M2, 1 M3, 1
M0, 1

A uncoalesced access pattern.

. . .

T(0) T(1) T(2) T(3)

Load iteration 2

Load iteration 1

T(0) T(1) T(2) T(3)

Access

direction in

kernel code

Global Memory Bandwidth

CUDA Thread Execution - Performance

147 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Nd

WIDTH

W
ID

T
H

Using shared memory to enable coalescing.

Original

access

pattern

Md Nd

Tiled

access

pattern

Copy into

scratchpad

memory

Perform

multiplication

with

scratchpad

values

CUDA Thread Execution - Performance

Global Memory Bandwidth

148 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

The matrix multiplication kernel using shared memories.

global void MatrixMulKernel(float*Md, float*Nd, gloat*Pd, int width)

{

1. _shared_float Mds[TILE_WIDTH][TILE_WIDTH];

2. _shared_float Nds{TILE_WIDTH][TIKE_WIDTH];

3. int bx = blockIdx .x; int by = blockidx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. Float Pvalue = 0;

// Loop over the Md and Nd tiles required to computer the Pd element

8. For (int m = 0; m < Width/TILE_WIDTH; ++m) {

//Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd (m*TILE_WIDTH + ty) * Width + Col];

11. _synchthreads ();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue +=Mds [ty][k] * Nds[k] [tx];

14. Pd [Row] [Col] = Pvalue;

 }

}

Md Nd

CUDA Thread Execution - Performance

Global Memory Bandwidth

149 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013
1

4

9

GPU performance : Memory Coalescing

8 8 8 …

1

128

bytes
 Shared

Memory

128

bytes

 Global

Memory

8 8 8 …

- Request >16-bytes serviced iteratively

Thread

 Reading 16-

bytes at a time

150 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013
1

5

0

GPU performance : Memory Coalescing

8 8 8 …

2 1 16

128

bytes
 Shared

Memory

Half

Warp

128

bytes

 Global

Memory

8 8 8 …

Read-Write operation:

 Collectively by threads in half

warp

 Coalesce memory accesses in

single transaction

 Threads of half-warp

collaborate and utilize the

memory coalescing

Source & Acknowledgements : NVIDIA, References

151 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013
1

5

1

Modify operation:

 Threads work individually

 on data Iteratively after

memory transfer

 Bank conflicts lead to

serialization of memory

requests

GPU performance : Memory Coalescing

128

bytes

 Shared

Memory

Threads of a Half-warp

2 1 16

Source & Acknowledgements : NVIDIA, References

152 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013
1

5

2

Modify operation:

Pad offset of 8 bytes,

 Thereby reduce bank conflicts

GPU performance : Memory Coalescing

Padding Shared

Memory

Threads of a Half-warp

2 1 16

Source & Acknowledgements : NVIDIA, References

153 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Thread contexts

SP0 SP7

32KB register file

16KB shared memory

Pre-”optimization” A

Thread contexts

SP0 SP7

32KB register file

16KB shared memory

Post-”optimization” B

.

Insufficient registers

to allocate 3 blocks TB0 TB1 TB2

Figure. Interaction of resource limitations.

Md Nd

CUDA Thread Execution - Performance

Global Memory Bandwidth : Dynamic Partitioning of SM resources

154 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Loop{

Load current tile to shared

 memory

_synchthreades()

Computer current tile

_synchthreads()

}

Load first tile from global memory into

 registers

Loop {

Deposit tile from registers to shared

 memory

_synchthreads()

Load next tile from global memory into

 registers

Computer current tile

_synchthreads ()

} A

B

Without prefetching

With prefetching

CUDA Thread Execution - Performance

Global Memory Bandwidth : Prefetching

FP Instruction, Load Instruction, Branch Instruction

155 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

TILE_WIDTH

Pdsub
Pdsub

TILE_WIDTH TILE_WIDTH

15 Increased thread granularity with rectangular tiles.

012 TILE WIDTH-1

bx

0 1 2

TILE WIDTH-1

by bx

0

1

2

0

1

2

by

CUDA Thread Execution - Performance

Global Memory Bandwidth :

Thread Granularity

More work on each thread and

use fewer threads (Load the tile

Independent Instructions,

Prefetching elements)

156 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Md Pd

Nd

WIDTH WIDTH

TILE_WIDTH

Pdsub
Pdsub

TILE_WIDTH TILE_WIDTH

15 Increased thread granularity with rectangular tiles.

012 TILE WIDTH-1

bx

0 1 2

TILE WIDTH-1

by bx

0

1

2

0

1

2

by

CUDA Thread Execution - Performance

Global Memory Bandwidth :

Thread Granularity

 Loading of Tiles into registers

and depositing these tiles into

shared memories

 No. of Blocks running on shared

memories

157 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

for (int k = 0; k < BLOCK_SIZE; ++k)

 Pvalue += Ms [ty][k] * Ns [k] 9tx0;

 (a) Loop incurs overhead instruction

 Pvalue += Ms[ty][0] * Ns[0][tx] += Ms[ty][15]*Ns[15][tx];

 (b) Loop unrolling improves instruction mix.

Instruction mix consideration.

CUDA Thread Execution - Performance

 Loading of Tiles into registers and depositing these tiles

into shared memories

 No. of Blocks running on shared memories

 Executes two floating arithmetic, one loop branch

instruction, two address arithmetic instructions, one loop

counter increment instruction,

158 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA Tool Kit : CUBLAS

 CUBLAS is an implementation of BLAS (Basic Linear Algebra

 Subprogram) on top of the CUDA driver. It allows access to the

 computational resources of NVIDIA GPUs.

 The library is self-contained at the API level, that is, no direct interaction

 with the CUDA driver is necessary.

 The basic model by which applications use the CUBLAS library is to:

• Create matrix and vector objects in GPU memory space

• Fill them with data

• Call a sequence of CUBLAS functions

• Upload the results from GPU memory space back to the host

 CUBLABS provides helper functions for creating and destroying objects

 in GPU space, and for writing data to and retrieving data from these

 objects

Source : NVIDIA, References

159 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – BLAS Supported features

 BLAS functions implemented (single precision only):

 Real data: level 1, 2 and 3

 Complex data: level a and CGEMM

(Level 1=vector vector O(N), Level 2=matrix vector O(N2), Level

3=matrix matrix O(N3))

 For maximum compatibility with existing Fortran environments,

CUBLAS uses column-major storage, and 1-based indexing:

 Since C and C++ use row-major storage, this means applications

cannot use the native C array semantics for two-dimensional

arrays. Instead, macros or inline functions should be defined to

implement matrices on top of one-dimensional arrays.

Source : NVIDIA, References

160 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Using CUBLAS

 The interface to the CUBLAS library is the header file
cublas.h

 Function names: cublas(Original name).

 cublasSgemm

 Because the CUBLAS core functions (as opposed to the

helped functions) do not return error status directly, CUBLAS

provides a separate function to retrieve the last error that was

recorded, to aid in debugging

 CUBLAS is implemented using the C-based CUDA tool

chain, and thus provides a C-style API. This makes

interfacing to applications written in C or C++ trivial.

Source : NVIDIA, References

161 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublaslnit, cublasShutdown

 cublasStatus cublasInit()

initializes the CUBLAS library and must be called before any

other CUBLAS API function is invoked. It allocates hardware

resources necessary for accessing

 cublasStatus cublasShutdown()

releases CPI-side resources used by the CUBLAS library. The

release of GPU-side resources may be deferred until the

application shuts down.

Source : NVIDIA, References

162 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasGetError, cublasAlloc, cublasFree

 cublasStatus cublasGetError()

returns the last error that occurred on invocation of any of the CUBLAS

core functions. While the CUBLAS helper functions return status

directly, the CUBLAS core functions do not, improving compatibility

with those existing environments that do not expect BLAS functions to

return status. Reading the error status via cublasGetError() rests the

internal error state to CUBLAS_STATUS_SUCCESS.

 cublasStatus cublasAlloc (int n, int elemSize, void **devicePtr)

creates an object in GPU memory space capable of holding an array of

n elements, where each clement requires elemSize bytes of storage.

Note that this is a device pointer that cannot be dereferenced in host

code.

cublasAlloc() is a wrapper around cudaMalloc().

Device pointers returned by cublasAlloc() can therefore be passed to

any CUDA device kernels, not just CUBLAS functions.

 cublasStatus cublasFree(const void *device Ptr)

destroys the object in GPU memory space referenced by device Ptr.

Source : NVIDIA, References

163 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasSetVector, cublasGetVector

 cublasStatus cublasSetVector(int n, int elemSize, const

void *x, int incx, void *y, int incy)

copies n elements from a vector x in CPU memory space to a

vector y in GPU memory space. Elements in both vectors are

assumed to have a size of elemSize bytes. Storage spacing

between consecutive elements in incx for the source vector x

and incy for the destination vector y

cublasStatus cublasGetVector (int n, int elemSize, const

void *x, int incx, void *y, int incy)

copies n elements from a vector x in GPU memory space to a

vector y in CPU memory space. Elements in both vectors are

assumed to have a size of elemSize bytes. Storage spacing

between consecutive elements is incx for the source vector x

and incy for the destination vector y

Source : NVIDIA, References

164 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - cublasSetMatrix, cublasGetMatrix

 cublasStatus cublasSetMatrix(int rows, int cols, int

elemSize, const void *A, int Ida, void *B, int Idb)

copies a tile of rows x cols elements from a matrix A in CPU memory

space to a matrix B in GPU memory space. Each element requires

storage of elemSize bytes. Both matrices are assumed to be stored

in column-major format, with the leading dimension (that is, the

number of rows) of source matrix A provided in Ida, and the leading

dimension of destination matrix B provided in Idb

 cublasStatus cublasGetVector (int rows, int cols, int

elemSize, const void *A, int Ida, void *B, int Idb)

copies a tile of rows x cols elements from a matrix A in GPU

memory space to a matrix B in CPU memory space. Each element

requires storage of elemSize bytes. Both matrices are assumed to

be stored in column-major format, with leading dimension (that is,

the number of rows) of source matrix A provided in Ida, and the

leading dimension of destination matrix B provided in Idb

165 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA - Calling CUBLAS from FORTRAN

 Fortran-to-C calling conventions are not standardized and

 differ by platform and tool chain.

 In particular, differences may exist in the following areas:

• Symbol names (capitalization, name decoration)

• Argument passing (by value or reference)

• Passing of string arguments (length information)

• Passing of pointer arguments (size of the pointer)

• Returning floating-point or compound data types (for

example, single-precision or complex data type)

 CUBLABS provides provides wrapper functions (in the file

fortran.c) that need to be compiled with the user preferred tool

chain.Providing source code allows users to make any

changes necessary for a particular platform and tool chain.
 Source : NVIDIA, References

166 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmarks & NVIDIA CUDA Prog. Env - This is C-DAC In-house HPC GPU
Cluster project work in collaboration with NVIDIA

Source : http://www.nvidia.com; NVIDIA CUDA

Part 6

CUDA 5.0 / NVIDIA Kepler GK110

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

167 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

Nsight Eclipse Edition : Develop & Debug and Profile GPU

Accelerated Applications on Linux - All in on IDE

RDMA for GPUDirect : Direct Communication between GPUs

and other PCIe Devices

GPU Library Object Linking : Easily Accelerate parallel nested

loops starting with Tesla K20 Kepler GPUs

Dynamic Parallelism : library of templated performance

primitives such as sort, reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance
Source : NVIDIA, References

168 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Accelerated communication with network and storage

devices : Avoid unnecessary system memory copies and CPU

overhead by copying data directly to/from pinned CUDA host

memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

Source : NVIDIA, References

169 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• RDMA : Eliminate CPU bandwidth and latency bottlenecks

using direct memory access (DMA) between GPUs and other

PCIe devices, resulting in significantly improved MPISendRecv

efficiency between GPUs and other nodes (new in CUDA 5)

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

170 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for RDMA, Introduced with CUDA 5

Eliminate CPU bandwidth and latency bottlenecks using direct

memory access (DMA) between GPUs and other PCIe devices,

resulting in significantly improved MPISendRecv efficiency

between GPUs and other nodes (new in CUDA 5)

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

171 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

GPUDirect™ Support for Accelerated Communication with Network and

Storage Devices

Without GPUDirect

Same data copied three times
1. GPU write to pinned sysmem1

2. CPU copies from system1 to sysmem2

3. InfiniBand driver copies form sysmem2

With GPUDirect

Data only copied twice times
1. Sharing pinned system memory makes

2. System-to-system-copy unnecessary

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

172 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 5.0 Preview

 RDMA for GPUDirect : Features

Source : NVIDIA, References

NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs on

the Same PCIe Bus : GPUDirect peer-to-peer transfers and memory access

are supported natively by the CUDA Driver. All you need is CUDA Toolkit

v4.0 and R270 drivers (or later) and a system with two or more Fermi-

architecture GPUs on the same PCIe bus.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

173 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

Share GPUs across multiple threads

Use all GPUs in the system concurrently from a single host

thread

No-copy pinning of system memory, a faster alternative to

cudaMallocHost()

C++ new/delete and support for virtual functions

Support for inline PTX assembly

Thrust library of templated performance primitives such as sort,

reduce, etc.

NVIDIA Performance Primitives (NPP) library for image/video

processing

Layered Textures for working with same size/format textures at

larger sizes and higher performance Source : NVIDIA, References

174 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

 GPUDirect v2.0 : Features :

• GPUDirect v2.0 support for Peer-to-Peer Communication :

Accelerated communication with network and storage devices :

Avoid unnecessary system memory copies and CPU overhead

by copying data directly to/from pinned CUDA host memory

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA

transfers to copy data from one GPU directly to another GPU in

the same system

• Peer-to-Peer memory access : Optimize communication

between GPUs using NUMA-style access to memory on other

GPUs from within CUDA kernels

• GPUDirect for Video : Optimized pipeline for frame-based

devices such as frame grabbers, video switchers, HD-SDI

capture, and CameraLink devices.

Source : NVIDIA, References

175 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0

CUDA Multi-GPU Programming : CUDA Programming

model provides two basic approaches available to execute

CUDA kernels on multiple GPUs (CUDA “devices”)

concurrently from a single host application:

Use one host thread per device, since any given host
thread can call cudaSetDevice() at most one time.

Use the push/pop context functions provided by the CUDA

Driver API.

Unified Virtual Addressing (UVA) allows the system memory

and the one or more device memories in a system to share

a single virtual address space.

 Source : NVIDIA, References

176 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Driver API : Features in which multiple host threads to set

a particular context current simultaneously using either
cuCtxSetCurrent() or cuCtxPushCurrent().

Host threads can now share device memory allocations, streams,

events, or any other per-context objects (as seen above).

Concurrent kernel execution devices of compute capability 2.x is

now possible across host threads, rather than just within a single

host thread. Note that this requires the use of separate streams;

unless streams are specified, the kernels will be executed

sequentially on the device in the order they were launched

Built on top of UVA, GPUDirect v2.0 provides for direct peer-to-

peer communication among the multiple devices in a system and

for native MPI transfers directly from device memory.

Source : NVIDIA, References

CUDA Tool KIT 4.0/5.0

177 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Host-CPU – Device GPU CUDA Prog :

The algorithm is designed in such a way that each CPU

thread (Pthreads, OpenMP, MPI) to control a different GPU.

Achieving this is straightforward if a program spawns as

many lightweight threads as there are GPUs – one can

derive GPU index from thread ID. For example, OpenMP

thread ID can be readily used to select GPUs.

MPI rank can be used to choose a GPU reliably as long as

all MPI processes are launched on a single host node

having GPU devices and host configuration of CUDA

programming environment.

 Source : NVIDIA, References

CUDA Tool Kit 4.0/5.0

178 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Fermi Performance : CUDA enabled NVIDIA GPU

Performance Fermi GPU : Device-CPU (NVIDIA)

One Tesla C2050 (Fermi) with 3 GB memory; Clock Speed

1.15 GHz, CUDA 4.1 Toolkit

Reported theoretical peak performance of the Fermi

(C2050) is 515 Gflop/s in double precision (448 cores; 1.15

GHz; one instruction per cycle) and reported maximum

achievable peak performance of DGEMM in Fermi up to

58% of that peak.

The theoretical peak of the GTX280 is 936 Gflops/s in single

precision (240 cores X 1.30 GHz X 3 instructions per cycle)

and reported maximum achievable peak performance of

DGEMM up to 40% of that peak.
Source & Acknowledgements : NVIDIA, References

179 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

cuBLAS : The NVIDIA CUDA Basic Linear Algebra

Subroutines (cuBLAS) library is a GPU-accelerated version

of the complete standard

cuFFT : The NVIDIA CUDA Fast Fourier Transform library

(cuFFT) provides a simple interface for computing FFTs up

to 10x faster.

cuRAND : The NVIDIA CUDA Random Number Generation

library (cuRAND) delivers high performance GPU-

accelerated random number generation (RNG).

cuSPARSE : The NVIDIA CUDA Sparse Matrix library

(cuSPARSE) provides a collection of basic linear algebra

subroutines used for sparse matrices

Source : NVIDIA, References

180 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 CUDA Tool Kit 4.0/5.0 Libraries

NPP : NVIDIA Performance Primitives : The NVIDIA

Performance Primitives library (NPP) is a collection of GPU-

accelerated image, video, and signal processing functions

Thurst : Thrust is a powerful library of parallel algorithms

and data structures. Thrust provides a flexible, high-level

interface for GPU programming that greatly enhances

developer productivity.

NVIDIA Visual Profiler : The NVIDIA Visual Profiler is a

cross-platform performance profiling tool that delivers

developers vital feedback for optimizing CUDA C/C++ and

OpenCL applications.

Source & Acknowledgements : NVIDIA, References

181 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA Tool Kit 4.0/5.0 Libraries

CUDA-GDB debuggers :CUDA-GDB debuggers : CUDA-

GDB supports debugging of both 32 and 64-bit CUDA

C/C++ applications.

 CUDA-MEMCHECK : CUDA-MEMCHECK detects these

errors in your GPU code and allows you to locate them

quickly.

MAGMA : MAGMA is a collection of next generation, GPU

accelerated ,linear algebra libraries. Designed for

heterogeneous GPU-based architectures. It supports

interfaces to current LAPACK and BLAS standards.

Source & Acknowledgements : NVIDIA, References

182 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Dynamic Parallelism : adds the capability for the GPU

to generate new work for itself, synchronize on results,

and control the scheduling of that work via dedicated,

accelerated hardware paths, all without involving the

CPU.

• Hyper-Q : Hyper‐Q enables multiple CPU cores to

launch work on a single GPU simultaneously, thereby

dramatically increasing GPU utilization and significantly

reducing CPU idle times

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

Source & Acknowledgements : NVIDIA, References

183 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• Grid Management Unit : Enabling Dynamic Parallelism

requires an advanced, flexible grid management and

dispatch control system. The new GK110 Grid

Management Unit (GMU) manages and prioritizes grids

to be executed on the GPU. The GMU can pause the

dispatch of new grids and queue pending and

suspended grids until they are ready to execute,

providing the flexibility to enable powerful runtimes, such

as Dynamic Parallelism. The GMU ensures both

CPU‐ and GPU‐generated workloads are properly

managed and dispatched.

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf
Source & Acknowledgements : NVIDIA, References

184 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA’s Next Generation CUDA : Kepler

Kepler GK10:

• GPUDirect : NVIDIA GPUDirect™ is a capability that

enables GPUs within a single computer, or GPUs in

different servers located across a network, to directly

exchange data without needing to go to CPU/system

memory. The RDMA feature in GPUDirect allows third

party devices such as SSDs, NICs, and IB adapters to

directly access memory on multiple GPUs within the

same system, significantly decreasing the latency of

MPI send and receive messages to/from GPU memory

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

Source & Acknowledgements : NVIDIA, References

185 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Tesla C 2075

GPU -CUDA enabled NVIDIA GPU

 Peak Double Precision Floating
Point Performance

 Peak Single precision floating

Performance

 Memory Bandwidth (ECC off)

 Memory Size (GDDr5)

 CUDA Cores

515 Gflops

1030 Gflops

148 GBytes/s

6 GB

448 Cores

186 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

GPU -CUDA enabled NVIDIA GPU

Each floating point operates on upto 12-16 bytes of
source data, the available memory bandwidth cannot
sustain even a small fraction of the peak performance is
all the source data are accessed from global memory

To address above, CUDA & underlying GPUs offer multiple
memory types with different bandwidths & latencies

187 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

2/22/12

GPU -CUDA enabled NVIDIA GPU

CUDA & underlying GPUs offer multiple memory types with
different bandwidths & latencies

CUDA memory types have access restrictions to allow
programmers to conserve memory bandwidth while
increasing the overall performance of applications.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

188 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU -CUDA enabled NVIDIA GPU

CUDA Programmers are responsible for explicitly allocating
space and managing data movement among the different
memories to conserve memory bandwidth

CUDA Programmers shoulders the responsibility of massaging
the code to produce the desirable access patterns

CUDA code should explicitly optimize for GPU’s memory
hierarchy.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

189 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU -CUDA enabled NVIDIA GPU

CUDA Provides additional hardware mechanisms at
the memory interface can enhance the main
memory access efficiency if the access patterns
follow memory coalescing rules.

Sustainability of Memory Bandwidth
 Main Memory Access Efficiency

190 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

CUDA – Compute Unified Device Architecture

• Step 1 – copy data from main memory to GPU
global memory (from host to device)

• Step 2 – threads run code inside kernel function

– Each thread fetches some data from global memory
and stores it in registers

– Each thread performs computations

– Each thread stores a result in global memory

• Step 3 – copy results from device back to host

General CUDA Program Format

191 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Kepler GK110-the new CUDA Compute Capability 5.0

GTX 470/480s have GT100s C2050s on grid06 and grid07 are compute cap 2.0

FERMI
GF100

FERMI
GF104

KEPLER
GK104

KEPLER
GK110

Compute Capability 2.0 2.1 3.0 3.5

Threads / Warp 32 32 32 32

Max Warps / Multiprocessor 48 48 64 64

Max Threads / Multiprocessor 1536 1536 2048 2048

Max Threads Blocks / Multiprocessor 8 8 16 16

32-bit Registers / Multiprocessors 32768 32768 65536 65536

Max Registers / Thread 63 63 63 255

Max Threads / Thread Block 1024 1024 1024 1024

Shared Memory Size Configuration (bytes) 16K
48K

16K
48K

16K
32K
48K

16K
32K
48K

Max X Grid Dimension 2^16-1 2^16-1 2^32-1 2^32-1

Hyper-Q No No No Yes

Dynamic Parallelism No No No Yes

192 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SMX (power efficiency)
Hyper-Q (programmability and
 application coverage)
Dynamic Parallelism

 Source : http://www..nvidia.com

GPU Computing – NVIDIA KEPLER GPUs

193 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013
GTX 470/480s have GT100s
C2050s on grid06 and grid07 are compute cap 2.0

Features Tesla K20X Tesla K20
(Kepler
GK110)

Peak double Precision Floating
Point Performance

1.31 Tflops 1.17 Tflops

Peak Single Precision Floating
Performance

3.95 Tflops 3.52 Tflops

Memory Bandwidth (ECC off) 250 GB/s 208.8 B/s

Memory size (GDDR5) 6 GB 5 GB

CUDA Cores 2688 2496

Kepler GK110 supports the new CUDA Compute

Capability 5.0

194 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Current: Cuda 4.1
 Share GPUs across multiple threads
 Unified Virtual Addressing
 Use all GPUs from a single host thread
 Peer-to-Peer communication

 Coming in Cuda 5
 Direct communication between GPUs and other PCI devices
 Easily acceleratable parallel nested loops starting with Tesla K20 Kepler

GPU

 Current: OpenCL 1.2
 Open royalty-free standard for cross-platform parallel computing
 Latest version released in November 2011
 Host-thread safety, enabling OpenCL commands to be enqued from

multiple host threads
 Improved OpenGL interoperability by linking OpenCL event objects to

OpenGL

 OpenACC
 Programming standard developed by Cray, NVIDIA, CAPS and PGI
 Designed to simplify parallel programming of heterogeneous CPU/GPU

systems
 The programming is done through some pragmas and API functions
 Planned supported compilers – Cray, PGI and CAPS

http://developer.nvidia.com/cuda-toolkit

NVIDIA GPU Prog. Models

195 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 A full k110 implementation includes 15 SMX units and six
64-bit memory controllers. Different products will use
different configurations of K110.

Key features ...

 The new SMX processor architecture

 An enhanced memory subsystem, offering additional
caching capabilities, more bandwidth at each level of the
hierarchy and a fully redesigned and substantially faster
DRAM I/O implementation.

Kepler Architectural Overview

196 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

New: 48 KB Read-only memory cache
Compiler/programmer can use to advantage

Shared memory/L1 cache split:
Each SMX has 64 KB on‐chip
memory, that can be configured as:
• 48 KB of Shared memory with

16 KB of L1 cache,
or
• 16 KB of shared memory with 48

KB of L1 cache
or
• (new) a 32KB / 32KB split

between shared memory and L1
cache.

Faster than L2

Kepler Memory Subsystem

197 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

“Dynamic Parallelism allows more parallel code in an application to be

launched directly by the GPU onto itself (right side of image) rather than

requiring CPU intervention (left side of image).”

Control must be transferred
back to CPU before a new
kernel can execute

Only return to CPU when all
GPU operations are completed.
Why is this faster?

Kepler Dynamic Parallelism

198 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

GPU : Kepler

Results : Total (CPU+GPU) Peak Performance : 1267 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 1170 Gflops (1.17 Tflops)

C-DAC HPC GPU Cluster : Benchmarks

Experiment Results for LINPACK(*) : without any Optimizations

62.13% is sustained performance of LINPACK can be achieved for

appropriate matrix sizes i.e., N= 48000 ~ 64000. Further Optimization

may improve by10% to 15 %

Visit http://www.nvidia.com

(*=In collaboration with NVIDIA)

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

http://www.nvidia.com/

199 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Node = Fermi

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

C-DAC HPC GPU Cluster : Benchmarks

Experiment Results for DGEMM : Without any Optimizations

60.0% is sustained performance of CUDA (CUBLAS) can be

achieved for appropriate matrix sizes i.e., N= 10000 ~ 16000. Further

Optimization may improve by10% to 15 %

Visit http://www.nvidia.com

(*=In collaboration with NVIDIA)
(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA FERMI

http://www.nvidia.com/

200 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA – Application Kernels

http://www.nvidia.com

Source : http://www.nvidia.com; NVIDIA CUDA

(*) = Speedup results were gathered using untuned & unoptimized versions of

benchmark and NVIDIA Prog. Env on NVIDIA Fermi /Kepler

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

201 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : LINPACK (Top-500) Kepler

Total (CPU+GPU) Peak Performance : 1267 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 1170 Gflops (1.17 Tflops)

Nodes/GPUs LINPACK Gflops

Nodes GPUs T/V N NB P Q Time

1 1 WR10L2L2 34560 768 1 1 100.21 764.4

1 1 WR10L2L2 44968 768 1 1 187.71 785.5

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

62.13% sustained performance of Top-500 LINPACK is achieved

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

202 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : MAGMA (Open Source Software : NLA) Fermi

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Node Library Routine Used Matrix Size Sustained Performance in
Gflops

 1 MAGMA DGEMM 10240 302.81

1 CUBLAS DGEMM 10240 302.75

1 MAGMA DGETRF 5952 219.31

1 DGETRF 9984 256.29

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

Intel MKL version 10.2, CUBLAS version 3.2, Intel icc11.1

The routines such as DGETRF (LU factorization of certain class of matrices) show goof performance.

The MAGAMA uses LAPACK, CUDA BLAS, and MAGMA BLAS routines for factorization (LU, QR &

Cholesky) of matrices

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

203 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : Jacobi Iterative Method (Fermi)

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Jacobi Iterative Method : To solve system of dense matrix system of linear

equations [A] {x}= {b}

Time Taken in Seconds

Matrix Size CUDA API CUBLAS

1024 1.6439 0.0525

2048 5.4248 0.0972

4096 26.3400 0.2299

 8092 87.768 0.7138

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

204 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results : Conjugate Gradient Method

Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

Conjugate Gradient Method : To solve system of dense matrix system of

linear equations [A] {x}= {b}

Time Taken in Seconds

Matrix Size CUDA API CUBLAS

1024 0.5186 0.0296

2048 1.881 0.0740

4096 8.677 0.2214

 8092 33.376 0.7893

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

205 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Results for DGEMM (CPU+GPU) : In-house (Fermi)
Total (CPU+GPU) Peak Performance : 611 Gflops

CPU Peak Performance (DP) : 96 Gflops (1 Node – 8 Cores)

GPU Peak Performance (DP) : 515 Gflops

 Nodes GPUs Matrix Size
(CPU + GPU)

Sustained Perf in Gflops
 Total (CPU +GPU)

Utilization (%)

 1 1 1024 181.25 29.66

1 1 4096 326.73 53.47

1 1 10240 363.47(*) 59.49

1 1 12288 366.42(*) 59.47

Present Work : Application Kernels

On Hybrid Computing Systems (HPC GPU Cluster)

Intel MKL version 10.2, CUBLAS version 3.2, Intel icc11.1

 (* = relative error exists). 60% sustained performance of is achieved

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

206 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Using pre trained Haar - classifier and

integral image on GPU cluster

Courtesy : Viola and Jones

Image size GPU (Fermi)
time(sec)

GPU time
(sec)

512 threads/
block

8 threads/
block

132*184 0.000620 0.000285

700*500 0.003376 0.001120

1289*649 0.005940 0.002531

 Four kinds of Haar features are used in detection algorithm. Trained cascaded classifiers

are obtained, apply these classifiers to detect images

 Parallelize the detection process by mapping each window to a thread for face detection.

 MPI – CUDA - GPU Implementation of Face Detection(*)

Courtesy : C-DAC Projects & Viola and Jones Alg.

(*) = Speedup results were gathered using untuned and unoptimized
versions of benchmark and NVIDIA Prog. Env on NVIDIA Fermi

Courtesy : C-DAC Intrnal Projects

Application : Image Processing –

Multi-Core – Many-Core Implementation

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

207 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 MPI – CUDA - GPU Implementation of Edge Detection

 Each thread within the thread block

corresponds to a single pixel or Multiple

pixels within the image

 Pixels OpenCV

(Time in ms)

CUDA - GPU optimized

Block Size of 8 x 8 (Time in ms)

512 x 512 8.40 0.62

1024 x 1024 28.01 2.30

2048 x 2048 108.52 9.34
4096 x 4096 398.14 38.17

Courtesy : Viola and Jones

512*512 1024*1024

 Pixels OpenCV

(Time in

ms)

MPI (No. of PEs)

(Time in ms)

CUDA-GPU

Block Size of 16 x 16

(Time in ms)

2 8 UnOptimised Optimized

512 x 512 2.91 6.91 2.93 0.39 0.21

1024 x 1024 11.01 27.41 13.87 1.53 0.709

2048 x 2048 42.74 112.25 42.05 5.998 2.780

4096 x 4096 173.39 449.97 159.89 23.86 11.27

Edge Detection : Laplace Edge Detection (*)

Edge Detection : Canny Edge Detection (*)

Courtesy : C-DAC Projects & Wikipedia

(*) = Speedup results were gathered using untuned & unoptimized

 versions of benchmark and NVIDIA Prog. Env on NVIDIA Fermi

Application : Image Processing –

Multi-Core – Many-Core Implementation

208 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 3;

 U(x,y,z,t0)=g on

2
U

2

y
f(x,y,z); + = t[to, tf]

Application : FDM/FEM Computations (Structured/

Unstructured Grids) - HPC GPU Cluster

• Data Re-arrangement Kernels & Jacobi / CG Methods

2
U

 2 x

 U

 t

2
U

 2 z
+

FEM
 Graph Partition

Software METIS

 Each Partition

mapped to each

GPU

Poisson & Parabolic Eq. Solver

Rank 2

Rank 1

Rank 0

FDM

Courtesy : C-DAC HPC-FTE Student Projects

209 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Stencil for Poisson Eq. in 3D

• CUDA - Date Access Dominated, basic

computation kernels, Generic Stencil

Computations

• CUDA - Data Re-arrangement Kernels –

Coalesced Data access and Basic Read/Write

routines Data Reordering routines

Application : FDM/FEM Computations (Structured/

Unstructured Grids) - HPC GPU Cluster

Courtesy : Chaman Singh Verma et. all; & Jall Open source software

Courtesy : C-DAC HPC-FTE Student Projects, 2011-2012

210 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition, with blocks of size - 32x32

• Blocking & Threading

• Use of Shared Memory

• Implicit Handling of

Boundary Conditions -

part of computations

• Tiling for Stencil

Computations

 Access Pattern within a 32 X 32 block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Difference

Computations (Structured Grids)

Type of

Domain

Nodes/

(Partitions/

MPI

Process)

Elapsed time (in seconds)

MPI GPU Cluster
MPI CUDA OpenCL

2D-Structured

grid -FDM

(64X64)

4096

(1/1)

4.28

4096

(2/2)

3.12 0.82 1.28

2D-Structured

grid -FDM

(128X128)

16384

(1/1)

11.22

16384

(4/4)

3.74 0.98 1.42

3D-Structured

grid -FDM

(64X64X64)

262144

(1/1)

32.28

262144

(8/8)

6.64 1.31 2.23
 Performance 4x to 6x for

un-optimised CUDA code
(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

211 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition :Graph Partitioning

• Implicit Handling of

Boundary Conditions -

part of computations

• Graph Partitioning for

Mesh Computations

• Graph Coloring for

solver on a single node

 Access Pattern within a 32 X 32

block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for

un-optimised CUDA code
Courtesy : metis (George Karypis & Vipin Kumar et. all)

C-DAC HPC-FTE Student Projects , 2011-12

Chaman Singh Verma et. all; & Jall Open source software

212 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition

based on Graph Partitioning

• Iterative methods based on Sparse

Matrix Computations

• Tiling – To handle large Mesh

computations

• Graph Partitioning and Graph

Coloring techniques

• Overlapping Comm. & Comps –

CUDA Streams

 Access Pattern within a 32 X 32

block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for un-optimised

CUDA code

Courtesy : Chaman Singh Verma et. all;

 & Jall Open source software

213 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Heat Transfer : GPU Implementation

Domain decomposition based on Graph Partitioning

• Implicit Handling of

Boundary Conditions -

part of computations

• Graph Partitioning for

Mesh Computations

• Graph Coloring for

solver on a single node

 Access Pattern within a 32 X 32 block using 32 X 8 threads

HPC GPU Cluster : Parallel Finite Element

Method Comps. (Unstructured Grids)

 Performance 4x to 6x for

un-optimised CUDA code

Type of

Domain

Elements/

Nodes/

(Partitions/MPI

Process)

Elapsed time (in seconds)

MPI GPU Cluster

MPI CUDA OpenCL

2D-Grid

FEM

14450(7396)

(1/1)

9.72

 14450(7396)

(4/4)

5.64

 14450(7396)

(8/8)

 3.28 0.64 1.12

3D-Grid

Grid-FEM

343 (512)

(1/1)

1.24

 3375 (4096)

(1/1)

8.63 1.46 3.09

 29791(32768)

(1/1)

24.64 3.82 8.04

(*) = Speedup results were gathered using untuned and unoptimized versions of benchmarks & NVIDIA

CUDA Prog. Env - This is C-DAC In-house HPC GPU Cluster project work

214 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA - NVML APIs : CUDA 5.0

http://www.nvidia.com

Source : http://www.nvidia.com; NVIDIA CUDA

(*) = Speedup results were gathered using untuned & unoptimized versions of

benchmark and NVIDIA Prog. Env on NVIDIA Fermi /Kepler

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

215 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Rate of sampling power usage is very low while
measuring using nvidia-smi or nvml library, so

unless the kernel is running for a long time we

would not notice any change in power.

nvidia provides a high-level utility called nvidia-

smi which can be used to measure power, but its

sample rate is too long to obtain useful

measurements.

NVML (NVIDIA Management Library)

 NVIDIA NVML : Power Measurement

216 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Memory Transfer

to GPU

Kernel Execution

Memory transfer

back to Host

Wait for Some

 seconds

Main

Continuous Probing

Power Consumption in

one Second Interval

End

Thread1 Thread2

 NVIDIA Implementation

NVML (NVIDIA Management Library)

217 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Time
(sec.)

Power in
milliWatt

0 30712

1 47064

2 49537

6 132440

7 163942

8 89673

9 61713

10 52588

11 50209

12 26704

13 19752

29 16797

Matrix Size :

10240 X 10240

CPU + GPU Time

(Sec): 2.575

CBLAS : 834

GFlops

NVML Performance & Watts - for Matrix Comps.

 Information

 Driver etc…

 Device Query

 Data Transfer from

host to Device

 Memory

 Global Memory /

Shared Memory

Constant Memory

 Data Transfer from

Device to host

Experiment Results CBLAS Lib(*)

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

218 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Peak mWatts

Consumed

16392

 Milliwatts

Seconds

 Power mWatts

No Optimisations are

carried to extract

performance

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVML Performance & Watts - for Matrix Comps.

Experiment Results CBLAS Lib(*)

219 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Time
(sec.)

Power in
milliwatt

0 30919

1 46505

4 49729

5 50012

Time
(Sec.)

Power in
milliwatt

6 101504

7 133627

8 135000

10 136574

12 137145

16 137330

17 118776

18 71695

19 56504

Time
(Sec.)

Power in
milliwatt

20 50504

21 48395

23 47540

24 26035

25 19400

27 17656

28 16892

40 16797

Matrix Size :

10240 X 10240

CPU + GPU Time

(Sec): 12.549

CBLAS :

85.6GFlops

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER with NVML

NVML Performance & Watts - for Matrix Comps.

Experiment Results CBLAS Lib(*)

220 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Seconds

 Power mWatts

Peak mWatts

Consumed

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVML Performance & Watts - for Matrix Comps.

Experiment Results User Developed Code (*)

221 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

NVIDIA carma ARM Processor

with CUDA

(*) = Speedup results were gathered using untuned and unoptimized versions
of benchmarks (in-house developed) & NVIDIA CUDA Prog. Env - This is C-
DAC In-house HPC GPU Cluster project work in collaboration with NVIDIA

Source : http://www.nvidia.com; NVIDIA CUDA

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

222 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Carma , the board includes the company's
Tegra 3 quad-core ARM A9 processor, a
Quadro 1000M GPU with 96 cores (good for
270 single-precision GFlops), as well as a PCIe
X4 link, one Gigabit Ethernet interface, one
SATA connector, three USB 2.0 interfaces as
well as a Display port and HDMI. 2GB GPU
Memory

 It uses the Tegra 3 chip as the basis and, thus, has four ARM

cores and an NVIDIA GPU.

 In addition, the platform has 2 GB of DDR3 RAM (random access
memory) as well.

 CUDA toolkit and a Ubuntu Linux-based OS

NVIDIA ARM With Carma DevKit

223 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

SGEMM Matrix Size :

640 X 1280

CUBLAS

 Time : 0.00834 sec

GFlops : 125.778

CUDA Mat Mat Mult

Time : 0.03627 sec

GFlops : 28.909

Matrix-Matrix Multiplication

CUBLAS (Vendor) User Code (IJK loop)

GFLOPS Time (Sec) (GFLOPS) Time (Sec)

125.7783 0.00834 28.9092 0.03627

125.7004 0.00834 28.9070 0.03627

125.7426 0.00834 28.9085 0.03627

Seconds

 Power Watts

Peak Watts

Consumed

39.5 watts
Using External

Power Off Meter

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA KEPLER

NVIDIA carma : Performance & Watts - Matrix Comps.

Experiment Results User Developed Code (*)

224 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Login to portal

 NVIDIA – carma - Power Meter : System Details

 Create Individual Session

 Portal developed using TOMCAT to accommodate all servers

225 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display reading of Power meter In tabular form

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA carma with CUDA

 NVIDIA – carma - Power Meter : System Details

226 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display reading of Power meter In Graphical format

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA carma with CUDA

Experiment Results User Developed Code (*)

 NVIDIA – carma - Power Meter : System Details

227 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Demo of running particular session in tabular form

 NVIDIA – carma - Power Meter : System Details

228 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Display user defined session graph

(*) = Speedup results were gathered using untuned and unoptimized versions
 of benchmark and NVIDIA Prog. Env on NVIDIA carma with CUDA

Experiment Results User Developed Code (*)

 NVIDIA – carma - Power Meter : System Details

229 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Systems Details

Node1: Jaguar.stp.cdac.ernet.in (1 GPU C2070)

CPU : Dual socket Quad core Intel Xeon; RAM : 16 GB
OS : centOS release 5.2 with kernel release 2.6.18-92.el5
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC
nvidia-toolkit: 4.0
MPI : mpich2-1.0.7; Interconnect : Gigabit

Node2: Leopard.stp.cdac.ernet.in (2 GPUs C2050)
CPU : Dual socket Quad core Intel Xeon
RAM : 48 GB
OS : centOS release 5.2 with kernel release 2.6.18-92.el5
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC
nvidia-toolkit: 4.0
MPI : mpich2-1.0.7 Interconnect : Gigabit

 NVIDIA – carma - Power Meter : System Details

230 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Kayla DevKit for computing on the ARM architecture – where
supercomputing meets mobile computing.

 The Kayla DevKit hardware is composed of mini-ITX carrier board and
NVIDIA® GeForce® GT640/GDDR5 PCI-e card.

 The mini-ITX carrier board is powered by NVIDIA Tegra 3 Quad-core ARM
processor while GT640/GDDR5 enables Kepler GK208 for the next
generation of CUDA and OpenGL application. Pre-installed with CUDA 5
and supporting OpenGL 4.3.

 Kayla provides ARM application development across the widest range of
application types.

NVIDIA ARM With KAYLA DevKit(*)

 In Progress

231 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

Form Factor Kayla mITX

CPU
NVIDIA® Tegra® 3 ARM Cortex A9
Quad-Core with NEON

GPU
NVIDIA® GeForce® GT640/GDDR5 (TO
BE PURCHASED SEPARATELY) Buy Now

Memory 2GB DRAM

CPU - GPU
Interface

PCI Express x16 / x4

Network 1x Gigabit Ethernet

Storage 1x SATA 2.0 Connector

USB 2x USB 2.0

Software
Linux Ubuntu Derivative OS
CUDA 5 Toolkit

NVIDIA ARM With KAYLA DevKit

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.newegg.com/Product/Product.aspx?Item=N82E16814121771&nm_mc=OTC-Channel&cm_mmc=OTC-channel-_-Video+Card+-+Nvidia-_-ASUS-_-14121771&srccode=cii_7240466&cpncode=26-20938146&DEPA=0&refer=channel&CMP=OTC-

232 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Summary

 Good strategies for extracting high performance from individual

subsystems on the CUDA enabled NVIDIA GPUs

 NVIDIA - CUDA (GPU is good choice)

 NVIDIA – CUDA Plenty of opportunities for further optimizations

 There are many good strategies for extracting high performance

from individual subsystems on CUDA enabled NVIDIA GPU with

CUDA Toolkit 5.0

 HPC GPU Cluster – MPI-CUDA with CUDA 5.0 gives advantages

for Scalability and Performance for applications

 Power Efficient NVIDIA NVML APIs & Performance Issues

Source & Acknowledgements : NVIDIA, References

233 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. NVIDIA CUDA Reference http://www.nvidia.com/object/cuda_home.html
6. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html
7. List of NVIDIA GPUs compatible with CUDA: The href://www.nvidia.com/object/cuda_learn_products.html
8. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html
9. Specifications of nVIDIA GeForce 8800 GPUs:
10. RAPIDMIND http://www.rapidmind.net
11. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
12. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
13. AMD http:www.amd.com
14. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
15. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
16. Merrimac - Stream Architecture Standford Brook for GPUs

http://www-graphics.stanford.edu/projects/brookgpu/

17. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/
18. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/
19. ATI & AMD - Technology Products http://ati.amd.com/products/index.html
20. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....
21. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).
22. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).
23. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp
917-924 Graphic Hardware (2007).

24. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide - Version 1.1 November 2007

References

http://www-graphics.stanford.edu/projects/brookgpu/

234 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

25. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com

26. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

27. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008)

28. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ;
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008

29. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in :
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.

30. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003)

31. Tutorial SC 2007 SC05 : High Performance Computing with CUDA
32. FASTRA http://www.fastra.ua.ac.bc/en/faq.html
33. AMD Stream Computing software Stack ; http://www.amd.com
34. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html
35. FFT – Fast Fourier Transform www.fftw.org
36. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas
37. LAPACK : Linear Algebra Package – www.netlib.org/lapack
38. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual

computing, Intel Deverloper FORUM 2008
39. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable Many core Processor Reaches

Beyond Graphics, Microprocessor Report September 29, 2008
40. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches

More Systems, Microprocessor Report December 2008
41. AMD’s ATI Stream Platform http://www.amd.com/stream
42. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
43. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl

References

http://www.amd.com/stream

235 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

44. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

45. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
46. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0
47. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
48. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
49. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf

50. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf

51. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

52. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
53. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf
54. NVIDA CUDA C Programming Guide Version V5.0, May 2012 (5/6/2012)
55. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf
56. Programming Massively Parallel Processors - A Hands-on Approach, David B Kirk, Wen-mei W. Hwu,

Nvidia corporation, 2010, Elsevier, Morgan Kaufmann Publishers, 2011
57. Aftab Munshi Benedict R Gaster, timothy F Mattson, James Fung, Dan Cinsburg, Addison Wesley,

OpenCL Progrmamin Guide, Pearson Education, 2012
58. The OpenCL 1.2 Specification Khronos OpenCL Working Group
59. http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf“ The OpenCL 1.2 Quick-reference-

card ; Khronos OpenCL Working Group

References

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

236 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

60. Mary Fetcher and Vivek Sarkar, Introduction to GPGPUS – Seminar on Heterogeneous Processors, Dept. of computer Science,

Rice University, October 2007

61. OpenCL - The open standard for parallel programming of heterogeneous systems URL : http://www.khronos.org/opencl

62. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses Massive Multithreading

; Microprocessors, Volume 22, Archive 1, January 2008 http://www.mdronline.com

63. Matt Pharr (Author), Randima Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-

Purpose Computation ,Addison Wesley , August 2007

64. NVIDIA GPU Programming Guide http://www.nvidia.com

65. Perry H. Wang1, Jamison D. Collins1, Gautham N. Chinya1, Hong Jiang2, Xinmin Tian3 , EXOCHI: Architecture and

Programming Environment for A Heterogeneous Multi-core Multithreaded System, PLDI’07

66. Karl E. Hillesland, Anselmo Lastra GPU Floating-Point Paranoia, University of North Carolina at Chapel Hill

67. KARPINSKI, R. 1985. Paranoia: A floating-point benchmark. Byte Magazine 10, 2 (Feb.), 223–235.

68. GPGPU Web site : http://www.ggpu.org

69. Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce - 6800 GPU, Ajit Datar, Apurva Padhye

Computer Architecture

70. Nvidia 6800 chapter from GPU Gems 2 http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

71. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

72. OpenGL programming guide (ISBN: 0201604582)

73. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

74. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

75. GPU Programming “Languages http://www.cis.upenn.edu/~suvenkat/700/

76. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk

77. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel Computing Simula Research

Laboratory October 24, 2007

78. Daniel Weiskopf, Basics of GPU-Based Programming, Institute of Visualization and Interactive Systems, Interactive

Visualization of Volumetric Data on Consumer PC Hardware: Basics of Hardware-Based Programming University of Stuttgart,

VIS 2003

References

Source & Acknowledgements : NVIDIA, References

http://www.cis.upenn.edu/~suvenkat/700/

237 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

79. http://www.nvidia.com/object/nvidia-kepler.html NVIDIA Kepler Architecture 2012
80. http://developer.nvidia.com/cuda-toolkit NVIDIA CUDA toolkit 5.0 Preview Release April 2012
81. http://developer.nvidia.com/category/zone/cuda-zone NVIDIA Developer Zone
82. http://developer.nvidia.com/gpudirect RDMA for NVIDIA GPUDirect coming in CUDA 5.0 Preview

Release, April 2012
83. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf NVIDIA CUDA C Programming Guide Version 4.2 dated 4/16/2012 (April 2012)
84. http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Paralleli

sm_in_CUDA.pdf Dynamic Parallelism in CUDA Tesla K20 Kepler GPUs - Prelease of NVIDIA CUDA 5.0
85. http://developer.nvidia.com/cuda-downloads NVIDIA Developer ZONE - CUDA Downloads CUDA

TOOLKIT 4.2
86. http://developer.nvidia.com/gpudirect NVIDIA Developer ZONE – GPUDirect
87. http://developer.nvidia.com/openacct OpenACC - NVIDIA
88. http://developer.nvidia.com/cuda-toolkit Nsight, Eclipse Edition Pre-release of CUDA 5.0, April 2012
89. The OpenCL Specification, Version 1.1, Published by Khronos OpenCL Working Group, Aaftab

Munshi (ed.), 2010.
90. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

91. http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf The OpenCL 1.1 Quick Reference
card.

92. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
93. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0

References

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/openacct
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0

238 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

94. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
95. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
96. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_
Guide.pdf

97. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices
_Guide.pdf

98. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

99. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
100. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guid

e.pdf
101. NVIDA CUDA C Programming Guide Version V5.0, May 2012 (5/6/2012)
102. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide

.pdf

References

Source & Acknowledgements : NVIDIA, References

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

239 An Overview of CUDA enabled NVIDIA GPUs C-DAC hyPACK-2013

 Thank You
 Any questions ?

