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Lecture Outline  

Following topics will be discussed 

 An overview of CUDA enabled NVIDIA GPU 

 Tuning & Performance Issues on NVIDIA GPUs 

 An Overview of CUDA 4.x/5.0 & -Fermi /Kepler GK110  

Source : NVIDIA, References given in the presentation   

An Overview of CUDA enabled NVIDIA  GPUs 
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CUDA enabled NVIDIS GPUs 

Part-1 

Source & Acknowledgements  : NVIDIA, References 
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Source & Acknowledgements  : NVIDIA, References 

Computing  - CPU/GPU 
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Floating-Point Operations per Second and Memory Bandwidth for the CPU and GPU  

Computing  - CPU/GPU 

Source & Acknowledgements  : NVIDIA, References 
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Why Are GPUs So Fast? 

 GPU originally specialized for math-intensive, highly 

parallel computation 

 So, more transistors can be devoted to data 

processing rather than data caching and flow control     

 Commodity industry: provides economies of scale 

 Competitive industry: fuels innovation     

Control 

Cache 

DRAM DRAM 

ALU ALU 

ALU ALU 

CPU GPU 

AMD  

NVIDIA  

Source : NVIDIA, References 
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Scale to 100’s of cores, 1000’s of parallel 

threads 

Let programmers focus on parallel 

algorithms & Re-writing the Code  

• Not on the mechanics of a parallel 

programming language 

Enable heterogeneous systems (i.e. CPU 

+ GPU) 

• CPU and GPU are separate devices 

with separate DRAMs 

Some Design Goals 

GPU Computing  : Think in Parallel 

0 1 2 3 4 5 6 7 

…… 

float x = input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 
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GPU Computing drives new applications 

• Reducing “Time to Discovery” 

• 100 x Speedup changes science & 

research methods 

New applications drive the future of GPUs 

• Drives new GPU capabilities 

• Drives hunger for more performance 

GPU Computing  : Think in Parallel 

Performance = parallel hardware  

                                     +                               

         scalable parallel program  

Application 

CPU GPU 

Source & Acknowledgements  : NVIDIA, References 
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GPU Computing  : Think in Parallel 

 The GPU is a data-parallel processor 

• Thousands of parallel threads 

• Thousands of data elements to process 

• All data processed by the same program 

 SPMD computation model 

• Contrast with task parallelism and ILP 

 Best results when you “Think Data Parallel” 

• Design your algorithm for data-parallelism 

• Understand parallel algorithmic complexity and efficiency 

• Use data-parallel algorithmic primitives as building blocks 

 Speedups of 8 x to 30x are quite common 

for certain class of applications 

Application 

CPU GPU 

Source : NVIDIA, AMD, References  

Source & Acknowledgements  : NVIDIA, References 



10 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

•Performance /(Cost/Watt); Power for Core  

•Structured Parallelism enables more flops less watts 

Optimized for structured parallel execution 

• Extensive ALU counts & Memory Bandwidth  

• Cooperative multi-threading hides latency 

Shared Instructions Resources 

Fixed function units for parallel workloads dispatch 

Extensive exploitations of Locality 

GPU Computing  : Think in Parallel 

Why Are GPUs So Fast?  

Source : NVIDIA, AMD, References  
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Maximize independent parallelism 

Maximize arithmetic intensity (math/bandwidth) 

Sometimes it’s better to recompute than to cache 

• GPU spends its translators on ALUs, not memory 

Do more computation on the GPU to avoid costly data 

transfers 

• Even low parallelism computations can sometimes 

be faster than transferring back and forth to host 

GPU Computing  : Think in Parallel 

GPU Computing  : Optimise Algorithms for the GPU 

Source & Acknowledgements  : NVIDIA, References 
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Partition your computation to keep the GPU 

multiprocessors equally busy 

• Many threads, many thread blocks 

Keep resource usage low enough to support 

multiple active thread blocks per multiprocessor 

• Registers, shared memory 

GPU Computing  : Use Parallelism Efficiently 

GPU Computing  : Think in Parallel 

Source : NVIDIA,AMD, References  
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Hundreds of times faster than global 

memory 

Threads can cooperate via shared memory 

Use one/ a few threads to load/computer 

data shared by all threads 

Use it to avoid non-coalesced access 

• Stage loads and stores in shared 

memory to re-order non-coalesceable 

addressing 

• Matrix transpose example later  

GPU Computing  : Think in Parallel 

GPU Computing  : Take Advantage of Shared Memory 

Application 

CPU GPU 

Source & Acknowledgements  : NVIDIA, References 
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GPU Challenges with regard to Scientific Computing  

GPU Programming : Two Main Challenges  

   Example : Matrix Computations 

• To port an existing scientific 
application to a GPU 

Challenge 1 : Programmability  

 

 

 The user must focus considerable effort on optimizing 
performance by manually orchestrating data movement 
and managing thread level parallelism on GPU. 

 

 GPU memory exists on the card itself 
• Must send matrix array over PCI-Express Bus 

 Send A, B, C to GPU over PCIe  

Perform GPU-based computations on A,B, C 

 Read result C from GPU over PCIe 

Source : NVIDIA, AMD, References  

Application 

CPU GPU 
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Challenge 2 :  Accuracy  

 Example : Non-Scientific Computation - Video Games (Frames) 
(A single bit difference in a rendered pixel in a real-time graphics 
program may be discarded when generating subsequence 
frames) 

 

 Scientific Computing : Single bit  error - Propagates overall error 

 

 Past History : Most GPUs support single/double precision, 32 bit 
/64-bit floating point operation, - all GPUs have necessarily 
implemented the full IEEE Standard for Binary Floating-Point 
Arithmetic (IEEE 754) 

GPU Programming : Two Main Challenges  

Source : NVIDIA, AMD, References  

Source & Acknowledgements  : NVIDIA, References 
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A CUDA kernel is executed by an array of threads 

• All threads run the same code 

• Each thread has an ID that it uses to compute 

memory addresses and make control decisions 

Arrays of Parallel Threads 

0 1 2 3 4 5 6 7 

…… 

float x = input[threadID]; 

float y = func(x); 

output[threadID] = y; 

…… 

 

threadID 

NVIDIA - GPU Computing CUDA Kernels and Threads  

Source : NVIDIA 



17 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

Solution: GPU Computing – NVIDIA CUDA  

• NEW: GPU Computing with CUDA 

 CUDA = Compute Unified Driver Architecture 

 Co-designed hardware & software for direct GPU 

computing 

• Hardware: fully general data-parallel architecture 

 General thread launch 

 Global load-store 

 Parallel data cache 

• Software: program the GPU in C 

 Scalable data-parallel execution/ 

      memory model 

 Scalar architecture 

 Integers, bit operations   

 Single / Double 

precision C with 

powerful extensions 

 CUDA 4.0 /CUDA 5.0 

     

Source & Acknowledgements  : NVIDIA, References 
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Several multiprocessors (MP), each with: 

- several simple cores 

- small shared memory 

The threads executing 

in the same MP must 

execute the same 

instruction 

Shared memory must be 

used to prevent the 

high latency of the  

global device memory 

GPU : Architecture  

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA GPU Computing Architecture is a  separate 

HW interface that can be plugged into the desktops / 

workstations / servers with little effort.  
 

G80 series GPUs /Tesla deliver FEW HUNDRED to 

TERAFLOPS  on compiled parallel C applications 

GeForce 8800 Tesla S870 
Tesla D870 

Glance at NVIDIA GPU’s 

Source : NVIDIA, References 
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512 MB/256-bit GDDR3  

@ 900 MHz  

16x PCI-Express 

SLI Connector 

DVI x 2 

sVideo 

TV Out 
Single slot cooling 

GeForce 8800 GT Card  

Source : NVIDIA, References 
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Reflects the memory hierarchy 
of the device 

All threads from a single block 
are executed in the same MP 

Shared memory: 
- Used for communication  
and synchronization of 
thread of the same block 

How to map neuronal processing 
and communications into  
CUDA threads? 

GPU Thread Organisation  

Source & Acknowledgements  : NVIDIA, References 



22 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

NVIDA :CUDA – Data Parallelism 

To a CUDA Developer,  

• The computing system consists of a host, which is a 

traditional central processing unit (CPU) such as Intel, 

AMD, IBM, Cray multi-core architecture and one more 

devices, which are massively parallel processors equipped 

with a large number of arithmetic execution units.  

Computing depends upon the concept of Data Parallelism 

   Image Processing, Video Frames, Physics, Aero dynamics, 

Chemistry, Bio-Informatics 

• Regular Computations and Irregular Computations. 

Source & Acknowledgements  : NVIDIA, References 
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NVIDA :CUDA – Data Parallelism 

Data Parallelism 

• It refers to the program property whereby many 

arithmetic operations can be safely performed on the 

data structure in a simultaneous manner. 

 The concept of Data Parallelism is applied to typical 

matrix-matrix computation. 

    

Source & Acknowledgements  : NVIDIA, References 
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 NEW: GPU Computing with CUDA 

• CUDA = Compute Unified Device Architecture 

• Co-designed hardware & software for direct 

GPU computing 

 Hardware: fully general data-parallel architecture 

• General thread launch;  Global load-store 

• Parallel data cache 

 Software: program the GPU in C /C++ 

• Scalable data-parallel execution/ memory 

model; Single/Double precision  

 Hundreds of times faster than global memory 

 Use one/ a few threads to load/computer data 

shared by all thread 

C
P
U 

G
P
U 

Application 

CUDA 
Libraries 

CUDA Runtime 

CUDA Driver 

Compute Unified Device 
Architecture Software Stack 

NVIDIA GPU Computing - CUDA Kernels and Threads  

Source & Acknowledgements  : NVIDIA, References 
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C/C++ CUDA 

Applications 

CPU Code EDG 

Open64 

PTX Code 

PTX to Target 

Translator 

CPU . . . CPU 

Target Code 

float4 me =  

sx[gtid]; 

me.x += me.y * me.z; 

id.global.v4.f31 

mad.f32 

{$f1,$f3,$f5,$f7), 

[$r9+0}; 

$f1, $f5, $f3, $f1; 

CUDA’s compilation process. Source code written for the host 

CPU follows a fairly traditional path and allows developers to 

choose their own C/C++ compiler, but preparing the GPU’s 

source code for execution requires additional steps. Among the 

unusual links in the CUDA tool chain are the EDG preprocessor, 

which separates the CPU and GPU source code; the Open54 

compiler, originally created for itanium; and Nvidia’s PTX-to-

Target Translator, which converts Open64’s assembly-language 

output into executable code for specific Nvidia GPUs. 

NVIDIA GPU Computing - CUDA Kernels and Threads  

Source & Acknowledgements  : NVIDIA, References 
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CUDA Software Development 

CUDA Optimized Libraries: 

math.h, FFT, BLAS, … 
Integrated CPU + GPU 

C Source Code 

NVIDIA C Compiler 

NVIDIA Assembly 

for Computing (PTX) 
CPU Host Code 

CUDA 

Driver 
Profile Standard C Compiler 

GPU CPU 

NVIDIA  GPU Computing - CUDA Kernels and Threads  

Source & Acknowledgements  : NVIDIA, References 
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CUDA Optimized Libraries: 

math, h, FFT, BLAS, … 

Nvidia Assembly for 

Computing (PTX) 

Cuda 

Driver 

GPU 

Nvidia C Compiler 

Cuda 

Driver 

Integrated CPU + GPU 

CPU Host Code 

Standard C Compiler 

Compiler 

NVIDIA CUDA platform for parallel processing on Nvidia 

GPUs. Key elements are common C/C++ source code with 

different compiler forks for CPUs and GPUs; function libraries 

that simplify programming; and a hardware-abstraction 

mechanism that hides the details of the GPU architecture from 

programmers. 

CUDA Performance Advantage 

Source : NVIDIA, References 
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CUDA is Designed to Support Various Languages and Application 

Programming Interfaces  

NVIDIA  GPU Computing - CUDA Kernels and Threads  

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA GeForce GPU 

Source & Acknowledgements  : NVIDIA, References 
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An approach to Writing CUDA Kernels 

Use algorithms that can expose substantial 

parallelism, you’ll need thousands of threads… 

Identify ideal GPU memory system to use for 

kernel data for best performance 

Minimize host/GPU DMA transfers, use pinned 

memory buffers when appropriate 

Optimal kernels involve many trade-offs, easier to 

explore through experimentation with 

microbenchmarks based key components of the 

real science code, without the baggage 

Analyze the real-world use cases and select the 

kernel(s) that best match, by size, parameters, etc. 

Source : NVIDIA, References 
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 SPA 

 Streaming Processor Array (variable across 

GeForce 8-series, 8 in GeForce8800)  

 TPC 

 Texture Processor Cluster (2 SM + TEX)  

 SM 

 Streaming Multiprocessor (8 SP)  

 Multi-threaded processor core 

 Fundamental processing unit for CUDA thread 

block 

 SP 

 Streaming Processor 

 Scalar ALU for a single CUDA thread 

Processor Terminology 

Source : NVIDIA, References 
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CUDA - Quick terminology review 

 Thread: concurrent code and associated state executed on the 

CUDA device (in parallel with other threads) 

 The unit of parallelism in CUDA 

 Note difference from CPU threads: creation cost, resource 

usage, and switching cost of GPU threads is much smaller 

 

Warp: a group of threads executed physically in parallel (SIMD) 

 

 Thread Block: a group of threads that are execute together and 

can share memory on a single multiprocessor 

 

 Grid: a group of thread blocks that execute a single CUDA program 

logically in parallel 

 

 Device: GPU                     Host: CPU 

 

  SM: Multiprocessor 
Source : NVIDIA, References 
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NVIDA :CUDA – Data Parallelism 

Data Parallelism  : It refers to the program 

property whereby many arithmetic 

operations can be safely performed on the 

data structure in a simultaneous manner 

Example : The concept of Data Parallelism is 

applied to typical matrix-matrix computation. 

M P 

N 

WIDTH WIDTH 

W
ID

T
H

 
W

ID
T

H
 

Figure Data parallelism in matrix multiplication. 

Each element of the  product 

matrix   P is generated by 

performing a dot product 

between a row of input 

matrix  M and a column of 

input matrix N as shown in  

figure. 
Source & Acknowledgements  : NVIDIA, References 
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NVIDA :CUDA – Data Parallelism 

M P 

N 

WIDTH WIDTH 

W
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T
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W

ID
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Figure Data parallelism in matrix multiplication. 

In figure, highlighted elements of a matrix 

P is generated by taking the dot product of 

the  highlighted row of matrix M and the 

highlighted column of matrix N 

 Note : Dot product operations 

for computing different matrix 

P elements can be 

simultaneously performed. 

• None of these dot products 

will affect the results of each 

other.     

Source & Acknowledgements  : NVIDIA, References 
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NVIDA :CUDA – Data Parallelism 

Source : NVIDIA 
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N 
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Figure  : Data parallelism in matrix 

Multiplication. 

For P = (1000 X 1000); M = (1000 X 1000) &   

N = (1000 X 1000) 

 The number of dot products : 1,000,000 

 Each dot product involves 1000 multiply and 

1000 accumulate arithmetic operations  

Note : 

1. Data Parallelism in real 

application is not as simple 

as matrix-matrix 

multiplication. 

2. Different forms of Data 

parallelism exists in several 

applications    
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NVIDA :CUDA - Quick terminology review 

CUDA is a development platform designed for writing and 

running general-purpose  applications on the nVIDIA GPU 

• Similar to Graphics applications, CUDA applications can 

be accelerated by data-parallel computation of millions of 

threads. 

A thread  here is an instance of a kernel, namely a program 

running on the GPU. 

GPU platform can be regarded as a single instruction, multiple 

data (SIMD) parallel machine rather than graphics hardware  

• Keeping SIMD in mind, there is no need to understand  

the graphics pipeline to execute programs on this highly 

threaded architecture. 
Source & Acknowledgements  : NVIDIA, References 
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CUDA PROGRAM STRCUTURE  

A CUDA program consists of one or more phases that are 

executed on either the host (CPU) or a device such as GPU.  

• The phases that exhibit little or no data parallelism are 

implemented in the host code. 

• The  phases rich amount of data parallelism are 

implemented in the device code.  

A CUDA program is a unified source code encompassing both 

host and device code. 

The NVIDIA C Compiler (nvcc) separates the two during the 

compilation process. The host-code is straight ANSI C code 

 The device code is written using ANSCI key-words  for 

labeling data-parallel functions called kernels and their 

associated data structures. Source & Acknowledgements  : NVIDIA, References 



38 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

The device code is complied by the nvcc and executed on 

a GPU device.  

• Refer CUDA Software Development Kit (SDK)  are 

implemented in the host code. 

About Kernel function : 

• Generate a large number of threads to exploit 

parallelism 

• In Matrix into Matrix Multiplication algorithm,  the kernel 

that uses one thread to compute one element of output 

matrix P would generate 1,000,000 threads when it is 

invoked. 

 

CUDA PROGRAM STRCUTURE  

Source & Acknowledgements  : NVIDIA, References 
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CUDA PROGRAM STRCUTURE  

Remarks :  

CUDA threads are of much lighter weight than the CPU 

threads 

 It can be assumed that these threads take very few cycles 

to generate and schedule due to efficient hardware support. 

• Note :  CPU threads that typically require thousands of 

clock cycles to generate and schedule. 

•  When kernel function is invoked or launched, all the 

threads that are generated take advantage of data 

parallelism. 

• All the threads that are generated by a kernel during an 

invocation are collectively called a grid.  
Source & Acknowledgements  : NVIDIA, References  
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. . . 

Grid 0 

. . . 

Grid 1 

CPU serial code 

GPU parallel kernel 

Kernel<<<nBIK, nTid>>>(args); 

CPU serial code 

GPU parallel kernel 

Kernel<<<nBIK, nTid>>>(args); 

Execution of a CUDA program. 

CUDA PROGRAM STRCUTURE  

Figure shows the execution of two grids of threads. When all the 

threads of a kernel complete their execution, the corresponding grid 

terminates, and the execution continues on the host until another 

kernel is invoked. Source & Acknowledgements  : NVIDIA, References 
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NVIDA :CUDA  STRUCTURE  

int main (void) { 

  Step 1 : // allocate and the initialize the matrices M,N, P 

           // I/O read the input matrices M & N 

     …………. 

 

 Step 2 : // M * N  on the device  

           MatrixMultiplication (M,N,P, Width) 

 

 Step 3 : // I/O  to write the  Output matrix P 

          // Free matrices M,N, P 

……… 

return 0; 

} 

Source : NVIDIA 

A simple main function for the matrix multiplication example  

Example 1. : Matrix Multiplication 
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M P 

N 

WIDTH WIDTH 

W
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T
H

 
W

ID
T

H
 

Figure A simple matrix multiplication   function with only host code. 

k 

j 

k 

j 

Void MatrixMultiplication(float* M,float* N,float* P,int Width) 

{  

  for (int i = 0; i < Width; ++i) 

    for (int j = 0; j < Width; ++j) { 

       float sum = 0; 

       for (int k = 0; k < Width: ++k) { 

          float a = M[i * Width + k]; 

          float b = N[k * Width + j]; 

          sum += a = b; 

       } 

       P[i * width + j] = sum; 

    } 

} 

NVIDIA :CUDA  STRUCTURE  

Example : Matrix Multiplication 
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M0, 0 M1, 0 M2, 0 M3, 0 

M0, 1 M1, 1 M2, 1 M3, 1 

M0, 2 M1, 2 M2, 2 M3, 2 

M0, 3 M1, 3 M2, 3 M3, 3 

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3 

M 

M1, 1 M2, 1 M3, 1 
M0, 1 

Placement of two-dimensional array elements into the linear address system memory. 

NVIDIA :CUDA  STRUCTURE  

Note : 4 x 4 matrix is placed into 16 consecutive memory locations  (Simple code can 

be written using Standard C language. ) 

Example : Matrix Multiplication 
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Revised host code simple matrix multiplication  that moves the matrix 

multiplication to a device  

Void MatrixMultiplication(float* M,float* N,float* P,int Width) 

{  

   int size = Width * Width *sizeof(float);  

   float* Md, Nd, Pd;  

   ………………… 

   Step 1: // Allocate device memory for M, N, and P 

           // copy M and N to allocate device memory locations 

           

   Step 2: // Kernel invocation code – to have the device to  

           // perform the actual matrix multiplication 

           

   Step 3:  // copy P from the device memory 

           // free device matrices 

} 

NVIDIA :CUDA  STRUCTURE  

Example 2: Matrix Multiplication 

Source & Acknowledgements  : NVIDIA, References 
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–Processor: 

–Set of Multi-Processors (MP)           

–Set of Scalar Processor (SP) 
 

–Memory: 

–High b/w global memory 

–Fast shared memory (per SP) 
 

–Execution: 

–Kernel program on GPU 

–Threads scheduling in warps 

Device 

Multiprocessor N 

Multiprocessor 2 

Multiprocessor 1 

Off-Chip Device memory 

Shared Memory 

Instruction 

Unit 

Processor 1 

Registers 

… Processor 2 

Registers 

Processor M 

Registers 

Constant 

Cache 

Texture 

Cache 

CUDA  Architecture  

CUDA Device Memories and Data Transfer  

Source & Acknowledgements  : NVIDIA, References 
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Device 

Multiprocessor N 

Multiprocessor 2 

Multiprocessor 1 

Off-Chip Device memory 

Shared Memory 

Instruction 

Unit 

Processor 1 

Registers 

… Processor 2 

Registers 

Processor M 

Registers 

Constant 

Cache 

Texture 

Cache 

  Host CPU 

CPU initialize data  

 

Launches kernel 

 

Threads work on sub-

streams 

 

Basic Implementation on GPU  

CUDA Device Memories and Data Transfer  

Source & Acknowledgements   

: NVIDIA, References 

Source & Acknowledgements  : NVIDIA, References 
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• Device code can: 

— R/W per-thread registers 

— R/W per-thread local memory 

— R/W per-block shared memory 

— R/W per-grid global memory 

— Read only per-gold constant 

 

— Host code can 

— Transfer data to/from per-grid global 

and constant memories 

CUDA device memory model & Data transfer 

Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

Constant 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

NVIDA :CUDA  DEVICE MEMORIES & DATA TRANSFER  

 global memory & constant 

memory  -devices  host 

code can transfer to and 

from the device, as 

illustrated by the bi-

directional arrows between 

these memories and host   

Host memory is not shown in the figure 

Source & Acknowledgements  : NVIDIA, References 
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CUDA device memory model & data transfer 

Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

Constant 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

NVIDA :CUDA  DEVICE MEMORIES & DATA TRANSFER  

CUDA API functions for device global memory management 

• cudaMalloc() 

— Allocates object in the device 

global memory 
— Two parameters 

• Address of a pointer to the 

allocated object 

• Size of allocated object terms of 

bytes 

 

• cudaFree () 

— Frees object from device global 

memory 

• Pointer to freed object 

Source & Acknowledgements  : NVIDIA, References 
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Revised host code simple matrix multiplication  that moves the 

matrix multiplication to a device  
Void MatrixMultiplication(float* M,float* N,float* P,int Width) 

{  

   int size = Width * Width *sizeof(float);  

   float* Md, Nd, Pd;  

   ………………… 

   Step 1: // Allocate device memory for M, N, and P 

           // copy M and N to allocate device memory locations 

           

   Step 2: // Kernel invocation code – to have the device to  

           // perform the actual matrix multiplication 

           

   Step 3:  // copy P from the device memory 

           // free device matrices 

} 

NVIDIA :CUDA  STRUCTURE  

Example : Matrix Multiplication 

Source & Acknowledgements  : NVIDIA, References 
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CUDA device memory model & data transfer 

Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

Constant 
Memory 

NVIDA :CUDA  DEVICE MEMORIES & DATA TRANSFER  

CUDA API functions for data transfer between memories 

• cudaMemcpy() 

— Memory data transfer 

— Requires four  parameters 

• Pointer to destination 

• Pointer to source 

• Number of bytes copied 
 

• Type of transfer 

 

— Host to Host 

— Host to Device 

—  Device to Host 

— Device to Device  

• Transfer is asynchronous 

Source & Acknowledgements  : NVIDIA, References 
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cudaMalloc() : Called from the host code to allocate a piece of global 

memory for an object. 
 

   float* Md 

   int size = Width * Width *sizeof(float); 

   cudaMalloc( (void**)&Md, size);  

   ……………. 

   cudaFree(Md);  

   ………………… 

1. The first parameter of the cudaMalloc() function is the address of a 

pointer variable that must point to the allocated object after allocation 
2. The second parameter of  cudaMalloc()function gives size of the 

obejct to be allocated. 
3. After the computation,  cudaFree() is called with pointer Md as input to 

free the storage space for the Matrix from the device global memory. 

NVIDIA :CUDA  STRUCTURE  

Device Memory & Data transfer  
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CUDA Programming Environment :  Two symbolic constants  

   cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice); 

 

   cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost);  

are predefined constants of the CUDA Programming Environment. 

 
Note : The cudaMemcpy() function takes four parameters  

1. The first parameter is a pointer destination location for the copy operation 

2. The second parameter points to the source data object to be copied 

3. The third parameter specifies the number of bytes  to be copied 

4. The fourth parameter indicates the types of memory involved in the copy: 

from the host memory to host memory; from host memory to device 

memory; from device memory to host memory  

Note  :  Please note that cudaMemcpy() cannot  be used to copy between 

different GPUs to multi-GPU systems. 

NVIDA :CUDA  STRUCTURE  

Device Memory & Data transfer  

Source & Acknowledgements  : NVIDIA, References 
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The revised MatrixMultiplication() function Code 
Void MatrixMultiplication(float* M,float* N,float* P,int Width) 

{  

   int size = Width * Width *sizeof(float);  

   float* Md, Nd, Pd;  

  Step 1. // Transfer of M and N to device memory 

          cudaMalloc( (void**)&Md, size);  

          cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice); 

          cudaMalloc( (void**)&Nd, size); 

          cudaMemcpy(Md,M,size, cudaMemcpyHostToDevice); 

          // Allocate P on the device 

          cudaMalloc ( (void**) &Pd, size) 

  Step 2. // Kernel Invocation code  

          …………………. 

  Step 3. // Transfer P from device to host 

          cudaMemcpy(P,Pd,size, cudaMemcpyDeviceToHost); 

          // free device matrices 

          cudaFree(Md); cudaFree(Nd); cudaFree(Pd); 

} 

NVIDIA :CUDA  STRUCTURE  

Device Memory & Data transfer  

Source & Acknowledgements  : NVIDIA, References 
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NVIDA :CUDA  STRUCTURE  

KERNEL FUNCTIONS AND THREADING 

CUDA kernel function is declared by “__global__” keyword  

   This function will be executed on the device and can only 

called from the host to generate a grid of threads on a 

device. 

 Besides “__global__” , there are two other keywords tha can 

be used in front of a function declaration.  

     __device__ float DeviceFun( ) 

     __global__ void  KernelFun( ) 

     __host__ float HostFunc( ) 
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KERNEL FUNCTIONS AND THREADING 

CUDA extensions to C function declaration  

     __device__ float DeviceFun( ) : Declared as a CUDA device 

function) 

     __global__ void  KernelFun( )  :Declared as a CUDA kernel 

function) 

     __host__ float HostFunc( )   :Declared as a CUDA host function) 

Executed  
 on the  : 

 Only calling       
from the : 

__device__ float DeviceFun( )      device       device  

__global__ void  KernelFun( )      device  host 

 __host__ float HostFunc( ) host      host 

NVIDIA :CUDA  STRUCTURE  

Source & Acknowledgements  : NVIDIA, References 
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The  MatrixMultiplication()  Kernel function  
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, 

int Width) 

{  

    // 2D Thread ID 

    Int tx = threadId.x;  

    Int ty = threadId.y; 

   // P value stores the Pd element that is computed by the    

   // thread  

   float Pvalue = 0; 

   for (int k = 0; k < width; ++k) { 

          float Mdelement  = Md[ty * width + k]; 

          float Ndelement  = Nd[k * width + tx]; 

          Pvalue  += Mdelement  * Ndelement; 

       } 

   // Write the matrix to device memory each thread writes one  

   // element 

   Pd[ty*Width + tx ] = Pvalue; 

  }   // Limitation : Can handle only matrices of 16 elements in 

each dimension 

 

NVIDIA :CUDA  THREAD ORGANIZATION   

KERNEL FUNCTIONS AND THREADING 
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The  MatrixMultiplication()  Kernel function  
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, 

int Width) 

 

 Dot product  loop uses threadIdx.x  and threadIdx.y  to identify the row 

of Md and column of Nd to work on 

 

Limitations  

  Can handle only matrices of 16 elements in each dimension  (Due to fact 

that the kernel function does not use blockIdx) 
 

 Limited to using only  one block of threads  
 

 It is assumed that each block can have upto 512 threads,  we can limit to 

16 X 16 because 32 X 32 requires more than 512 threads per block. 

 Question : How to accommodate larger matrices  ? (Hint :  Use 

multiple thread blocks) 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 
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threadIdx.x  & threadIdx.y  

• Refer to the thread indices of a thread (Different threads will 
see different values in their threadIdx.x and 

threadIdx.y variables) 

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates reflect a 

multi-dimensional organization for the threads. 

• CUDA threading hardware generates all of the 
threadIdx.x and threadIdx.y variables for each thread. 

• These work on particular part of data structure  of the designed 

code and with these thread  indices allow a thread to access the 

hardware registers at runtime that provides the identifying 

coordinates to the thread.  

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 
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threadIdx.x; threadIdx.y in CUDA matrix multiplication 

Each thread uses its threadIdx.x and threadIdx.y to identify 

the row of Md and the column of Nd to perform the dot product 

operation. 

Each thread  also uses its threadIdx.x   and  threadIdx.y 

values  to select the Pd element that it is responsible for;  for 
example threadId2,2 will perform a dot product between column 2 

of  Nd and row 3 of Md and write the result into element (2,3) of Pd.  

This way, the threads collectively generate all the elements of the Pd 

matrix. 

When a kernel is invoked or launched, it is executed as grid of 

parallel threads & each  CUDA thread grid typically is comprised of 

thousands to millions of lightweight GPU threads per kernel 

invocation. 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 



60 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

A multidimensional example of CUDA grid 

organization.  

 

 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

 

 

Grid 2 

 

 

Kernel 1 

Kernel 2 

Host 

Block (1, 1) 

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1) 

Thread 

(0, 0, 1) 
Thread 

(1, 0, 0) 
Thread 

(2, 0, 0) 
Thread 

(3, 0, 0) 

Thread 

(0, 1, 0) 
Thread 

(1,1, 0) 
Thread 

(2, 1, 0) 
Thread 

(3, 1, 0) 

NVIDIA :KERNEL FUNCTIONS AND THREADING 

A  Thread  block 

— A thread block is a batch of 

threads that can co-operate with 

other by  

• Synchronizing their 

execution  

For hazard-free shared 

memory accesses 

— Efficiently sharing data through 

a low-latency shared memory 
 Cop-operation - thread blocks 

— Two threads from two different 

blocks can not cooperate  

Source & Acknowledgements  : NVIDIA, References 
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// Kernel definition 

_global_ void VecAdd(float* A, float* B, float* C) 

{ 

   int i = threadIdx.x; 

   c(i) = A[i] + B[i]; 

} 

 

int main () 

{ 

   ... 

   // Kernel invocation with N Threads 

   VecAdd<<<1, N>>>(A, B, C); 

   ... 

} 

 

Kernel 
 

NVIDIA :CUDA  Thread Organisation   

Ex : Vector Vector  Addition  
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Organization of Threads in a grid – CUDA  

Threads in a grid are organized into a two-level hierarchy, as 

illustrated in figure (Refer earlier slide) 

At the top level, each grid consists of one or more thread blocks. 

All blocks in a grid have the same number of threads 

• Example : In figure (Refer earlier slide), Grid 1 is organized 

as a 2 X 2 array of 4 blocks.  

- Each block has a unique two-dimensional co-ordinate given 

by the CUDA specific keywords blockIdx.x  and 

blockId.y 

- All thread blocks must have the same number of threads 

organized in the same manner Source : NVIDIA 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   
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Organization of Each Thread block in a grid 

Each thread block is, in turn, organized as a three 

dimensional array of threads with a total size up to 512 threads 

The coordinates of threads in a block are uniquely defined three 

thread indices  : threadIdx.x, threadIdx.y and 

threadIdx.z 

Note : Not all applications will use all three (3) dimensions of a 

thread block   

Example : (Refer earlier slide)  

- Each thread block is organized into a 4 x 2 x 2 three-

dimensional array of threads  

- This gives a  Grid one (1) a total of 4 x 16 = 64 threads 

Source : NVIDIA 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   
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Organization of Each Thread block in a grid 

  Example of host code that launches a kernel 

 

  //Setup the execution configuration 

  dim3 dimBlock(Width, Width);  

  dim3 dimGrid(1,1); 

  

 // Launch the device computation threads !    
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width);  

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 
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Observations - Example 4: (Refer earlier slide 40 )  

 Code does not use any block index in accessing input and 

output data. 

 Threads with the same threadIdx values from different 

blocks would end-up accessing the same input and output data 

elements. 

  As a result, the kernel can use only one thread block. 

 The theadIdx.x and threadIdx.y values are used to 

organize the block into a row-dimensional array of threads. 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 
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Observations - Example 4: (Refer earlier slide 40 )  

Because a thread block can have only up to 512 threads, each 

thread calculates one element  of the product matrix in Example 4, 

the code can only calculate a product matrix upto 512 elements. 

  Conclusions :   

1. The solution is not scalable & not acceptable due to choice of 

one thread block 

2.  To have a sufficient amount of data parallelism  to benefit 

from execution on a device use of multiple blocks is required. 

Question to be addressed 

     How to set the grid and thread block dimensions ? 

      How to specify execution configuration parameters ? 
Source : NVIDIA 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA  THREAD ORGANIZATION   
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Organization of Each Thread block in a grid 

  //Setup the execution configuration 

  dim3 dimBlock(Width, Width);  

  dim3 dimGrid(1,1); 

 // Launch the device computation threads !    
MatixmultKernel<<< dimGrid, dimBlock>>> (Md, Nd, Pd, Width); 

KERNEL FUNCTIONS AND THREADING 

• Two struct variable of type dim3 are declared 

•  The first is for describing the configuration of blocks, 

which are defined as 16 x 16 groups of threads. 

• The second variable, dimGrid, describes the 

configuration of the grid. 

In this example, we have  only (1 X 1) block in each grid. 

NVIDIA :CUDA  THREAD ORGANIZATION   

Source & Acknowledgements  : NVIDIA, References 
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CUDA Threads 

Part-2 

Source & Acknowledgements  : NVIDIA, References 
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CUDA Thread Organization  

 All threads in a grid execute the same kernel 

Rely on unique coordinates to distinguish themselves from 

each other and to identity the appropriate  portion of the data to 

process. 

 The threads are organized into a two-level hierarchy using unique 

coordinates 

 blockIdx  (for block index) and  

  threadIdx  (for thread index) 

     (Assigned to them by the  CUDA runtime system) 

  The gridDim and blockDim are additional  built-in,  

pre-initialized variables that can be accessed within kernel 

functions 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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CUDA Thread Organization  

 All threads in a grid execute the same kernel 

Rely on unique coordinates to distinguish themselves from 

each other and to identity the appropriate  portion of the data to 

process. 

 Size /Dimension of Grid or Block 

The blockIdx and threadIdx appear as built-in,  

preinitialized variables that can be accessed within kernel 

functions 

CUDA Thread Organization  

 The yellow color box of each threads block in Figure shows a 

fragment of the kernel code  

 Part of the input data is read and 

 Part of the output  data is write 

NVIDIA :CUDA – Thread Organization  
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CUDA Thread Organization  

 The example figure consists of N thread blocks, each with a 

blockIdx.x value ranges from 0 to N-1 

Each block in-turn consists of M threads, each with a 

threadIDx.x  value ranges from 0 to  M-1.  

 All blocks at each grid level are organized as a one-dimensional 

(1D) array 

 All threads  within each block  level are organized as a 1D array 

and each grid  has a total of N*M threads 

Example :  The black box of each thread block in figure 6 shows a 

fragment of the kernel code. 
• The code fragment uses the 

      Int threadI =  blockId.x + blockDim.x + threadIdx.x;  

   to identify the part of (a) input data to read from and (b) the part of the (b) output 

data structure to write to. 

NVIDIA :CUDA – Thread Organization  



72 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

Dim3 dimGrid(128, 1,1); 

Dim3 dimBlock(32,1,1,); 

 

Kernel Function <<< dimGrid, dimBlock >>> (…);  

 

You can also use  
Kernel Function << 128, 32 >>> (…); 

 The values of gridDim.x and gridDim.y can 

range from 1 to 65535 

 The values of gridDim.x and gridDim.y can be 

calculated based on other variables at kernel launch 

time. 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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Kernel launches a grid of thread blocks 

• Threads within a block cooperate via shared memory 

• Threads within a block can synchronize 

• Threads in different blocks cannot cooperate 

Allows programs to transparently scale to different GPUs 

Thread Batching 

Shared Memory 

Thread Block 0 

Grid 

. . . 

Shared Memory 

Thread Block 1 

Shared Memory 

Thread Block n 

NVIDIA  GPU Computing - CUDA Kernels and Threads  

Source : NVIDIA 
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CUDA Thread Organization  

 The example figure consists of N thread blocks, each with a 

blockIdx.x value ranges from 0 to N-1 

Each block in-turn consists of M threads, each with a 

threadIDx.x  value ranges from 0 to  M-1.  

Example :  The code fragment uses the 

      Int threadI =  blockId.x + blockDim.x + threadIdx.x;  

 to identify the part of (a) input data to read from and (b) the part of the (b) output 

data structure to write to. 

 
Thread 3 of  Block  0 has a  threadId value  of  0*M + 3 

Thread 3 of  Block  1 has a  threadId value  of  1*M + 3 

Thread 3 of  Block  2 has a  threadId value  of  2*M + 3 

Thread 3 of  Block  3 has a  threadId value  of  3*M + 3 

Thread 3 of  Block  4 has a  threadId value  of  4*M + 3 

Thread 3 of  Block  5 has a  threadId value  of  5*M + 3 

 

 

 

 

NVIDIA :CUDA – Thread Organization  
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CUDA Thread Organization  
 The example figure consists of N thread blocks, each with a blockIdx.x 

value ranges from 0 to N-1 

 Each block in-turn consists of M threads, each with a threadIDx.x  value 

ranges from 0 to M-1.  

 Each grid  has a total of N*M threads 

Example : Assume a each grid 128 blocks (N = 128) and each block has 32 

(M=32)threads and a total of 128*32 = 4096 threads in the grid. 

  Access to blockDim in the kernel function returns 32  

NVIDA :CUDA – Thread Organization  

Thread  3 of  Block   0  has a  threadId  value  of   0*32 + 3  =    3 

Thread  3 of  Block   4  has a  threadId  value  of    4*32 + 3  =   131 

Thread  3 of  Block   20  has a  threadId value  of    20*32 + 3 =   643 

Thread  3 of  Block   40  has a  threadId  value  of   40*32 +3 =  1283  

Thread  10 of  Block   80  has a  threadId value  of   80*32+10 =  2570 

Thread  3 of  Block  100  has a  threadId value  of   100*32+3  =  3203 

Thread 15 of  Block  102 has a  threadId value  of   102*32+15 = 3279 

Thread 16 of  Block  120 has a  threadId value  of   120*32+16 = 3856  
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CUDA Thread Management – An Overview  

0 1 2  3 M-1 

Thread block 0 

theadIdx.x 0 1 2  3 M-1 

Thread block 1 

theadIdx.x 

Int threadID =  

        blockId.x + blockDim.x + threadIdx.x;  

         ………  

     float x = input[threadID];                       

     float y =  func(x); 

   output[threadID] = y; 

     ………….. 

Int threadID =  

      blockId.x + blockDim.x  + threadIdx.x; 

         ………  

     float x = input[threadID];                       

     float y =  func(x); 

   output[threadID] = y; 

     ………….. 

NVIDIA :CUDA  THREAD ORGANIZATION   
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CUDA Thread Management – An Overview  

0 1 2  3 M-1 

Thread block 3 

theadIdx.x 0 1 2  3 M-1 

Thread block N-1 

theadIdx.x 

Int threadID =  

     blockId.x + blockDim.x + threadIdx.x;  

       ………  

 float x = input[threadID];                       

 float y =  func(x); 

output[threadID] = y; 

 ………….. 

Int threadID =  

     blockId.x + blockDim.x  + threadIdx.x; 

      ………  

 float x = input[threadID];                       

 float y =  func(x); 

 output[threadID] = y; 

   ………….. 

.…. 

NVIDIA :CUDA  THREAD ORGANIZATION   
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 Each thread of the 4096 threads  has its own unique 

threaded value 

 

 Kernel code uses threadID variable to index into the input[ ] 

array and output[ ] arrays. 

 

 If we assume that both arrays are declared with 4096 

elements, then each thread may take one of the input[ ] of 

elements and produce one of the output[ ] elements 

 

 Performance depends upon input[ ] array and output[ ] 

arrays 

NVIDIA :CUDA – Thread Organization  



79 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

CUDA – Grid   ; Host Code to launch the kernel 

 

  Dim3 dimGrid(128, 1,1); 

  Dim3 dimBlock(32,1,1,); 

  Kernel Function <<< dimGrid, dimBlock >>> (…);  

 

   The execution configuration  parameters are 
    between  <<< and  >>>  

 

 The Scalar values can also be used for the execution 

configuration parameters if a gird or a block has only one 
dimension. For example  

   Kernel Function << 128, 32 >>> (…); 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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CUDA – Grid   

 In CUDA, a grid is organized as a 2D array or blocks.  
 

 Grid Organization is determined by the execution of 

configuration provided at kernel launch ) 
          dim3 dimGrid(128, 1,1); 

• The first parameter - specifies the dimensions of each block in terms 

of number of blocks  

• The second parameter specifies the dimensions of each block in 

terms of number of threads 

 Each such parameter is a dim3 type,  which  is  essentially   a  

C struct with three unsigned integer filed : x,y,and z. 

• The third  parameter –grid  dimension parameter is set to 1 for 

clarity. (Because of grids are 2D array of blocks dimensions) 
 

 The exact organization of a grid is determined by the 

execution configuration provided at kernel launch. 

 

NVIDIA :CUDA – Thread Organization  
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CUDA – Grid   ; Host Code to launch the kernel 
 Dim3 dimGrid(128, 1,1); 

 Dim3 dimBlock(32,1,1,); 

 Kernel Function <<< dimGrid, dimBlock >>> (…);  

 

 The values of gridDim.x and gridDim.y can range from 1 

to 65535 

 The values of gridDim.x and gridDim.y can be calculated 

based on other variables at kernel launch time. 

 
  All threads in a block share the same blockIdx value.  

• blockIdx.x value ranges between 0  and gridDim.x-1 

• blockIdx.y value ranges between 0 and gridDim.y-1  

 Remark : Once a kernel is launched, its dimensions can not 

change. 

NVIDIA :CUDA – Thread Organization  
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CUDA - Grid- thread blocks  

 
        

 In CUDA, a each  thread block is organized into a 3D 

array of threads  

  All blocks in a grid have the same dimensions. 

       
 Each threadIdx consists of  three components : the              

x-coordinate threadIdx.x,  

      y-coordinate threadIdx.y, and 

   z-coordinate threadIdx.z  

 

 The exact organization of a thread block is determined by 

the execution configuration provided at kernel launch. 

NVIDIA :CUDA – Thread Organization  
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CUDA - Grid- thread blocks  
       dim3 dimBlock(32, 1, 1); 

 

 The first parameter - specifies the total terms of number of 

blocks  

 The second  and third parameter specifies the number of 

threads in each  dimension  

 The configuration parameter can be accessed as a  pre-
defined  C struct variable, blockDim 

 

 Remark : The total size of a block is limited to 512 threads, 

with flexibility in distribution these elements into the three 

dimensions as long as the total number of threads does 

not exceed 512. 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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A multidimensional example of CUDA grid 

organization.  

 

 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

 

 

Grid 2 

 

 

Kernel 1 

Kernel 2 

Host 

Block (1, 1) 

(0, 0, 1) (1, 0, 1) (2, 0, 1) (3, 0, 1) 

Thread 

(0, 0, 1) 
Thread 

(1, 0, 0) 
Thread 

(2, 0, 0) 
Thread 

(3, 0, 0) 

Thread 

(0, 1, 0) 
Thread 

(1,1, 0) 
Thread 

(2, 1, 0) 
Thread 

(3, 1, 0) 

Dim3 dimGrid(2, 1,1); 

Dim3 dimBlock(4,2,1,); 

Kernel Function  

 <<<  

   dimGrid, dimBlock  

    >>>  

 (……);  

NVIDIA :CUDA – Thread Organization  
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Automatic Scalability : A multi-threaded program is partitioned  into blocks of 

threads that execute independently from each other, so that a GPU with more cores 

will automatically execute the program in less time than a GPU with fewer cores.  

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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Grid of Thread Blocks : Blocks are organized into a one-dimensional, two-

dimensional, or three-dimensional grid of thread blocks as illustrated by 

Figure. The number of thread blocks in a grid is usually dictated by the size of 

the data being processed or the number of processors in the system, which it 

can greatly exceed.  

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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Heterogeneous Programming  

NVIDIA :CUDA – Structure  

Source & Acknowledgements  : NVIDIA, References 
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CUDA Synchronization  

Part-3 

Source & Acknowledgements  : NVIDIA, References 
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Block 2 

Block 0 

Block 4 

Block 6 

Block 3 

Block 1 

Block 5 

Block 7 

   Kernel grid 

time   

Device  

Block 2 

Block 0 

Block 4 

Block 6 

Block 3 

Block 1 

Block 5 

Block 7 

Block 2 

Block 6 

Block 3 

Block 7 

Block 1 

Block 5 

Block 0 

Block 4 

Device 

Each block can execute in any order relative to other 

blocks  

Transparent Scalability for CUDA programs allowed by the lack of 

synchronization constraints between locks  

NVIDIA : CUDA  Threads Organisation   

Synchronization and transparent scalability  

 CUDA allows threads in  the same block to coordinate their activities  using 

barrier synchronization function  __syncthreads().  

 Call to _synchtreads(),  ensures that all threads in a block have completed 

a phase of their execution of the kernel before any moves on to the next 

phase. 
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NVIDIA : CUDA  Threads Organisation   

Synchronization and transparent scalability  

 In CUDA  a __syncthreads() statement must be executed by all threads in 

a block. 

 Call to __syncthreads(),  ensures that all threads in a block have 

completed a phase of their execution of the kernel before any moves on to 

the next phase. 

 

Issues  in CUDA Barrier Synchronization  

 
 Use of __synthread() statement  in “if” statement 

Use of __synthread() statement in “if-then-else” statement 
 

thread  may perform execution of “then” path   OR “if” path OR “else” 

path, and this leads to waiting of threads at barrier synchronization  

points.  This results waiting for each other thread. 
 

The ability to synchronize also imposes execution constraints on threads 

within a block.  
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NVIDIA : CUDA  Threads Organisation   

Synchronization and transparent scalability  

Issues  in CUDA Barrier Synchronization  : How to avoid excessive long 

waiting time ? 

 

 The threads in a each block should execute close time proximity with 

each other.  

 

 CUDA runtime systems satisfy this constraint by assigning execution  

resources  to all threads in a block as a unit, that is when a thread o a 

block is assigned to an execution resources. 

 

•  This ensures the time proximity of all threads in a block an prevents 

excessive waiting time during synchronization 

  

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA : CUDA  Threads Organisation   

Synchronization and transparent scalability  

Issues  in CUDA Barrier Synchronization  : How to avoid excessive long 

waiting time ? 

 

CUDA runtime can execute blocks in any order relative to each other 

because none of them must wait for each other. 

 

 Remark :  The ability to execute the same application ode at a wide 

range of speeds allows the production of a wide range of implementation 

according to the cost, power, and performance requirements of particular 

market segment.  

 

 In CUDA one can execute large number of blocks at the same time, 

subject to more resources exist for typical high-end implementation 

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA : CUDA  Threads Organisation   

Thread Assignment :  

 

 Once the kernel is launched, CUDA runtime system 

generates the corresponding grid of threads.  

 

 

 These threads are assigned to execution resources on a 

block-by-block basis.  

 

 Thread block assignment to streaming multiprocessors  

(SMs) 

 

Source & Acknowledgements  : NVIDIA, References 
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Thread block assignment to streaming multiprocessors  (SMs) 

NVIDIA : CUDA  Threads Organisation   

Thread Assignment :  

SM 0 

MT       IU 

SP 

Shared 

Memory  

SP 

SP 

SP 

SM 1 

MT       IU 

SP 

Shared 

Memory  

SP 

SP 

SP 

t0, t1, t2,…,tm 
Blocks 

Blocks 

t0, t1 ,12,…,tm 

Source & Acknowledgements  : NVIDIA, References 
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 Threads are assigned to SMs in 

block  

 Up to 8 Blocks to each SM as 

resource allows 

 

 Threads run concurrently 

 SM assigns/maintains thread 

id #s 

 SM manages/schedules 

thread execution 

t0 t1 t2 … tm 

Blocks 

Texture L1 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

TF 

L2 

Memory 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 

Source : NVIDIA, References 

NVIDIA : CUDA  Threads Organisation   
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 Streaming Multiprocessor (SM)  

 8 Streaming Processors (SP)  

 2 Super Function Units (SFU)  

 Multi-threaded instruction dispatch 

 1 to 512 threads active 

 Shared instruction fetch per 32 

threads 

 Cover latency of texture/memory 

loads 

 20+ GFLOPS (24 GFLOPS in G92)  

 16 KB shared memory 

 DRAM texture and memory access 

SP 

SP 

SP 

SP 

SFU 

SP 

SP 

SP 

SP 

SFU 

Instruction Fetch/Dispatch 

Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 

Streaming Multiprocessor (SM)  

Source : NVIDIA, References 
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NVIDIA GT200 GPU Block Diagram GT200 :  Tesla C1060/ S1070 

Blocks partitioned into warps for thread scheduling  

t1,t2,t3,…,t31 

Streaming Multiprocessor 
Instruction L1 

Instruction Fetch/Dispatch 

Shared Memory 

FP64 Unit (double precision) 

SP 

SP 

SP 

SP 

SFU 

SP 

SP 

SP 

SP 

SFU 

Block 1 Warps 

t1,t2,t3,….t31 

Block 2 Warps 

t1,t2,t3,,…,t31 

Block 3 Warps 

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  

Source & Acknowledgements  : NVIDIA, References 
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 Execution resources are organized into streaming multiprocessors  

    NVIDIA GT200 implementation features  

 

• 30 Streaming Multi-Processors  (SMs) 

• 8 Threading blocks can be assigned to each SM as long as there are 

enough execution resources  to satisfy the needs of all the blocks. 

• Each threading block can have atmost 512 threads 

• 240 thread  blocks can be simultaneously assigned to SMs 

• Upto 1024 threads can be assigned to each SM 

•  Maximum of 30720 threads can be simultaneously residing in the SM 

 

 Most grids contain many more than 240 blocks.  

 The runtime system maintains a list of blocks that need to execute and assign new 

blocks to SMs as they complete execution of blocks previously assigned to them. 

 Note : In situations with an insufficient amount if any one or more types of 

resources needed for the simultaneous execution of 8 blocks , the CUDA runtime 

automatically reduces the number of blocks assigned to each SM until the resource  

usage is under the limit. 

NVIDIA : CUDA  Threads Organisation   

Thread Assignment 
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 Three thread blocks assigned to each SM. 

 One of the SM resource limitations is the number of threads that can be 

simultaneously tracked and scheduled. 

 Hardware resources are required for SMs to maintain the thread, block IDs, and 

track their execution status. 

 Upto 1024 threads can be assigned to each SM. 

•  4 blocks of 256 threads each, 8 blocks of 128 threads each .. (16 blocks of 

64 threads each is not possible.) 

 Execution resources are organized into streaming multiprocessors  

    NVIDIA GT80 implementation features  

• 16 Streaming Multi-Processors  (SMs) 

• 8 Threading blocks can be assigned to each SM as long as there are 

enough execution resources  to satisfy the needs of all the blocks. 

• Each threading block can have atmost 256 threads 

• Upto 768 threads can be assigned to each SM (3 blocks of 256 each;  6 

blocks of 128 threads each) 

•  Maximum of 12288 threads can be simultaneously residing in the SM 

NVIDIA : CUDA  Threads Organisation   

Thread Assignment 

Source & Acknowledgements  : NVIDIA, References 
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CUDA - Grid- thread blocks  
Ex :  A multi-dimensional example of CUDA grid organization  

 The grid consists of four blocks organized into a 2 X 2 array 
 

• Each block is in figure is labeled with (blockIdx.x, 

blockIdx.y) 

• Ex : Block (1,0)  has blockIdx.x = 1, and  blockIdx.y = 0 
 

 In CUDA,   total size of block is limited to 512 threads, with 

flexibility in distributing  these elements into the three 

dimensions as long as the total number of threads does not 

exceed 512 threads.   (****) 

       

 Ex : (512,1,1,), (8,16,2) and (16,16,2) are allowable blockDim 

values, but (32,32,1) is not allowable because the total number 

of threads would be 1024. 

NVIDIA :CUDA – Thread Organization  
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CUDA - Grid- thread blocks  

 
Ex : A multi-dimensional example of CUDA grid organization  

 Grid consists of   4 blocks of 16 threads  each, with a grand 

total of 64 threads in the grid. 

 

 Each thread block is organized into 4 X 2 X 2 arrays of threads 

(16 threads).  (Only one block is shown because  of all thread 

blocks in the grid have same dimension. ) 

 

 block (1,10)  to show its 16 threads;  

 thread (2,1,0) has  
  blockIdx.x = 2,  blockIdx.y = 1, blockIdx.z = 0 

 CUDA grid contain thousands to million of threads 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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threadIdx.x  & threadIdx.y  

• Refer to the thread indices of a thread (Different threads will see 
different values in their threadIdx.x and threadIdx.y 

variables) 

• Refer thread as ThreadthreadIdx.x, threadIdx,y Coordinates 

reflect a multi-dimensional organization for the threads. 

• CUDA threading hardware generates all of the threadIdx.x 

and threadIdx.y variables for each thread. 

• These work on particular part of data structure  of the designed 

code and with these thread  indices allow a thread to access the 

hardware registers at runtime that provides the identifying 

coordinates to the thread.  

Source : NVIDIA 

KERNEL FUNCTIONS AND THREADING 

NVIDIA :CUDA – Thread Organization  
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NVIDIA :CUDA – Thread Organization  

• USING  blockIdx  AND  threadIdx 

— Break Pd into square tiles 

— All the Pd element s of a tile are computed 

by a block of threads 

• Keep dimensions of these Pd tiles 

small, we can increase the total number 

of threads in each block to 512 which is 

maximum allowable block size. 
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For convenience sake, 

 threadIdx.x  and threadIdx.y  as tx and ty; and       

blockIdx.x  and blockIdx.y  as bx and by. 

• Each thread calculates one Pd element. The difference is 

that it must uses its blockIdx.x  values to identify its 

element inside the tile.  

•  Each thread uses  both  threadIdx  and  blockIdx to 

identify the Pd element to work on.  

• All threads calculating the Pd elements within a tile have 

the same blockIdx values 

Source : NVIDIA 

USING  blockIdx  AND  threadIdx 

NVIDIA :CUDA – Thread Organization  
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Assume that the dimensions of a block are square and are 
specified by the variable  TILE_WIDTH 

 Each dimensions of Pd is now divided into section s of 

TILE_WIDTH  elements each and each block handles such 

a section.    

• Thread can find x index and y index of Pd element  i.e.  

x = bx + TILE_WIDTH + tx  

  y = by + TILE_WIDTH + ty  

Pd element at  respective column & row can be computed.   

Source : NVIDIA 

USING  blockIdx  AND  threadIdx 

NVIDIA :CUDA – Thread Organization  
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Assume that the dimensions of a block are square and are 
specified by the variable  TILE_WIDTH 

 Each dimensions of Pd is now divided into section s of 

TILE_WIDTH  elements each and each block handles such 

a section.    

• Thread can find x index and y index of Pd element  i.e.  

x = bx + TILE_WIDTH + tx  

  y = by + TILE_WIDTH + ty  

Pd element at  respective column & row can be computed.   

USING  blockIdx  AND  threadIdx 

NVIDIA :CUDA – Thread Organization  

Source & Acknowledgements  : NVIDIA, References 
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Using Multiple blocks to 

 calculate Pd. 

USING  blockIdx  AND  threadIdx 

Pd0, 0 Pd1, 0 Pd2, 0 Pd3, 0 

Pd0, 1 Pd1, 1 Pd2, 1 Pd3, 1 

Pd0, 2 Pd1, 2 Pd2, 2 Pd3, 2 

Pd0, 3 Pd1, 3 Pd2, 3 Pd3, 3 

Block(0,0) Block(1,0) 

Block(1,1) 
Block(0,1) 

• Using Multiple blocks to calculate Pd.  

— Break Pd into 4  tiles 

— Each dimension of Pd is now divided 

into sections of 2 elements  

— Each block needs to calculate 4  Pd 

elements 
• Identify the indices for the Pd element 

Thread (0,0) of block (0,0) calculates 

Pd0,0 whereas thread (0,0) of block 

(1,0) calculates  Pd2,0  

• Identify the row (y) of Md and the column 

(x) of index of Nd for input values using 

TILE_WIDTH 

Ex : Matrix Multiplication 

• For  the row index  of Md used by thread (tx,ty)  

of block (bx,by) is  (by*TILE_WIDTH + ty) 

• For  the  clumn index  of Nd used by the same is  

(bx*TILE_WIDTH + tx) 

NVIDIA :CUDA  THREAD ORGANIZATION   
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Nd1, 0 

Nd1, 1 

Nd1, 2 

Nd1, 3 

Nd0, 0 

Nd0, 1 

Nd0, 2 

Nd0, 3 

Md0, 1 Md1, 1 
Md2, 1 Md3, 1 

Md0, 0 Md1, 0 
Md2, 0 Md3, 0 

Pd2, 0 

Pd2, 1 

Pd2, 2 

Pd2, 3 

Pd3, 0 

Pd3, 1 

Pd3, 2 

Pd3, 3 

Pd1, 2 Pd0, 2 

Pd0, 3 Pd1, 3 

Pd0, 0 Pd1, 0 

Pd0, 1 Pd1, 1 

 Matrix multiplication actions of one thread block  

NVIDIA :CUDA  Thread Organisation   

USING  blockIdx  AND  threadIdx 

Ex : Matrix Multiplication 

• Threads in block (0,0) produce four dot products 

• Thread (0,0)  generates Pd0,0   by calculating the dot 

product of row 0 of Md and column 1 of Nd  

 

•  The  arrows of  Pd0,0, Pd1,0, Pd0,1 and Pd1,1 shows the 

row and column used for generating their result value. 
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NVIDIA :CUDA  Thread Organisation   

Ex : Matrix Matrix Addition  

// Kernel definition 

_global_ void MatAdd(float A[N][N], float B[N][N],  

                     float C[N][N]) 

{ 

   int i = blockIdx.x * blockDim.x + threadIdx.x 

   int j = blockIdx.y * blockDim.y + threadIdx.y 

   if (i < N && j < N) 

       c[i][j] = A[i][j] + B[i][j]; 

} 

int main() 

{ 

   ... 

   // Kernel invocation 

   dim3 threadsPerBlock(16, 16); 

   dim3 numBlocks(N / threadsPerBlock.x, N/ threadPerBlock.y); 

   MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 

   … 

} 
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Thread Hierarchy 

NVIDIA :CUDA  Thread Organisation  

Ex : Matrix  Matrix  Addition  

// Kernel definition 

_global_ void MatAdd(float A[N][N], float B[N][N],  

                     float C[N][N]) 

{ 

   int i = threadIdx.x; 

   int j = threadIdx.y; 

   c[i][j] = A[i][j] + B[i][j]; 

} 

int main() 

{ 

   ... 

   // Kernel invocation with one block of N * N * 1 threads 

   int numBlocks = 1; 

   dim3 threadsPerBlock(N, N); 

   MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 

   ... 

} 
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__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd, 

int Width) 

{  

   // Calculate the row index of the Pd element and M     
   int Row  = blockIdx.y *TILE_WIDTH + threadIdx.y; 

 

   // Calculate the column index of the Pd element and N     
   int Col  = blockIdx.x *TILE_WIDTH + threadIdx.x; 

 

   float Pvalue = 0; 

   // each thread computes one element of the block sub-matrix 
   for(int k = 0; k < Width; ++k) 

      Pvalue +-  Md[Row*Width+k] * Nd[k*Width+Col)]; 

 

      Pd[Row*Width_col] = Pvalue; 

}   

NVIDIA :CUDA  Thread Organisation   

Revised matrix multiplication kernel using multiple blocks  
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NVIDIA :CUDA – Thread Organization  

Step 1 : Each thread uses its blockIdx and threadIdx 

values to identity the row index (Row) and the column index 

(Col) of the Pd element that is responsible for.  

 Step 2 : Performs a dot product on the row  of  Md and 

column of  Nd to generate the value of the Pd element. It 

eventually writes the Pd value to the appropriate global 

memory locations.  

   Note : This kernel can handle matrices upto 16 X 65,535 

elements in each dimension. 

 For large matrices, one can divide  the Pd matrix into sub- 

matrices of a size permitted by the kernel   Source : NVIDIA 

Summary of  matrix multiplication kernel using multiple-blocks:   
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NVIDIA :CUDA – Thread Organization  

For large matrices, one can divide  the Pd matrix into sub- 

matrices of a size permitted by the kernel 

Each submatrix  can be processed by an ample number of 

blocks  (65,535 X 65,535). All of these blocks can run in 

parallel provided new design of GPUs which can 

accommodate large number of execution resources. 

Summary of  matrix multiplication kernel using multiple-blocks:   

Source & Acknowledgements  : NVIDIA, References 
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 Case Study :  

 

 G200 : Number of warps per SM may increased up to 32. 

 

 The warp scheduling is used for long-latency hiding (long latency 

operations ) refers to access of global memory access 

 

 Zero-overhead thread scheduling takes place in CUDA, in which 

selection of ready warps for execution does not introduce any idle time  

into the execution timeline. 

 

Thread Scheduling  : In CUDA it is an specific hardware implementation  

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  
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Revised Host code for launching the revised kernel 
         

// Setup the execution configuration 
      dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH); 

   dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);  

 

 // Launch the device computation threads;  
   MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

 

Note : dimGrid receives the value of  Width/TILE_WIDTH for both       

the x dimension and y dimension. 

               Md, Nd, and Pd array as 1D array with row major layout 

               The calculation of indices  used to access  Md, Nd and Pd is the 

same 

 

   

NVIDIA : CUDA  Thread Organisation  

Revised matrix multiplication kernel using multiple blocks  
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 Once a thread block is assigned to each SM, it is further divided into 32-

thread units called warps. 

      (Knowledge of warps can be helpful in understanding and optimizing the   

performance of CUDA applications on particular generations of CUDA 

devices. 

 

   The warp is the unit of thread scheduling in SMs 

 
   Each warp consists of  32 threads of consecutive threadIx values 

• Threads 0 through 31 from the first warp, threads 32 through 63 second 

warp, and so on….. 

     Ex : Three blocks (Block 1, Block2, & Block 3) are assigned to an SM     

 and each block is further divided into warps for scheduling. 

• If each block has  256 threads, then we can determine that each block 

has  256/32 or 8 warps.   

• With 4 blocks in each SM, we have 8 x 3 = 24 warps in each SM  

Thread Scheduling  : In CUDA it is an specific hardware implementation  

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  



118 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

 G80 : In each SM maximum number of threads is  768, equivalent to 

24 warps. 

 

 G200 : Number of warps per SM may increased up to 32. 

 

 The warp scheduling is used for long-latency hiding (long latency 

operations ) refers to access of global memory access 

 

 Zero-overhead thread scheduling takes place in CUDA, in which 

selection of ready warps for execution does not introduce any idle time  

into the execution timeline. 

 

Thread Scheduling  : In CUDA it is an specific hardware implementation  

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  

Source & Acknowledgements  : NVIDIA, References 
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Matrix – Matrix Multiplication;   G200 : Number of warps per SM is 32 and 

the number of threads that can be assigned to each SM is 1024 & the 

number of threads assigned to each thread block is 512 

 

Pros & Cons of  choice of “different thread blocks”  for the GT200  

 

 Case Study -1 :  8 X 8 thread blocks  : Each block has 64 threads,  &  

12  (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited 

and hence 64x 8 = 512 threads in each SM is possible. 

• This shows SM execution resources will likely to be under utilized as 

there will be fewer warps 

 Case Study -2 :  16 X 16 thread blocks  : Each block has 256 threads,  

&  4  (1024/256) blocks fully occupy an SM (8 blocks in each SM are 

limited and it s well within the limits. Good choice for performance. 

 Case Study -3 :  32 X 32 thread blocks  : Each block has 1024 thread 

which exceeds  the limitation of up to 512 threads per block 

Thread Scheduling  : In CUDA it is an specific hardware implementation  

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  
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NVIDIA GT200 GPU Block Diagram GT200 :  Tesla C1060/ S1070 

Blocks partitioned into warps for thread scheduling  
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NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  
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Matrix – Matrix Multiplication;   G200 : Number of warps per SM is 32 and 

the number of threads that can be assigned to each SM is 1024 & the 

number of threads assigned to each thread block is 512 

 

Pros & Cons of  choice of “different thread blocks”  for the GT200  

 

 Case Study -1 :  8 X 8 thread blocks  : Each block has 64 threads,  &  

12  (1024/64) blocks fully occupy an SM (8 blocks in each SM are limited 

and hence 64x 8 = 512 threads in each SM is possible. 

• This shows SM execution resources will likely to be under utilized as 

there will be fewer warps 

 Case Study -2 :  16 X 16 thread blocks  : Each block has 256 threads,  

&  4  (1024/256) blocks fully occupy an SM (8 blocks in each SM are 

limited and it s well within the limits. Good choice for performance. 

 Case Study -3 :  32 X 32 thread blocks  : Each block has 1024 thread 

which exceeds  the limitation of up to 512 threads per block 

Thread Scheduling  : In CUDA it is an specific hardware implementation  

NVIDIA : CUDA  Thread Scheduling & Latency Tolerance  
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CUDA Memories 

Part-4 

Source & Acknowledgements  : NVIDIA, References 
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Memory Hierarchy  

NVIDIA :CUDA – Memory Hierarchy 
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NVIDA :CUDA - Quick terminology review 

CUDA exposes  the memory hierarchy to developers, 

allowing them to maximize application performance by 

optimizing data access 

The GPU is implemented on  a graphics card with video 

memory, called device memory  

• The video memory  (off-chip) memory is separated from 

the GPU, and it takes at least 400 clock-cycles to fetch 

data from that memory. 

•  Two groups of memory on a graphics card.  

  On-chip (shared) memory is almost fast as registers. 

  Off-chip (device) memory takes 400-600 clock cycles 

/store data.  
Source : NVIDIA 
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Ex : Matrix – Matrix Multiplication   : Memory  access  calculation for 

matrix-matrix commutations – “for” loop based on CGMA  

 

 Compute to Global Memory Access (CGMA) ratio : Number of floating 

point calculations performed for each access to the global memory within 

a region of a CUDA program 

• The ratio of floating-point calculation to the global memory access 

operations is 1 to 1. or 1.0 

 The CGMA ratio has major implications on the performance of a CUDA 

kernel.  

• Ex  : NVIDIA  G*80 supports 86.4 gigabytes per second (GB/s)  of 

global memory access bandwidth.   

• The highest achievable floating-point calculation throughput is limited 

by the rate at which the input data can be loaded from the global 

memory. 

CUDA  : Importance of Memory Access Efficiency  

Source & Acknowledgements  : NVIDIA, References 
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Ex : Matrix – Matrix Multiplication   : Memory  access  calculation for matrix-

matrix computations – “for” loop based on CGMA 

 

 With 4 bytes in each single precision floating-point datum,  one can expect  

to load not more than 21.6 (86.4/4) giga single-precision data per second.  

 

 With a CGMA ration of 1.0, the matrix multiplication kernel will execute at 

no more than 21.6 billion floating point operations per second (gigaflops), 

as each floating operation requires one single-precision global memory 

datum.  

 

 The achieved is fraction of the peak performance  of 367 gigaflops for the 

G80  

 

How CGMA ratio is increased to achieve a higher level of performance 

for the kernel ? 

CUDA  : Importance of Memory Access Efficiency  

Source & Acknowledgements  : NVIDIA, References 
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• Device code can: 

— R/W per-thread registers 

— R/W per-thread local memory 

— R/W per-block shared memory 

— R/W per-grid global memory 

— Read only per-gold constant 

 

— Host code can 

— Transfer data to/from per-grid global 

and constant memories 

CUDA device memory model & Data transfer 

Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

Constant 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

NVIDA :CUDA  DEVICE MEMORIES & DATA TRANSFER  

 global memory & constant 

memory  -devices  host 

code can transfer to and 

from the device, as 

illustrated by the bi-

directional arrows between 

these memories and host   

Host memory is not shown in the figure 

Source & Acknowledgements  : NVIDIA, References 
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 Global memory and constant memory can be written (W) and (R) by the 

host by calling application programming interface (API) functions. 
 

 The constant memory supports short-latency, high-bandwidth, read-only 

access by the device when all threads simultaneously access the same 

location.  
 

 Registers and shared memory are on-chip memories.  

 

 Variables that reside in these types of memory can be accesses at very 

high speed in a highly parallel manner.  

 

 Registers are allocated to individual threads; each thread  can only 

access its own registers. 

 

  A kernel function typically uses registers to hold frequently accesses 

variables that are private  to each thread.  

CUDA : Importance of Memory Access Efficiency  

CUDA Device Memory Types  
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 Shared memory is allocated to thread blocks ;  all threads  in a block can 

access variables in the shared memory locations  allocated to the  block. 

 Shared memory is an efficient means for threads  to co-operate by sharing 

their input data and the intermediate results of their work by declaring a 

CUDA variable in one of the CUDA memory types, A CUDA programmer 

dictate the visibility and access speed of the variable. 

 CUDA syntax for declaring program variables into the various devices 

memory. 

CUDA : Importance of Memory Access Efficiency  

CUDA Device Memory Types  - Shared Memory   

CUDA Variable Type Qualifiers  

Variable Declaration  Memory  Scope  Lifetime  

Automatic variables other than arrays  Register     Thread Kernel 

Automatic array variables      Local  Threads Kernel 

 __device__, __shared__, int SharedVar;  Shared  Block Kernel 

__device__, int GlobalVar;  Global  Grid Application 

__Device__, ___constant__, int ConstVar;  Constant Grid Application 
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SCOPE :  
 Each declaration gives its declared CUDA variable a scope and 

lifetime. 

 

 Scope identifies  the range of threads of a block, or by all threads of 

all grids. 

 

 If the scope of a variable is a single thread, a private version of the 

variable will be created  for every thread; each thread can only access 

its private version of the variable. 

 

 For Example : if a kernel declares a variable whose scope is a thread 

and it is launched with 1 million threads, then 1 million versions of 

the variable will be created so each thread initializes and used its own 

version of the variable.  

CUDA : Importance of Memory Access Efficiency  

CUDA Device Memory Types  - Shared Memory   
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Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

Constant 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

• Device code can: 

— R/W per-thread registers 

— R/W per-thread local 

memory 

— R/W per-block shared 

memory 

— R/W per-grid global 

memory 

— Read only per-gold 

constant 

— Host code can 

— Transfer data  

   to/from per-grid 

   global and constant     

   memories 

Overview of the CUDA device memory model . 

CUDA Device Memory Types   

CUDA : Importance of Memory Access Efficiency  

Source & Acknowledgements  : NVIDIA, References 
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Block (0, 0) 

(Device) Grid 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Global 
Memory 

Constant 
Memory 

 

 

Block (1, 0) 

Shared Memory 

Registers Registers 

Thread (0, 0) Thread (1, 0) 

Host 

• Device code can: 

— R/W per-thread registers 

— R/W per-thread local memory 

— R/W per-block shared memory 

— R/W per-grid global memory 

— Read only per-gold constant 

 

— Host code can 

— Transfer data to/from per-grid global 

and constant memories 

Figure 3.7 Overview of the CUDA device memory model . 
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__global__ void MatrixMulKernel(float* Md, float* Nd,float* Pd, 

int Width) 

{  

   // Calculate the row index of the Pd element and M     
   int Row  = blockIdx.y *TILE_WIDTH + threadIdx.y; 

 

   // Calculate the column index of the Pd element and N     
   int Col  = blockIdx.x *TILE_WIDTH + threadIdx.x; 

 

   float Pvalue = 0; 

   // each thread computes one element of the block sub-matrix 
   for(int k = 0; k < Width; ++k) 

      Pvalue +-  Md[Row*Width+k] * Nd[k*Width+Col)]; 

 

      Pd[Row*Width_col] = Pvalue; 

}   

NVIDIA :CUDA  Thread Organisation   

Revised matrix multiplication kernel using multiple blocks  
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Matrix Multiplication 

without Shared 

Memory  

NVIDIA :CUDA – Use of Memory   
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Matrix Multiplication 

with Shared Memory  

NVIDIA :CUDA – Use of Memory   
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Nd1, 0 

Nd1, 1 

Nd1, 2 

Nd1, 3 

Nd0, 0 

Nd0, 1 

Nd0, 2 

Nd0, 3 

Md0, 1 Md1, 1 
Md2, 1 Md3, 1 

Md0, 0 Md1, 0 
Md2, 0 Md3, 0 

Pd2, 0 

Pd2, 1 

Pd2, 2 

Pd2, 3 

Pd3, 0 

Pd3, 1 

Pd3, 2 

Pd3, 3 

Pd1, 2 Pd0, 2 

Pd0, 3 Pd1, 3 

Pd0, 0 Pd1, 0 

Pd0, 1 Pd1, 1 

Figure  Matrix multiplication actions of one thread block.  

CUDA Programming Structure  
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CUDA Execution 

Part-5 

Source & Acknowledgements  : NVIDIA, References 
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T(0, 0) T(1, 0) T(2, 0) T(3, 0) 

T(0, 1) T(1, 1) T(2, 1) T(3, 1) 

T(0, 2) T(1, 2) T(2, 2) T(3, 2) 

T(0, 3) T(1, 3) T(2, 3) T(3, 3) 

T0, 0 T1, 0 T2, 0 T3, 0 T0, 2 T1, 2 T2, 2 T3, 2 T0, 3 T1, 3 T2, 3 T3, 3 
T1, 1 T2, 1 T3, 1 

T0, 1 

Placing threads into linear order 

Logical 2-D 

organization 

CUDA Thread Execution - Performance 

Warp Parallelism    

  Single Instruction – Multiple thread (SIMT)  

 Constructs Using 

     If-then-else 

  Diverge in  

     Execution 
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A simple sum reduction kernel. 

1. _shared_float partialSum[ ] 

 

2. Unsingned int t = threadsIdx.x; 

 

3. for (unsigned int stride = 1; 

4.         stride < blockDim.X; stride *=2) 

5.  {  

6.    __syncthreads ( ); 

7.    If (t % (2*stride) == 0) 

8.   partialSum[t] + = partialSum[ t +stride]; 

9. } 

CUDA Thread Execution - Performance 

Source & Acknowledgements  : NVIDIA, References 
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0 1 2 3 4 5 6 7 8 9 10 11 

0+1 2+3 4+5 6+7 8+9 10+11 

0…3 4…7 8…11 

0…7 8…15 

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10 

1 

2 

3 

Iterations 
Array elements 

A Deduction of the sum reduction kernel. 

CUDA Thread Execution - Performance 
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A kernel with les thread divergence. 

1. _shared_float partialSum[ ] 

 

2. Unsingned int t = threadsIdx.x; 

 

3. for (unsigned int stride = 1; 

4.         stride < blockDim.X; stride *=2) 

5. {  

6.     __syncthreads ( ); 

7.     If (t  < stride)  

8.     partialSum[t] + = partialSum[ t +stride]; 

9. } 

CUDA Thread Execution - Performance 
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0 1 2 3 … 253 254 255 256 257 258 … 

0+256 256+511 1 

2 

3 

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15 

Execution of the revised algorithm. 

CUDA Thread Execution - Performance 
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Md Nd 

WIDTH 

Coalesced 

W
ID

T
H

 

Not coalesced 

Thread 1 

Thread 2 

A B 

Memory access pattern for coalescing. 

CUDA Thread Execution - Performance 

Global Memory Bandwidth  
 Kernel performance is related to 

accessing data in the global 

memory  

 Use of Memory Coalescing  

 

 Move the data from the   

 global memory into shared 

memories and registers. 

 

  Memory Coalescing technique is  

     used in conjunction with  tiling  

    technique 
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M0, 1 M1, 1 M2, 1 M3, 1 

M0, 2 M1, 2 M2, 2 M3, 2 
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M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3 

M 

M1, 1 M2, 1 M3, 1 
M0, 1 

Placing matrix elements order into linear order. 

Linearized order in increasing address 

CUDA Thread Execution - Performance 

Global Memory Bandwidth  
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M0, 0 M1, 0 M2, 0 M3, 0 

M0, 1 M1, 1 M2, 1 M3, 1 

M0, 2 M1, 2 M2, 2 M3, 2 

M0, 3 M1, 3 M2, 3 M3, 3 

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3 

M 

M1, 1 M2, 1 M3, 1 
M0, 1 

A coalesced access pattern. 

Load iteration 1 

T(0) T(1) T(2) T(3) 

Load iteration 2 

T(0) T(1) T(2) T(3) 

Global Memory Bandwidth  

Access  

direction in  

kernel code 

CUDA Thread Execution - Performance 
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M0, 0 M1, 0 M2, 0 M3, 0 

M0, 1 M1, 1 M2, 1 M3, 1 

M0, 2 M1, 2 M2, 2 M3, 2 

M0, 3 M1, 3 M2, 3 M3, 3 

M0, 0 M1, 0 M2, 0 M3, 0 M0, 2 M1, 2 M2, 2 M3, 2 M0, 3 M1, 3 M2, 3 M3, 3 

M 

M1, 1 M2, 1 M3, 1 
M0, 1 

A uncoalesced access pattern. 

. . . 

T(0) T(1) T(2) T(3) 

Load iteration 2 

Load iteration 1 

T(0) T(1) T(2) T(3) 

Access  

direction in  

kernel code 

Global Memory Bandwidth  

CUDA Thread Execution - Performance 
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Md Nd 

WIDTH 

W
ID

T
H

 

Using shared memory to enable coalescing. 

Original 

access 

pattern 

Md Nd 

Tiled 

access 

pattern 

Copy into 

scratchpad 

memory 

Perform 

multiplication 

with 

scratchpad 

values 

CUDA Thread Execution - Performance 

Global Memory Bandwidth  
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The matrix multiplication kernel using shared memories. 

_global_ void MatrixMulKernel(float*Md, float*Nd, gloat*Pd, int width) 

{ 

1. _shared_float Mds[TILE_WIDTH][TILE_WIDTH]; 

2. _shared_float Nds{TILE_WIDTH][TIKE_WIDTH]; 

 

3. int bx = blockIdx .x; int by = blockidx.y; 

4. int tx = threadIdx.x; int ty = threadIdx.y; 

 

// Identify the row and column of the Pd element to work on 

5. int Row = by * TILE_WIDTH + ty; 

6. int Col = bx * TILE_WIDTH + tx; 

 

7. Float Pvalue = 0; 

// Loop over the Md and Nd tiles required to computer the Pd element 

8. For (int m = 0; m < Width/TILE_WIDTH; ++m) { 

 

//Collaborative loading of Md and Nd tiles into shared memory 

9.      Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)]; 

10.    Nds[ty][tx] = Nd (m*TILE_WIDTH + ty) * Width + Col]; 

11.    _synchthreads ( ); 

 

12.   for ( int k = 0; k < TILE_WIDTH; ++k) 

13.     Pvalue +=Mds [ty][k] * Nds[k] [tx]; 

 

14.  Pd [Row] [Col] = Pvalue; 

      } 

} 

Md Nd 

CUDA Thread Execution - Performance 

Global Memory Bandwidth  
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1
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9 

GPU performance : Memory Coalescing  
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1

5

0 

GPU performance : Memory Coalescing  

8 8 8 … 

2 1 . . . .  16    

128 

bytes 
 Shared 

Memory 

Half  

Warp 

128 

bytes 

 Global 

Memory 

8 8 8 … 

Read-Write operation: 

 

 Collectively by threads in half 

warp 

 

 Coalesce memory accesses in 

single transaction 

 

 Threads of half-warp 

collaborate and utilize the 

memory coalescing 

 

 
Source & Acknowledgements  : NVIDIA, References 



151 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 
1

5

1 

Modify operation: 

 

 Threads work individually 

 

 on data Iteratively after 

memory transfer 

 

 Bank conflicts lead to 

serialization of memory 

requests 

 

 

 

 

GPU performance : Memory Coalescing  

128 

bytes 

 Shared 

Memory 

Threads of a Half-warp 

2 1 . . . .  16    

Source & Acknowledgements  : NVIDIA, References 
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1

5

2 

Modify operation: 

 

Pad offset of 8 bytes, 

   Thereby reduce bank conflicts 

 

 

 

 

GPU performance : Memory Coalescing 

Padding  Shared 

Memory 

Threads of a Half-warp 

2 1 . . . .  16    

Source & Acknowledgements  : NVIDIA, References 
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Thread contexts 

SP0 SP7 

32KB register file 

16KB shared memory 

Pre-”optimization” A 

Thread contexts 

SP0 SP7 

32KB register file 

16KB shared memory 

Post-”optimization” B 

. . . . . .  

Insufficient registers 

to allocate 3 blocks TB0 TB1 TB2 

Figure.  Interaction of resource limitations. 

Md Nd 

CUDA Thread Execution - Performance 

Global Memory Bandwidth : Dynamic Partitioning of SM resources  
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Loop{ 

 

Load current tile to shared  

     memory 

 

_synchthreades( ) 

 

Computer current tile 

 

_synchthreads( ) 

} 

Load first tile from global memory into  

         registers 

 

Loop { 

Deposit tile from registers to shared  

     memory 

 

_synchthreads( ) 

 

Load next tile from global memory into 

     registers 

 

Computer current tile 

 

_synchthreads ( ) 

} A 

B 

Without prefetching 

With prefetching 

CUDA Thread Execution - Performance 

Global Memory Bandwidth : Prefetching  

 

FP Instruction,  Load Instruction, Branch Instruction   
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CUDA Thread Execution - Performance 

Global Memory Bandwidth :  

Thread Granularity 

 

 Loading of Tiles into registers 

and depositing these tiles into  

shared memories  

 No. of Blocks running on shared 

memories 
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for (int k = 0; k < BLOCK_SIZE; ++k) 

      Pvalue += Ms [ty][k] * Ns [k] 9tx0; 

 

 (a)  Loop incurs overhead instruction 

 

   Pvalue += Ms[ty][0] * Ns[0][tx] += Ms[ty][15]*Ns[15][tx]; 

 

 (b) Loop unrolling improves instruction mix. 

Instruction mix consideration. 

CUDA Thread Execution - Performance 

 Loading of Tiles into registers and depositing these tiles 

into  shared memories  

 No. of Blocks running on shared memories 

 Executes two floating arithmetic, one loop branch 

instruction, two address arithmetic instructions, one loop 

counter increment instruction,  
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NVIDIA Tool Kit : CUBLAS 

   CUBLAS is an implementation of BLAS (Basic Linear Algebra  

 Subprogram) on top of the CUDA driver. It allows access to the 

 computational resources of NVIDIA GPUs. 

 The library is self-contained at the API level, that is, no direct interaction 

 with the CUDA driver is necessary. 

 

  The basic model by which applications use the CUBLAS library is to: 

• Create matrix and vector objects in GPU memory space 

• Fill them with data 

• Call a sequence of CUBLAS functions 

 

• Upload the results from GPU memory space back to the host 

  CUBLABS provides helper functions for creating and destroying objects 

 in GPU space, and for writing data to and retrieving data from these 

 objects 
     

Source : NVIDIA, References 
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CUDA – BLAS Supported features 

 BLAS functions implemented (single precision only): 

 Real data: level 1, 2 and 3 

 Complex data: level a and CGEMM 

 

(Level 1=vector vector O(N), Level 2=matrix vector O(N2), Level 

3=matrix matrix O(N3)) 

 

 For maximum compatibility with existing Fortran environments, 

CUBLAS uses column-major storage, and 1-based indexing: 

      Since C and C++ use row-major storage, this means applications 

cannot use the native C array semantics for two-dimensional 

arrays. Instead, macros or inline functions should be defined to 

implement matrices on top of one-dimensional arrays.      

Source : NVIDIA, References 
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CUDA - Using CUBLAS 

 The interface to the CUBLAS library is the header file 
cublas.h 

 

 Function names: cublas(Original name). 

                   cublasSgemm 

 

 Because the CUBLAS core functions (as opposed to the 

helped functions) do not return error status directly, CUBLAS 

provides a separate function to retrieve the last error that was 

recorded, to aid in debugging 

 

 CUBLAS is implemented using the C-based CUDA tool 

chain, and thus provides a C-style API. This makes 

interfacing to applications written in C or C++ trivial.  

Source : NVIDIA, References 
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CUDA - cublaslnit, cublasShutdown  

 cublasStatus cublasInit() 

initializes the CUBLAS library and must be called before any 

other CUBLAS API function is invoked. It allocates hardware 

resources necessary for accessing 

 

 

  cublasStatus cublasShutdown() 

releases CPI-side resources used by the CUBLAS library. The 

release of GPU-side resources may be deferred until the 

application shuts down. 

Source : NVIDIA, References 
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CUDA - cublasGetError, cublasAlloc, cublasFree  

 cublasStatus cublasGetError() 

returns the last error that occurred on invocation of any of the CUBLAS 

core functions. While the CUBLAS helper functions return status 

directly, the CUBLAS core functions do not, improving compatibility 

with those existing environments that do not expect BLAS functions to 

return status. Reading the error status via cublasGetError() rests the 

internal error state to CUBLAS_STATUS_SUCCESS. 

 

 cublasStatus cublasAlloc (int n, int elemSize, void **devicePtr) 

creates an object in GPU memory space capable of holding an array of 

n elements, where each clement requires elemSize bytes of storage. 

Note that this is a device pointer that cannot be dereferenced in host 

code. 

cublasAlloc() is a wrapper around cudaMalloc(). 

Device pointers returned by cublasAlloc() can therefore be passed to 

any CUDA device kernels, not just CUBLAS functions. 

 

 cublasStatus cublasFree(const void *device Ptr) 

destroys the object in GPU memory space referenced by device Ptr. 

Source : NVIDIA, References 
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CUDA - cublasSetVector, cublasGetVector  

   cublasStatus cublasSetVector(int n, int elemSize, const 

void  *x, int incx, void *y, int incy) 

copies n elements from a vector x in CPU memory space to a 

vector y in GPU memory space. Elements in both vectors are 

assumed to have a size of elemSize bytes. Storage spacing 

between consecutive elements in incx for the source vector x 

and incy for the destination vector y 

 

cublasStatus cublasGetVector (int n, int elemSize, const 

void        *x, int incx, void *y, int incy) 

copies n elements from a vector x in GPU memory space to a 

vector y in CPU memory space. Elements in both vectors are 

assumed to have a size of elemSize bytes. Storage spacing 

between consecutive elements is incx for the source vector x 

and incy for the destination vector y 

Source : NVIDIA, References 
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CUDA - cublasSetMatrix, cublasGetMatrix  

   cublasStatus cublasSetMatrix(int rows, int cols, int 

elemSize,  const void *A, int Ida, void *B, int Idb) 

copies a tile of rows x cols elements from a matrix A in CPU memory 

space to a matrix B in GPU memory space. Each element requires 

storage of elemSize bytes. Both matrices are assumed to be stored 

in column-major format, with the leading dimension (that is, the 

number of rows) of source matrix A provided in Ida, and the leading 

dimension of destination matrix B provided in Idb 

 

    cublasStatus cublasGetVector (int rows, int cols, int 

elemSize,   const void *A, int Ida, void *B, int Idb) 

copies a tile of rows x cols elements from a matrix A in GPU 

memory space to a matrix B in CPU memory space. Each element 

requires storage of elemSize bytes. Both matrices are assumed to 

be stored in column-major format, with leading dimension (that is, 

the number of rows) of source matrix A provided in Ida, and the 

leading dimension of destination matrix B provided in Idb 
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CUDA - Calling CUBLAS from FORTRAN 

    Fortran-to-C calling conventions are not standardized and 

 differ by  platform and tool chain. 

 

 In particular, differences may exist in the following areas: 

 

• Symbol names (capitalization, name decoration) 

• Argument passing (by value or reference) 

• Passing of string arguments (length information) 

• Passing of pointer arguments (size of the pointer) 

• Returning floating-point or compound data types (for 

example, single-precision or complex data type) 

 

  CUBLABS provides provides wrapper functions (in the file 

fortran.c) that need to be compiled with the user preferred tool 

chain.Providing source code allows users to make any 

changes necessary for a particular platform and tool chain. 
     Source : NVIDIA, References 
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(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmarks   & NVIDIA CUDA  Prog. Env  - This is C-DAC In-house HPC GPU 
Cluster project work in collaboration with NVIDIA 

Source : http://www.nvidia.com; NVIDIA CUDA  

Part 6 

CUDA 5.0 / NVIDIA Kepler GK110  

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
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CUDA Tool Kit 5.0 Preview  

Nsight  Eclipse Edition : Develop & Debug and Profile GPU 

Accelerated Applications on Linux  - All in on IDE  

RDMA for GPUDirect  : Direct Communication between GPUs 

and other PCIe Devices 

GPU Library Object Linking : Easily Accelerate parallel nested 

loops starting with Tesla K20 Kepler GPUs 

Dynamic Parallelism :  library of templated performance 

primitives such as sort, reduce, etc. 

NVIDIA Performance Primitives (NPP) library for image/video 

processing 

Layered Textures for working with same size/format textures at 

larger sizes and higher performance 
Source : NVIDIA, References 
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CUDA Tool Kit  5.0  Preview  

  RDMA for GPUDirect : Features  

• Accelerated communication with network and storage 

devices : Avoid unnecessary system memory copies and CPU 

overhead by copying data directly to/from pinned CUDA host 

memory    

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA 

transfers to copy data from one GPU directly to another GPU in 

the same system 

• Peer-to-Peer memory access : Optimize communication 

between GPUs using NUMA-style access to memory on other 

GPUs from within CUDA kernels 

Source : NVIDIA, References 
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CUDA Tool Kit  5.0  Preview  

  RDMA for GPUDirect : Features  

• Peer-to-Peer memory access : Optimize communication 

between GPUs using NUMA-style access to memory on other 

GPUs from within CUDA kernels 

• RDMA : Eliminate CPU bandwidth and latency bottlenecks 

using direct memory access (DMA) between GPUs and other 

PCIe devices, resulting in significantly improved MPISendRecv 

efficiency between GPUs and other nodes (new in CUDA 5) 

• GPUDirect for Video : Optimized pipeline for frame-based 

devices such as frame grabbers, video switchers, HD-SDI 

capture, and CameraLink devices.  

Source : NVIDIA, References 
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CUDA Tool Kit  5.0  Preview  

  RDMA for GPUDirect : Features 

Source : NVIDIA, References 

GPUDirect™ Support for RDMA, Introduced with CUDA 5 

Eliminate CPU bandwidth and latency bottlenecks using direct 

memory access (DMA) between GPUs and other PCIe devices, 

resulting in significantly improved MPISendRecv efficiency 

between GPUs and other nodes (new in CUDA 5) 

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 
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CUDA Tool Kit  5.0  Preview  

  RDMA for GPUDirect : Features 

Source : NVIDIA, References 

GPUDirect™ Support for Accelerated Communication with Network and 

Storage Devices 

Without GPUDirect 

Same data copied three times 
1. GPU write to pinned sysmem1 

2. CPU copies from system1 to sysmem2 

3. InfiniBand driver copies form sysmem2 

With GPUDirect 

Data only copied twice times 
1. Sharing pinned system memory makes 

2. System-to-system-copy unnecessary 

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 
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CUDA Tool Kit  5.0  Preview 

  RDMA for GPUDirect : Features 

Source : NVIDIA, References 

NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs on 

the Same PCIe Bus : GPUDirect  peer-to-peer transfers and memory access 

are supported natively by the CUDA Driver.  All you need is CUDA Toolkit 

v4.0 and R270 drivers (or later) and a system with two or more Fermi-

architecture GPUs on the same PCIe bus.  

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 
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CUDA Tool Kit 4.0/5.0 

Share GPUs across multiple threads 

Use all GPUs in the system concurrently from a single host 

thread 

No-copy pinning of system memory, a faster alternative to 

cudaMallocHost() 

C++ new/delete and support for virtual functions 

Support for inline PTX assembly 

Thrust library of templated performance primitives such as sort, 

reduce, etc. 

NVIDIA Performance Primitives (NPP) library for image/video 

processing 

Layered Textures for working with same size/format textures at 

larger sizes and higher performance Source : NVIDIA, References 
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CUDA Tool Kit  4.0/5.0  

  GPUDirect v2.0 : Features :  

• GPUDirect v2.0 support for Peer-to-Peer Communication : 

Accelerated communication with network and storage devices : 

Avoid unnecessary system memory copies and CPU overhead 

by copying data directly to/from pinned CUDA host memory 

• Peer-to-Peer Transfers between GPUs : Use high-speed DMA 

transfers to copy data from one GPU directly to another GPU in 

the same system 

• Peer-to-Peer memory access : Optimize communication 

between GPUs using NUMA-style access to memory on other 

GPUs from within CUDA kernels 

• GPUDirect for Video : Optimized pipeline for frame-based 

devices such as frame grabbers, video switchers, HD-SDI 

capture, and CameraLink devices.  

Source : NVIDIA, References 
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CUDA Tool Kit 4.0/5.0 

CUDA Multi-GPU Programming : CUDA Programming 

model provides two basic approaches available to execute 

CUDA kernels on multiple GPUs (CUDA “devices”) 

concurrently from a single host application:  

Use one host thread per device, since any given host 
thread can call cudaSetDevice() at most one time.  

Use the push/pop context functions provided by the CUDA 

Driver API.  

Unified Virtual Addressing (UVA) allows the system memory 

and the one or more device memories in a system to share 

a single virtual address space. 

 Source : NVIDIA, References 
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CUDA Driver API : Features in which multiple host threads to set 

a particular context current simultaneously using either 
cuCtxSetCurrent() or cuCtxPushCurrent(). 

Host threads can now share device memory allocations, streams, 

events, or any other per-context objects (as seen above).  

Concurrent kernel execution devices of compute capability 2.x is 

now possible across host threads, rather than just within a single 

host thread. Note that this requires the use of separate streams; 

unless streams are specified, the kernels will be executed 

sequentially on the device in the order they were launched 

Built on top of UVA, GPUDirect v2.0 provides for direct peer-to-

peer communication among the multiple devices in a system and 

for native MPI transfers directly from device memory.  

Source : NVIDIA, References 

CUDA Tool KIT 4.0/5.0 
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Host-CPU – Device GPU CUDA Prog : 

The algorithm is designed in such a way that each CPU 

thread (Pthreads, OpenMP, MPI) to control a different GPU.  

Achieving this is straightforward if a program spawns as 

many lightweight threads as there are GPUs – one can 

derive GPU index from thread ID. For example, OpenMP 

thread ID can be readily used to select GPUs.  

MPI rank can be used to choose a GPU reliably as long as 

all MPI processes are launched on a single host node 

having GPU devices and host configuration of CUDA 

programming environment.  

 Source : NVIDIA, References 

CUDA Tool Kit 4.0/5.0 
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Fermi Performance : CUDA enabled NVIDIA GPU  

Performance Fermi GPU  : Device-CPU (NVIDIA)  

One Tesla C2050 (Fermi) with 3 GB memory; Clock Speed 

1.15 GHz, CUDA 4.1 Toolkit  

Reported theoretical peak performance of the Fermi 

(C2050) is 515 Gflop/s in double precision (448 cores; 1.15 

GHz; one instruction per cycle) and reported maximum 

achievable peak performance of DGEMM in Fermi up to 

58% of that peak.  

The theoretical peak of the GTX280 is 936 Gflops/s in single 

precision (240 cores X 1.30 GHz X 3 instructions per cycle) 

and reported maximum achievable peak performance of 

DGEMM up to 40% of that peak.  
Source & Acknowledgements  : NVIDIA, References 
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   CUDA Tool Kit 4.0/5.0 Libraries  

cuBLAS : The NVIDIA CUDA Basic Linear Algebra 

Subroutines (cuBLAS) library is a GPU-accelerated version 

of the complete standard  

cuFFT : The NVIDIA CUDA Fast Fourier Transform library 

(cuFFT) provides a simple interface for computing FFTs up 

to 10x faster. 

cuRAND : The NVIDIA CUDA Random Number Generation 

library (cuRAND) delivers high performance GPU-

accelerated random number generation (RNG). 

cuSPARSE : The NVIDIA CUDA Sparse Matrix library 

(cuSPARSE) provides a collection of basic linear algebra 

subroutines used for sparse matrices  

Source : NVIDIA, References 
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      CUDA Tool Kit 4.0/5.0 Libraries 

NPP : NVIDIA Performance Primitives : The NVIDIA 

Performance Primitives library (NPP) is a collection of GPU-

accelerated image, video, and signal processing functions  

Thurst : Thrust is a powerful library of parallel algorithms 

and data structures. Thrust provides a flexible, high-level 

interface for GPU programming that greatly enhances 

developer productivity. 

NVIDIA Visual Profiler : The NVIDIA Visual Profiler is a 

cross-platform performance profiling tool that delivers 

developers vital feedback for optimizing CUDA C/C++ and 

OpenCL applications. 

Source & Acknowledgements  : NVIDIA, References 
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CUDA Tool Kit 4.0/5.0 Libraries 

CUDA-GDB debuggers :CUDA-GDB debuggers : CUDA-

GDB supports debugging of both 32 and 64-bit CUDA 

C/C++ applications. 

 CUDA-MEMCHECK : CUDA-MEMCHECK detects these 

errors in your GPU code and allows you to locate them 

quickly.  

MAGMA : MAGMA is a collection of next generation, GPU 

accelerated ,linear algebra libraries. Designed for 

heterogeneous GPU-based architectures. It supports 

interfaces to current LAPACK and BLAS standards.  

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA’s Next Generation CUDA :  Kepler  

Kepler GK10: 

• Dynamic Parallelism : adds the capability for the GPU 

to generate new work for itself, synchronize on results, 

and control the scheduling of that work via dedicated, 

accelerated hardware paths, all without involving the 

CPU. 

• Hyper-Q : Hyper‐Q enables multiple CPU cores to 

launch work on a single GPU simultaneously, thereby 

dramatically increasing GPU utilization and significantly 

reducing CPU idle times 

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 

Source & Acknowledgements  : NVIDIA, References 
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NVIDIA’s Next Generation CUDA :  Kepler  

Kepler GK10: 

• Grid Management Unit : Enabling Dynamic Parallelism 

requires an advanced, flexible grid management and 

dispatch control system. The new GK110 Grid 

Management Unit (GMU) manages and prioritizes grids 

to be executed on the GPU. The GMU can pause the 

dispatch of new grids and queue pending and 

suspended grids until they are ready to execute, 

providing the flexibility to enable powerful runtimes, such 

as Dynamic Parallelism. The GMU ensures both 

CPU‐ and GPU‐generated workloads are properly 

managed and dispatched. 

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 
Source & Acknowledgements  : NVIDIA, References 
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NVIDIA’s Next Generation CUDA :  Kepler  

Kepler GK10: 

• GPUDirect : NVIDIA GPUDirect™ is a capability that 

enables GPUs within a single computer, or GPUs in 

different servers located across a network, to directly 

exchange data without needing to go to CPU/system 

memory. The RDMA feature in GPUDirect allows third 

party devices such as SSDs, NICs, and IB adapters to 

directly access memory on multiple GPUs within the 

same system, significantly decreasing the latency of 

MPI send and receive messages to/from GPU memory 

Source : http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf 

Source & Acknowledgements  : NVIDIA, References 
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Tesla C 2075 

 

GPU -CUDA enabled NVIDIA GPU 

 Peak Double Precision Floating 
Point Performance  

 
 Peak Single precision floating 

Performance  
 

 Memory Bandwidth (ECC off)  
 

 Memory Size (GDDr5) 
 

 CUDA Cores  
 

515 Gflops 
 
1030 Gflops 
 
148 GBytes/s 
 
 
6 GB 
 
448  Cores  
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Sustainability of Memory Bandwidth 
    Main Memory Access Efficiency  

GPU -CUDA enabled NVIDIA GPU 

Each floating point operates on upto 12-16  bytes of 
source data, the available memory bandwidth cannot 
sustain even a small fraction of the peak performance is 
all the source data are accessed from global memory 

To address above, CUDA  & underlying GPUs offer multiple 
memory types  with different bandwidths & latencies 
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2/22/12 

GPU -CUDA enabled NVIDIA GPU 

CUDA  & underlying GPUs offer multiple memory types  with 
different bandwidths & latencies 

 

CUDA memory types have access restrictions to allow 
programmers to conserve memory bandwidth while 
increasing the overall performance of applications. 

 

Sustainability of Memory Bandwidth 
    Main Memory Access Efficiency  
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GPU -CUDA enabled NVIDIA GPU 

CUDA Programmers are responsible for explicitly allocating 
space and managing data movement among the different 
memories to conserve  memory bandwidth  

 

CUDA Programmers shoulders the responsibility of massaging 
the code to produce the desirable access patterns   

 

CUDA code should explicitly optimize for GPU’s memory 
hierarchy. 

Sustainability of Memory Bandwidth 
    Main Memory Access Efficiency  
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GPU -CUDA enabled NVIDIA GPU 

CUDA Provides additional hardware mechanisms at 
the memory interface can enhance  the main 
memory access efficiency if the access patterns  
follow memory coalescing rules. 

 

Sustainability of Memory Bandwidth 
    Main Memory Access Efficiency  
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CUDA – Compute Unified Device Architecture 

• Step 1 – copy data from main memory to GPU 
global memory (from host to device) 

• Step 2 – threads run code inside kernel function 

– Each thread fetches some data from global memory 
and stores it in registers 

– Each thread performs computations 

– Each thread stores a result in global memory 

• Step 3 – copy results from device back to host 

 

 

General CUDA Program Format 
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Kepler GK110-the new CUDA Compute Capability 5.0 

GTX 470/480s have GT100s C2050s on grid06 and grid07 are compute cap 2.0 

FERMI 
GF100 

FERMI 
GF104 

KEPLER 
GK104 

KEPLER 
GK110 

Compute Capability 2.0 2.1 3.0 3.5 

Threads / Warp 32 32 32 32 

Max Warps / Multiprocessor 48 48 64 64 

Max Threads / Multiprocessor 1536 1536 2048 2048 

Max Threads  Blocks / Multiprocessor 8 8 16 16 

32-bit Registers / Multiprocessors 32768 32768 65536 65536 

Max Registers / Thread 63 63 63 255 

Max Threads / Thread Block 1024 1024 1024 1024 

Shared Memory Size Configuration (bytes) 16K 
48K 

16K 
48K 

16K 
32K 
48K 

16K 
32K 
48K 

Max X Grid Dimension 2^16-1 2^16-1 2^32-1 2^32-1 

Hyper-Q No No No Yes 

Dynamic Parallelism No No No Yes 



192 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

SMX   (power efficiency)  
Hyper-Q  (programmability and  
                                        application coverage)  
Dynamic Parallelism  

 Source : http://www..nvidia.com 

GPU Computing – NVIDIA KEPLER GPUs  
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GTX 470/480s have GT100s 
C2050s on grid06 and grid07 are compute cap 2.0 

Features  Tesla K20X Tesla K20 
(Kepler 
GK110) 

Peak double Precision Floating 
Point Performance  

1.31 Tflops  1.17 Tflops 

Peak Single Precision Floating 
Performance  

3.95 Tflops 3.52 Tflops 

Memory Bandwidth (ECC off) 250 GB/s 208.8 B/s 

Memory size (GDDR5) 6 GB 5 GB 

CUDA Cores  2688 2496 

Kepler GK110 supports the new CUDA Compute 

Capability 5.0 



194 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

 Current: Cuda 4.1 
 Share GPUs across multiple threads 
 Unified Virtual Addressing 
 Use all GPUs from a single host thread 
 Peer-to-Peer communication 

 Coming in Cuda 5 
 Direct communication between GPUs and other PCI devices 
 Easily acceleratable parallel nested loops starting with Tesla K20 Kepler 

GPU 

 Current: OpenCL 1.2 
 Open royalty-free standard for cross-platform parallel computing 
 Latest version released in November 2011 
 Host-thread safety, enabling OpenCL commands to be enqued from 

multiple host threads 
 Improved OpenGL interoperability by linking OpenCL event objects to 

OpenGL 

 OpenACC 
 Programming standard developed by Cray, NVIDIA, CAPS and PGI 
 Designed to simplify parallel programming of heterogeneous CPU/GPU 

systems 
 The programming is done through some pragmas and API functions 
 Planned supported compilers – Cray, PGI and CAPS  

http://developer.nvidia.com/cuda-toolkit 

NVIDIA GPU Prog. Models 
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 A full k110 implementation includes 15 SMX units and six 
64-bit memory controllers. Different products will use 
different configurations of K110. 

Key features ... 

 The new SMX processor architecture 

 An enhanced memory subsystem, offering additional 
caching capabilities, more bandwidth at each level of the 
hierarchy and a fully redesigned and substantially faster 
DRAM I/O implementation. 

 

 

 

 

 

Kepler Architectural Overview 
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New: 48 KB Read-only memory cache 
Compiler/programmer can use to advantage 

Shared memory/L1 cache split: 
Each SMX has 64 KB on‐chip 
memory, that can be configured as: 
• 48 KB of Shared memory with 

16 KB of L1 cache, 
or  
• 16 KB of shared memory with 48 

KB of L1 cache 
or  
• (new) a 32KB / 32KB split 

between shared memory and L1 
cache. 

Faster than L2 

Kepler Memory Subsystem 
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“Dynamic Parallelism allows more parallel code in an application to be 

launched directly by the GPU onto itself (right side of image) rather than 

requiring CPU intervention (left side of image).” 

Control must be transferred 
back to CPU before a new 
kernel can execute 

Only return to CPU when all 
GPU operations are completed. 
Why is this faster? 

Kepler Dynamic Parallelism 
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GPU : Kepler 

Results : Total (CPU+GPU) Peak Performance :  1267  Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 1170  Gflops (1.17 Tflops) 

C-DAC HPC GPU Cluster : Benchmarks 

Experiment Results for LINPACK(*) : without any Optimizations 

62.13%  is sustained performance of LINPACK can be achieved for 

appropriate matrix sizes i.e., N= 48000 ~ 64000. Further Optimization 

may improve by10% to 15 % 

Visit http://www.nvidia.com  

(*=In collaboration with NVIDIA)  

(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER 

http://www.nvidia.com/
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Node =  Fermi 

Total (CPU+GPU) Peak Performance :  611 Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 515 Gflops  

C-DAC HPC GPU Cluster : Benchmarks 

Experiment Results for DGEMM : Without any Optimizations 

60.0%  is sustained performance of CUDA (CUBLAS) can be 

achieved for appropriate matrix sizes i.e., N= 10000 ~ 16000. Further 

Optimization may improve by10% to 15 % 

Visit http://www.nvidia.com  

(*=In collaboration with NVIDIA)  
(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmark and  NVIDIA Prog. Env on  NVIDIA FERMI 

http://www.nvidia.com/
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NVIDIA – Application Kernels 

http://www.nvidia.com 

Source : http://www.nvidia.com; NVIDIA CUDA  

(*) = Speedup results were gathered using untuned &  unoptimized versions of  

benchmark and  NVIDIA Prog. Env on  NVIDIA Fermi /Kepler 

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
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Results :  LINPACK (Top-500) Kepler  

Total (CPU+GPU) Peak Performance :  1267  Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 1170  Gflops (1.17 Tflops) 

 

Nodes/GPUs  LINPACK Gflops 

Nodes GPUs T/V N NB P Q Time 

1 1 WR10L2L2 34560 768 1 1 100.21 764.4 

1 1 WR10L2L2 44968 768 1 1 187.71 785.5 

Present Work : Application Kernels  

On Hybrid Computing Systems (HPC GPU Cluster) 

62.13% sustained performance of Top-500 LINPACK is achieved 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Results  : MAGMA  (Open Source Software  :  NLA ) Fermi 

Total (CPU+GPU) Peak Performance :  611 Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 515 Gflops  

Node Library  Routine Used Matrix Size  Sustained Performance in 
Gflops 

 1 MAGMA DGEMM 10240 302.81 

1 CUBLAS DGEMM 10240 302.75 

1 MAGMA DGETRF 5952 219.31 

1 DGETRF 9984 256.29 

Present Work : Application Kernels  

On Hybrid Computing Systems (HPC GPU Cluster) 

Intel MKL version 10.2,  CUBLAS version 3.2, Intel icc11.1 

The routines such as DGETRF (LU factorization of certain class of matrices)  show goof performance. 

The MAGAMA uses LAPACK, CUDA BLAS, and MAGMA BLAS routines for factorization (LU, QR & 

Cholesky) of matrices 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Results : Jacobi Iterative Method  (Fermi) 

Total (CPU+GPU) Peak Performance :  611 Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 515 Gflops 

Jacobi Iterative Method : To solve system of dense matrix system of linear 

equations  [A] {x}= {b}  

Time Taken      in Seconds 

Matrix Size CUDA  API  CUBLAS 

1024 1.6439 0.0525 

2048 5.4248 0.0972 

4096 26.3400 0.2299 

  8092 87.768 0.7138 

Present Work : Application Kernels  

On Hybrid Computing Systems (HPC GPU Cluster) 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Results :  Conjugate Gradient Method  

Total (CPU+GPU) Peak Performance :  611 Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 515 Gflops 

Conjugate Gradient Method  : To solve system of dense matrix system of 

linear equations  [A] {x}= {b}   

Time Taken      in Seconds 

Matrix Size CUDA API  CUBLAS 

1024 0.5186 0.0296 

2048 1.881 0.0740 

4096 8.677 0.2214 

  8092         33.376 0.7893 

Present Work : Application Kernels  

On Hybrid Computing Systems (HPC GPU Cluster) 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Results for DGEMM (CPU+GPU) : In-house (Fermi) 
Total (CPU+GPU) Peak Performance :  611 Gflops 

CPU Peak Performance   (DP) :  96 Gflops (1 Node – 8 Cores)  

GPU Peak Performance  (DP)  : 515 Gflops  

 Nodes GPUs Matrix Size  
(CPU + GPU)  

Sustained Perf in Gflops  
     Total  (CPU +GPU) 

Utilization  (%) 

 1 1 1024 181.25 29.66 

1 1 4096 326.73 53.47 

1 1 10240 363.47(*) 59.49 

1 1 12288 366.42(*) 59.47 

Present Work : Application Kernels  

On Hybrid Computing Systems (HPC GPU Cluster) 

Intel MKL version 10.2,  CUBLAS version 3.2, Intel icc11.1 

 (* = relative error exists).   60% sustained performance of is achieved 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Using  pre trained Haar - classifier and 

integral image on GPU cluster 

Courtesy : Viola and Jones 

Image size GPU  (Fermi) 
time(sec) 

GPU time 
(sec) 

512 threads/ 
block 

8 threads/ 
block 

132*184 0.000620 0.000285 

700*500 0.003376 0.001120 

1289*649 0.005940 0.002531 

 Four kinds of Haar features are used in detection algorithm. Trained cascaded classifiers 

are obtained, apply these classifiers to detect images 

 Parallelize the detection process by mapping each window to a thread for face detection.  

 MPI – CUDA - GPU Implementation of Face Detection(*) 

Courtesy : C-DAC  Projects   & Viola and Jones Alg. 

(*) = Speedup results were gathered using untuned and unoptimized 
versions of  benchmark and  NVIDIA Prog. Env on  NVIDIA Fermi  

Courtesy : C-DAC  Intrnal  Projects  

Application  : Image Processing –  

Multi-Core – Many-Core Implementation 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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 MPI – CUDA - GPU Implementation of Edge Detection  

 Each thread within the thread block 

corresponds to a single pixel or Multiple 

pixels  within the image 

   Pixels OpenCV 

(Time in ms) 

CUDA - GPU  optimized  

Block Size of 8 x 8 (Time in ms) 

512 x 512 8.40 0.62 

1024 x 1024 28.01 2.30 

2048 x 2048 108.52 9.34 
4096 x 4096 398.14 38.17 

Courtesy : Viola and Jones 

512*512 1024*1024 

   Pixels OpenCV 

(Time in 

ms) 

  

MPI (No. of PEs)  

(Time in ms) 

CUDA-GPU 

Block Size of 16 x 16 

(Time in ms) 

2 8 UnOptimised Optimized 

512 x 512 2.91 6.91 2.93 0.39 0.21 

1024 x 1024 11.01 27.41 13.87 1.53 0.709 

2048 x 2048 42.74 112.25 42.05 5.998 2.780 

4096 x 4096 173.39 449.97 159.89 23.86 11.27 

Edge Detection : Laplace Edge Detection (*) 

Edge Detection : Canny Edge Detection (*) 

Courtesy : C-DAC  Projects  & Wikipedia 

(*) = Speedup results were gathered using untuned &  unoptimized   

             versions of  benchmark and  NVIDIA Prog. Env on  NVIDIA Fermi  

Application  : Image Processing –  

Multi-Core – Many-Core Implementation 
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 3;   

 U(x,y,z,t0)=g on  

 
2 
U 

 
2 

y 
f(x,y,z); + =  t[to, tf ] 

Application : FDM/FEM Computations (Structured/ 

Unstructured  Grids) - HPC GPU Cluster 

• Data Re-arrangement Kernels & Jacobi / CG  Methods 

 
2 
U 

 2 x 

 U 

 t 
 

2 
U 

 2 z 
+ 

FEM  
  Graph Partition 

Software METIS 

  Each Partition 

mapped to each 

GPU 

Poisson & Parabolic Eq. Solver 

Rank 2 

Rank 1 

Rank 0 

FDM  

Courtesy : C-DAC HPC-FTE Student Projects  
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Stencil for  Poisson Eq. in 3D  

• CUDA - Date Access Dominated, basic 

computation kernels, Generic Stencil 

Computations 

• CUDA - Data Re-arrangement Kernels – 

Coalesced Data access and Basic Read/Write 

routines Data Reordering routines 

Application : FDM/FEM Computations (Structured/ 

Unstructured  Grids) - HPC GPU Cluster 

Courtesy : Chaman   Singh Verma et. all; & Jall Open source software  

Courtesy : C-DAC HPC-FTE Student Projects, 2011-2012  
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Heat Transfer  : GPU Implementation  

Domain decomposition, with blocks  of size - 32x32 

• Blocking & Threading 

• Use of Shared Memory 

• Implicit Handling of 

Boundary Conditions - 

part of computations 

• Tiling for Stencil 

Computations 

 Access Pattern within a 32 X 32 block using 32 X 8 threads 

HPC GPU Cluster :  Parallel Finite Difference 

Computations (Structured Grids) 

Type of 

Domain 
  

Nodes/ 

(Partitions/

MPI 

Process)  

Elapsed time (in seconds) 

MPI GPU Cluster 
MPI CUDA  OpenCL 

2D-Structured 

grid -FDM 

(64X64) 

4096  

(1/1) 

4.28      

4096  

(2/2) 

3.12     0.82 1.28 

2D-Structured 

grid -FDM 

(128X128) 

16384 

(1/1) 

11.22     

16384 

(4/4) 

3.74  0.98 1.42 

3D-Structured 

grid -FDM 

(64X64X64) 

262144 

(1/1) 

32.28      

262144 

(8/8) 

6.64    1.31 2.23 
 Performance 4x to 6x for 

un-optimised CUDA code 
(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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Heat Transfer  : GPU Implementation  

Domain decomposition :Graph Partitioning 

• Implicit Handling of 

Boundary Conditions - 

part of computations 

• Graph Partitioning  for 

Mesh Computations 

• Graph Coloring for 

solver on a single node 

 Access Pattern within a 32 X 32 

block using 32 X 8 threads 

HPC GPU Cluster :  Parallel Finite Element 

Method Comps. (Unstructured Grids)  

 Performance 4x to 6x for 

un-optimised CUDA code 
Courtesy : metis  (George Karypis & Vipin Kumar et. all) 

C-DAC HPC-FTE Student Projects , 2011-12 

Chaman   Singh Verma et. all;  & Jall Open source software  
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Heat Transfer  : GPU Implementation  

Domain decomposition 

based on Graph Partitioning 

• Iterative methods based on Sparse 

Matrix Computations 

• Tiling – To handle large Mesh 

computations 

• Graph Partitioning and Graph 

Coloring techniques 

• Overlapping Comm. & Comps – 

CUDA Streams 

 Access Pattern within a 32 X 32 

block using 32 X 8 threads 

HPC GPU Cluster :  Parallel Finite Element 

Method Comps. (Unstructured Grids)  

 Performance 4x to 6x for un-optimised 

CUDA code 

Courtesy : Chaman   Singh Verma et. all;  

                    & Jall Open source software  
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Heat Transfer  : GPU Implementation  

Domain decomposition based on Graph Partitioning 

• Implicit Handling of 

Boundary Conditions - 

part of computations 

• Graph Partitioning  for 

Mesh Computations 

• Graph Coloring for 

solver on a single node 

 Access Pattern within a 32 X 32 block using 32 X 8 threads 

HPC GPU Cluster :  Parallel Finite Element 

Method Comps. (Unstructured Grids)  

 Performance 4x to 6x for 

un-optimised CUDA code 

Type of 

Domain 

  

Elements/ 

Nodes/ 

(Partitions/MPI 

Process) 

Elapsed time (in seconds) 

MPI GPU Cluster 

MPI CUDA  OpenCL 

2D-Grid  

FEM 

14450(7396) 

(1/1) 

9.72       

  14450(7396) 

(4/4) 

5.64     

  14450(7396) 

(8/8) 

   3.28 0.64 1.12 

3D-Grid 

Grid-FEM 

343 (512)  

(1/1) 

1.24     

  3375 (4096) 

(1/1) 

8.63 1.46 3.09 

  29791(32768) 

(1/1) 

24.64 3.82 8.04 

(*) =  Speedup results were gathered using untuned and unoptimized versions of  benchmarks   & NVIDIA 

CUDA  Prog. Env  - This is C-DAC In-house HPC GPU Cluster project work 
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NVIDIA - NVML APIs : CUDA 5.0  

http://www.nvidia.com 

Source : http://www.nvidia.com; NVIDIA CUDA  

(*) = Speedup results were gathered using untuned &  unoptimized versions of  

benchmark and  NVIDIA Prog. Env on  NVIDIA Fermi /Kepler 

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
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Rate of sampling power usage is very low while 
measuring using nvidia-smi or nvml library, so 

unless the kernel is running for a long time we 

would not notice any change in power.  

 
nvidia provides a high-level utility called nvidia-

smi which can be used to measure power, but its 

sample rate is too long to obtain useful 

measurements. 
 

                 

 

 

                                                            

NVML (NVIDIA Management Library) 

 

 NVIDIA NVML  : Power Measurement 
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Memory Transfer  

to GPU 

Kernel Execution  

Memory transfer  

back to Host 

Wait for Some 

 seconds  

Main 

Continuous Probing  

Power Consumption in 

one Second Interval 

End 

Thread1 Thread2 

 NVIDIA Implementation 

 

 

 

 

                                                       

NVML (NVIDIA Management Library) 
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Time   
(sec.) 

Power in 
milliWatt 

0 30712 

1  47064 

2 49537 

6 132440 

7 163942 

8 89673 

9 61713 

10 52588 

11 50209 

12 26704 

13 19752 

29 16797 

Matrix Size :  

10240 X 10240  

CPU + GPU Time 

(Sec):  2.575 

CBLAS : 834 

GFlops 

NVML  Performance & Watts - for Matrix Comps.  

 Information  

 Driver etc… 

 Device Query 

 Data Transfer from 

host to Device 

 Memory  

 Global Memory / 

Shared Memory  

Constant Memory 

 Data Transfer from 

Device to host  

 

                 

 

 

                                                            

Experiment Results CBLAS Lib(*)              

 

                                                            

(*) = Speedup results were gathered using untuned and unoptimized versions  
          of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER 
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Peak mWatts 

Consumed 

 

                 

 

 

                                                            

16392 

 Milliwatts 

Seconds  

        Power mWatts 

No Optimisations are 

carried to extract 

performance  

(*) = Speedup results were gathered using untuned and unoptimized versions  
          of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER 

NVML  Performance & Watts - for Matrix Comps.  

Experiment Results CBLAS Lib(*)              
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Time   
(sec.) 

Power in 
milliwatt 

0 30919 

1  46505 

4 49729 

5 50012 

Time  
(Sec.) 

Power in 
milliwatt 

6 101504 

7 133627 

8 135000 

10 136574 

12 137145 

16 137330 

17 118776 

18 71695 

19 56504 

Time  
(Sec.) 

Power in 
milliwatt 

20 50504 

21 48395 

23 47540 

24 26035 

25 19400 

27 17656 

28 16892 

40 16797 

Matrix Size :  

10240 X 10240  

CPU + GPU Time 

(Sec):  12.549 

CBLAS : 

85.6GFlops 

(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER with NVML 

NVML  Performance & Watts - for Matrix Comps.  

Experiment Results CBLAS Lib(*)              

 

                                                            



220 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

Seconds  

        Power mWatts 

Peak mWatts 

Consumed 

 

                 

 

 

                                                            

(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER 

NVML  Performance & Watts - for Matrix Comps.  

Experiment Results User Developed Code (*)              
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NVIDIA carma  ARM Processor  

with CUDA  

(*) = Speedup results were gathered using untuned and unoptimized versions 
of  benchmarks (in-house developed)  & NVIDIA CUDA  Prog. Env  - This is C-
DAC In-house HPC GPU Cluster project work in collaboration with NVIDIA 

Source : http://www.nvidia.com; NVIDIA CUDA  

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
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Carma , the board includes the company's 
Tegra 3 quad-core ARM A9 processor, a 
Quadro 1000M GPU with 96 cores (good for 
270 single-precision GFlops), as well as a PCIe 
X4 link, one Gigabit Ethernet interface, one 
SATA connector, three USB 2.0 interfaces as 
well as a Display port and HDMI. 2GB GPU 
Memory 
 
 It uses the Tegra 3 chip as the basis and, thus, has four ARM 

cores and an NVIDIA GPU.  
 

 In addition, the platform has 2 GB of DDR3 RAM (random access 
memory) as well. 

 

 CUDA toolkit and a Ubuntu Linux-based OS 

NVIDIA ARM With Carma DevKit 
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SGEMM Matrix Size :  

640 X 1280  

CUBLAS 

 Time : 0.00834 sec 

GFlops : 125.778 

CUDA Mat Mat Mult  

Time : 0.03627 sec 

GFlops :  28.909 

Matrix-Matrix Multiplication   

CUBLAS (Vendor)  User Code (IJK loop) 

GFLOPS Time (Sec)  (GFLOPS) Time  (Sec) 

125.7783 0.00834 28.9092 0.03627 

125.7004 0.00834 28.9070 0.03627 

125.7426 0.00834 28.9085 0.03627 

Seconds  

        Power Watts 

Peak Watts 

Consumed 

 

                 

 

 

                                                            

39.5 watts 
Using External 

Power Off Meter  

(*) = Speedup results were gathered using untuned and unoptimized versions  
          of  benchmark and  NVIDIA Prog. Env on  NVIDIA KEPLER 

NVIDIA carma : Performance & Watts - Matrix Comps.  

Experiment Results User Developed Code (*)              
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 Login to portal  

 NVIDIA – carma - Power Meter : System Details 

 Create Individual Session 

 Portal developed using TOMCAT to accommodate all servers  
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 Display reading of Power meter In tabular form  

(*) = Speedup results were gathered using untuned and unoptimized versions  
         of  benchmark and  NVIDIA Prog. Env on  NVIDIA carma with CUDA  

 NVIDIA – carma - Power Meter : System Details 
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 Display reading of Power meter In Graphical format 

(*) = Speedup results were gathered using untuned and unoptimized versions   
         of  benchmark and  NVIDIA Prog. Env on  NVIDIA carma with CUDA  

Experiment Results User Developed Code (*)              
 

                                                            

 NVIDIA – carma - Power Meter : System Details 
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 Demo of running particular session in tabular form  

 NVIDIA – carma - Power Meter : System Details 
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 Display user defined session graph 

(*) = Speedup results were gathered using untuned and unoptimized versions       
         of  benchmark and  NVIDIA Prog. Env on  NVIDIA carma with CUDA  

Experiment Results User Developed Code (*)              

 
                                                            

 NVIDIA – carma - Power Meter : System Details 
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 Systems Details 

Node1: Jaguar.stp.cdac.ernet.in (1 GPU C2070) 

CPU : Dual socket Quad core Intel Xeon;   RAM : 16 GB 
OS : centOS release 5.2 with kernel release 2.6.18-92.el5 
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC 
nvidia-toolkit:  4.0 
MPI : mpich2-1.0.7;    Interconnect  : Gigabit  

Node2: Leopard.stp.cdac.ernet.in (2 GPUs C2050) 
CPU : Dual socket Quad core Intel Xeon 
RAM : 48 GB 
OS : centOS release 5.2 with kernel release 2.6.18-92.el5 
Compiler : gcc & gnu libtool , NVIDIA CUDA compiler NVCC 
nvidia-toolkit:  4.0 
MPI : mpich2-1.0.7  Interconnect  : Gigabit  

 NVIDIA – carma - Power Meter : System Details 
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 Kayla DevKit for computing on the ARM architecture – where 
supercomputing meets mobile computing. 

 The Kayla DevKit hardware is composed of mini-ITX carrier board and 
NVIDIA® GeForce® GT640/GDDR5 PCI-e card.  

 The mini-ITX carrier board is powered by NVIDIA Tegra 3 Quad-core ARM 
processor while GT640/GDDR5 enables Kepler GK208 for the next 
generation of CUDA and OpenGL application. Pre-installed with CUDA 5 
and supporting OpenGL 4.3. 

 Kayla provides ARM application development across the widest range of 
application types. 

NVIDIA ARM With KAYLA DevKit(*) 

 In Progress 
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Form Factor Kayla mITX 

CPU 
NVIDIA® Tegra® 3 ARM Cortex A9 
Quad-Core with NEON 

GPU 
NVIDIA® GeForce® GT640/GDDR5 (TO 
BE PURCHASED SEPARATELY) Buy Now 

Memory 2GB DRAM 

CPU - GPU 
Interface 

PCI Express x16 / x4 

Network 1x Gigabit Ethernet 

Storage 1x SATA 2.0 Connector 

USB 2x USB 2.0 

Software 
Linux Ubuntu Derivative OS 
CUDA 5 Toolkit 

NVIDIA ARM With KAYLA DevKit 

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://www.newegg.com/Product/Product.aspx?Item=N82E16814121771&nm_mc=OTC-Channel&cm_mmc=OTC-channel-_-Video+Card+-+Nvidia-_-ASUS-_-14121771&srccode=cii_7240466&cpncode=26-20938146&DEPA=0&refer=channel&CMP=OTC-
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    Summary 
 

 Good strategies for extracting high performance from individual 

subsystems on the CUDA enabled NVIDIA GPUs 

 

 NVIDIA - CUDA (GPU is good choice) 

 

 NVIDIA – CUDA Plenty of opportunities for further optimizations 

 

 There are many good strategies for extracting high performance 

from individual subsystems on CUDA enabled NVIDIA GPU with 

CUDA  Toolkit 5.0  

 

 HPC GPU Cluster – MPI-CUDA with CUDA 5.0 gives advantages 

for Scalability and Performance for applications 

 

  Power Efficient NVIDIA NVML APIs & Performance Issues  

 

 
Source & Acknowledgements  : NVIDIA, References 



233 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006 
2. GPGPU Reference     http://www.gpgpu.org   
3. NVIDIA http://www.nvidia.com  
4. NVIDIA tesla     http://www.nvidia.com/object/tesla_computing_solutions.html    
5. NVIDIA CUDA Reference       http://www.nvidia.com/object/cuda_home.html   
6. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html  
7. List of NVIDIA GPUs compatible with CUDA: The href://www.nvidia.com/object/cuda_learn_products.html  
8. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html  
9. Specifications of nVIDIA GeForce 8800 GPUs:  
10. RAPIDMIND http://www.rapidmind.net  
11. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com  
12. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/  

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html  
13. AMD http:www.amd.com  
14. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html 
15. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php  
16. Merrimac - Stream Architecture Standford Brook for GPUs  

http://www-graphics.stanford.edu/projects/brookgpu/  

17. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/  
18. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/  
19. ATI & AMD - Technology Products http://ati.amd.com/products/index.html  
20. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan 

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....  
21. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D 

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).  
22. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison 

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).  
23. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients 

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp 
917-924 Graphic Hardware (2007). 

24. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide - Version 1.1 November 2007 

References 

http://www-graphics.stanford.edu/projects/brookgpu/


234 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

25. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics 
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com  

26. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses 
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008 
http://www.mdronline.com  

27. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using 
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008) 

28. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ; 
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008  

29. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in : 
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.  

30. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms 
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003) 

31. Tutorial SC 2007 SC05 : High Performance Computing with CUDA  
32. FASTRA http://www.fastra.ua.ac.bc/en/faq.html  
33. AMD Stream Computing software Stack ; http://www.amd.com 
34. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html 
35. FFT – Fast Fourier Transform  www.fftw.org 
36. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas 
37. LAPACK : Linear Algebra Package – www.netlib.org/lapack 
38. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual 

computing, Intel Deverloper FORUM 2008 
39. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable  Many core Processor Reaches 

Beyond Graphics,  Microprocessor Report September 29, 2008 
40. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches  

More Systems, Microprocessor Report  December  2008 
41. AMD’s ATI Stream Platform http://www.amd.com/stream 
42. General-purpose computing on graphics processing units (GPGPU) 

http://en.wikipedia.org/wiki/GPGPU 
43. Khronous Group, OpenGL 3, December 2008  URL : http://www.khronos.org/opencl 

References 

http://www.amd.com/stream


235 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

44. NVIDA CUDA C Programming Guide Version  V4.0, May 2012 (5/6/2012) 
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf 

45. NVIDIA Developer Zone  http://developer.nvidia.com/category/zone/cuda-zone  
46. NVIDIA CUDA Toolkit 4.0 (May 2012)  http://developer.nvidia.com/cuda-toolkit-4.0  
47. NVIDIA CUDA Toolkit 4.0 Downloads  http://developer.nvidia.com/cuda-toolkit   
48. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect  
49. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012  (2/14,2012) 

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf  

50. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012 
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf  

51. NVIDIA OpenCL JumpStart  Guide  - Technical Brief   
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf 

52. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012  
53. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf  
54. NVIDA CUDA C Programming Guide Version  V5.0, May 2012 (5/6/2012) 
55. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf 
56. Programming Massively Parallel Processors - A Hands-on Approach, David B Kirk, Wen-mei W. Hwu,  

Nvidia corporation, 2010, Elsevier, Morgan Kaufmann Publishers, 2011 
57. Aftab Munshi Benedict R Gaster, timothy F Mattson,  James Fung, Dan Cinsburg, Addison  Wesley, 

OpenCL Progrmamin Guide, Pearson Education, 2012 
58. The OpenCL 1.2 Specification  Khronos OpenCL Working Group  
59.  http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf“ The OpenCL 1.2 Quick-reference-

card ; Khronos OpenCL Working Group 
 

References 

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf


236 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

60. Mary Fetcher and Vivek Sarkar, Introduction to GPGPUS – Seminar on Heterogeneous Processors, Dept. of computer Science, 

Rice University, October 2007 

61. OpenCL - The open standard for parallel programming of heterogeneous systems URL : http://www.khronos.org/opencl 

62. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses Massive Multithreading 

; Microprocessors, Volume 22, Archive 1, January 2008 http://www.mdronline.com  

63. Matt Pharr (Author), Randima Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-

Purpose Computation ,Addison Wesley , August 2007 

64. NVIDIA GPU Programming Guide http://www.nvidia.com 

65. Perry H. Wang1, Jamison D. Collins1, Gautham N. Chinya1, Hong Jiang2, Xinmin Tian3 , EXOCHI: Architecture and 

Programming Environment for A Heterogeneous Multi-core Multithreaded System, PLDI’07 

66. Karl E. Hillesland, Anselmo Lastra GPU Floating-Point Paranoia, University of North Carolina at Chapel Hill  

67. KARPINSKI, R. 1985. Paranoia: A floating-point benchmark. Byte Magazine 10, 2 (Feb.), 223–235. 

68. GPGPU Web site : http://www.ggpu.org 

69. Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce - 6800 GPU, Ajit Datar, Apurva Padhye 

Computer Architecture 

70. Nvidia 6800 chapter from GPU Gems 2  http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf  

71. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf  

72. OpenGL programming guide (ISBN: 0201604582) 

73. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/ 

74. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html 

75. GPU Programming “Languages http://www.cis.upenn.edu/~suvenkat/700/ 

76. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk 

77. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel Computing Simula Research 

Laboratory October 24, 2007 

78. Daniel Weiskopf, Basics of GPU-Based Programming,  Institute of Visualization and Interactive Systems, Interactive 

Visualization of Volumetric Data on Consumer PC Hardware: Basics of Hardware-Based Programming University of Stuttgart, 

VIS 2003  

References 

Source & Acknowledgements  : NVIDIA, References 

http://www.cis.upenn.edu/~suvenkat/700/


237 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

79. http://www.nvidia.com/object/nvidia-kepler.html  NVIDIA Kepler Architecture 2012 
80. http://developer.nvidia.com/cuda-toolkit  NVIDIA CUDA toolkit 5.0 Preview Release April 2012 
81. http://developer.nvidia.com/category/zone/cuda-zone NVIDIA Developer Zone 
82. http://developer.nvidia.com/gpudirect  RDMA for NVIDIA GPUDirect  coming in CUDA 5.0 Preview 

Release, April  2012 
83. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G

uide.pdf  NVIDIA CUDA C Programming Guide Version 4.2  dated 4/16/2012 (April 2012) 
84. http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Paralleli

sm_in_CUDA.pdf  Dynamic Parallelism in CUDA Tesla K20 Kepler GPUs - Prelease of NVIDIA CUDA 5.0 
85. http://developer.nvidia.com/cuda-downloads   NVIDIA Developer ZONE - CUDA Downloads CUDA 

TOOLKIT 4.2  
86. http://developer.nvidia.com/gpudirect   NVIDIA Developer ZONE – GPUDirect 
87. http://developer.nvidia.com/openacct      OpenACC - NVIDIA 
88. http://developer.nvidia.com/cuda-toolkit  Nsight, Eclipse Edition Pre-release of CUDA 5.0, April 2012 
89. The OpenCL Specification, Version 1.1,</B> Published by Khronos OpenCL Working Group, Aaftab 

Munshi (ed.), 2010. 
90. NVIDA CUDA C Programming Guide Version  V4.0, May 2012 (5/6/2012) 

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf 

91. http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf  The OpenCL 1.1 Quick Reference 
card. 

92. NVIDIA Developer Zone  http://developer.nvidia.com/category/zone/cuda-zone  
93. NVIDIA CUDA Toolkit 4.0 (May 2012)  http://developer.nvidia.com/cuda-toolkit-4.0  

References 

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/gpudirect
http://developer.nvidia.com/openacct
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0


238 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

94. NVIDIA CUDA Toolkit 4.0 Downloads  http://developer.nvidia.com/cuda-toolkit   
95. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect  
96. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012  (2/14,2012) 

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_
Guide.pdf  

 
97. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012 

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices
_Guide.pdf  

98. NVIDIA OpenCL JumpStart  Guide  - Technical Brief   
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf 

99. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012  
100. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guid

e.pdf  
101. NVIDA CUDA C Programming Guide Version  V5.0, May 2012 (5/6/2012) 
102. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide

.pdf  
 
 
 
 
 
 

References 

Source & Acknowledgements  : NVIDIA, References 

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf


239 An Overview of CUDA enabled  NVIDIA  GPUs C-DAC   hyPACK-2013 

 Thank You  
   Any questions ? 


