
1 C-DAC hyPACK-2013 Basics of GPU Based Programming

Classroom lecture :
Basics of GPU-Based Programming

GPU Architecture

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-2 : GPUs)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

2 C-DAC hyPACK-2013 Basics of GPU Based Programming

Overview

What is GPU ? Graphics Pipeline

GPU Architecture

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

Rendering pipeline on current GPUs

Low-level languages
 Vertex programming

 Fragment programming

High-level shading languages

GPU Architecture - Graphics Programming

Source : References

3 C-DAC hyPACK-2013 Basics of GPU Based Programming

What is GPU ?

From Wikipedia : A specialized processor efficient at

manipulating and displaying computer graphics

2D primitive support – bit block transfers

Some might have video support

And of course 3D support (a topic at the heart of this

presentation)

GPUs are optimized for raster graphics

Source : References

4 C-DAC hyPACK-2013 Basics of GPU Based Programming

Without

GPU

With

GPU

What is GPU ?

5 C-DAC hyPACK-2013 Basics of GPU Based Programming

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPU

 The GPU is specialized for compute-intensive, highly data parallel

computation (exactly what graphics rendering is about)‏

 So, more transistors can be devoted to data processing rather

than data caching and flow control

 Data-parallel portions of an application are executed on the device

as kernels which run in parallel on many threads

 GPU threads are extremely lightweight

 GPU needs 1000s of threads for full efficiency

What is GPU ?

6 C-DAC hyPACK-2013 Basics of GPU Based Programming

Graphics Processing Unit

GPU also occasionally called visual processing unit or
VPU

 It’s‏‏a‏dedicated‏graphics‏rendering‏device‏for‏a‏personal‏
computer, workstation, or game console.

GPU is viewed as compute device that :

• Is a coprocessor to CPU or host machine
• Has its own DRAM (on the device)‏
• Runs many threads in parallel

 Thus GPU is dedicated super-threaded, massively data

parallel co-processor

What is GPU ?

7 C-DAC hyPACK-2013 Basics of GPU Based Programming

History

Dealing complex with
Graphics API

Sequential Flow of
Execution

Limited
Communication

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread

per Shader

per Context

FB Memory

8 C-DAC hyPACK-2013 Basics of GPU Based Programming

The Graphics pipeline

Application

Command

Geometry

Rasterization

Texture

Fragment

Display

9 C-DAC hyPACK-2013 Basics of GPU Based Programming

Low level

Specification not an API

Crossplatform implementations

Popular with some games

A simple seq of opengl instr (in C)
glClearColor(0.0,0.0,0.0,0.0);

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,1.0,1.0);

glOrtho(0.0,1.0,0.0,1.0,-1.0,1.0);

glBegin(GL_POLYGON);

glVertex(0.25,0.25,0.0);

glVertex(0.75,0.25,0.0);

glVertex(0.75,0.75,0.0);

glVertex(0.25,0.75,0.0);

glEnd();

3D Graphics Software Interfaces

OpenGL (v2.0 as of now)

Source : References

10 C-DAC hyPACK-2013 Basics of GPU Based Programming

Geometry Processing

Source : References

11 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA GeForce 6800

General Info

 Impressive performance stats
 600 Million vertices/s

 6.4 billion texels/s

 12.8 billion pixels/s rendering z/stencil only

 64 pixels per clock cycle early z-cull (reject rate)

Riva series (1st DirectX compatible)
 Riva 128, Riva TNT, Riva TNT2

GeForce Series
 GeForce 256, GeForce 3 (DirectX 8), GeForce FX, GeForce

6 series

Source : References

12 C-DAC hyPACK-2013 Basics of GPU Based Programming

GeForce 8800 GT Card Specification’s

13 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA GeForce 6800

Block Diagram

Source : References

14 C-DAC hyPACK-2013 Basics of GPU Based Programming

Allow shader to be

applied to each vertex

Transformation and other

per vertex ops

Allow vertex shader to

fetch texture data (6

series only)

NVIDIA GeForce 6800
Vertex Processor (or vertex shader)

Source : References

15 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU from comp arch perspective

Processing units

Focus on Floating point math

 fp32 and fp16 precision support for intermediate

calculations

6 four-wide fp32 vector MADs/clock in shaders and 1

scalar multifunction op

16 four-wide fp32 vector MADs/clock in frag-proc plus 16

four-wide fp32 MULs

Dedicated fp16 normalization hardware

Source : References

16 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU from comp arch perspective Memory

Use dedicated but standard memory architectures (eg

DRAM)

Multiple small independent memory partitions for

improved latency

Memory used to store buffers and optionally textures

 In low-end system (Intel 855GM) system memory is

shared as the Graphics memory

17 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU interfaces with the CPU using fast buses like

AGP and PCI Express

Port speeds
 PCI express upto 8GB/sec (4 + 4)

 Practically upto (3.2 + 3.2)

 AGP upto 2 GB/sec (for 8x AGP)

Such bus speeds are important because textures and

vertex data needs to come from CPU to GPU (after

that it's the internal GPU bandwidth that matters)

GPU from comp arch perspective Memory

18 C-DAC hyPACK-2013 Basics of GPU Based Programming

Texture caches (2 level)
 Shared between vertex procs and fragment procs

 Cache processed/filtered textures

Vertex caches
 cache processed and unprocessed vertexes

 improve computation and fetch performance

Z and buffer cache and write queues

GPU from comp arch perspective Memory

19 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPGPU

Look at GPU as a fast SIMD processor

 It is a specialized processor, so not all programs

can be run

Example computational programs – FFT,

Cryptography, Ray Tracing, Segmentation and

even sound processing!

20 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Graphics Software Interfaces

Direct 3D (v9.0 as of now)

High level

3D API – part of DirectX

Very popular in the gaming industry

Microsoft platforms only

21 C-DAC hyPACK-2013 Basics of GPU Based Programming

Traditional OpenGL Pipeline

22 C-DAC hyPACK-2013 Basics of GPU Based Programming

Programmable Pipeline

Most parts of the rendering pipeline can be

programmed

Shading programs to change hardware behavior
 Transform and lighting:

 vertex shaders / vertex programs
 Fragment processing:

 pixel shaders / fragment programs

History: from fixed-function pipeline to configurable

pipeline
 Steps towards programmability

23 C-DAC hyPACK-2013 Basics of GPU Based Programming

Programmable Pipeline

24 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU - Issues

How are vertex and pixel shaders specified?
 Low-level, assembler-like

 High-level language

Data flow between components
 Per-vertex data (for vertex shader)

 Per-fragment data (for pixel shader)

 Uniform (constant) data: e.g. modelview matrix,

material parameters

25 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Overview

Rendering pipeline on current GPUs

Low-level languages

 Vertex programming

 Fragment programming

High-level shading languages

26 C-DAC hyPACK-2013 Basics of GPU Based Programming

What Are Low-Level APIs?

Similarity to assembler

 Close to hardware functionality

 Input: vertex/fragment attributes

 Output: new vertex/fragment attributes

 Sequence of instructions on registers

 Very limited control flow (if any)

 Platform-dependent

 BUT: there is convergence

27 C-DAC hyPACK-2013 Basics of GPU Based Programming

What Are Low-Level APIs?

Current low-level APIs:
 OpenGL extensions: GL_ARB_vertex_program,

 GL_ARB_fragment_program

DirectX 9: Vertex Shader 2.0, Pixel Shader 2.0
 Older low-level APIs:

 DirectX 8.x: Vertex Shader 1.x, Pixel Shader 1.x

 OpenGL extensions: GL_ATI_fragment_shader,

GL_NV_vertex_program,‏…

28 C-DAC hyPACK-2013 Basics of GPU Based Programming

Why Use Low-Level APIs?

Low-level APIs offer best performance &

functionality

Help‏to‏understand‏the‏graphics‏hardware‏(ATI’s‏

r300,‏NVIDIA’s‏nv30,‏...)

Help to understand high-level APIs (Cg, HLSL, ...)

Much easier than directly specifying configurable

graphics pipeline (e.g. register combiners)

29 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU - Overview

Rendering pipeline on current GPUs

Low-level languages
 Vertex programming

 Fragment programming

High-level shading languages

30 C-DAC hyPACK-2013 Basics of GPU Based Programming

Applications Vertex Programming

Customized computation of vertex attributes

Computation of anything that can be interpolated

linearly between vertices

Limitations:
 Vertices can neither be generated nor destroyed

 No information about topology or ordering of vertices

is available

31 C-DAC hyPACK-2013 Basics of GPU Based Programming

Circumvents the traditional vertex pipeline

What is replaced by a vertex program?
 Vertex transformations

 Vertex weighting/blending

 Normal transformations

 Color material

 Per-vertex lighting

 Texture coordinate generation

 Texture matrix transformations

 Per-vertex point size computations

 Per-vertex fog coordinate computations

 Client-defined clip planes

OPEN_GL GL_ARB_vertex_program

32 C-DAC hyPACK-2013 Basics of GPU Based Programming

OPEN_GL GL_ARB_vertex_program

What is not replaced?

 Clipping to the view frustum

 Perspective divide (division by w)

 Viewport transformation

 Depth range transformation

 Front and back color selection

 Clamping colors

 Primitive assembly and per-fragment operations

 Evaluators

33 C-DAC hyPACK-2013 Basics of GPU Based Programming

Vertex Shader 2.0 introduced in DirectX 9.0

Similar functionality and limitations as

GL_ARB_vertex_program

Similar registers and syntax

Additional functionality: static flow control
 Control of flow determined by constants (not by per-

vertex attributes)

 Conditional blocks, repetition, subroutines

DirectX 9: Vertex Shader 2.0

34 C-DAC hyPACK-2013 Basics of GPU Based Programming

Applications for Fragment Programming

Customized computation of fragment attributes

Computation of anything that should be computed per

pixel

Limitations:
 Fragments cannot be generated

 Position of fragments cannot be changed

 No information about geometric primitive is available

35 C-DAC hyPACK-2013 Basics of GPU Based Programming

OPEN_GL_ARB_fragment_program

Circumvents the traditional fragment pipeline

What is replaced by a pixel program?
 Texturing

 Color sum

 Fog

 for the rasterization of points, lines, polygons, pixel

 rectangles, and bitmaps

What is not replaced?
 Fragment tests (alpha, stencil, and depth tests)

 Blending

36 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Overview

Rendering pipeline on current GPUs

Low-level languages

 Vertex programming

 Fragment programming

High-level shading languages

37 C-DAC hyPACK-2013 Basics of GPU Based Programming

High-Level Shading Languages

Why?
 Avoids programming, debugging, and maintenance of

long assembly shaders

 Easy to read

 Easier to modify existing shaders

 Automatic code optimization

 Wide range of platforms

 Shaders often inspired RenderMan shading language

38 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Application
Vertex

Program

Connect

Vertex In

Frame Buffer
Fragment

Program

Shader

mainVs

Connect

Vertex In
Shader

Connector

Vertex shader program

Fragment shader program

Connectors

Data Flow through Pipeline

39 C-DAC hyPACK-2013 Basics of GPU Based Programming

High-Level Shading Languages

Cg
 “C‏for‏Graphics”

 By NVIDIA

HLSL
 High-level‏shading‏language”

 Part of DirectX 9 (Microsoft)

OpenGL 2.0 Shading Language
 Proposal by 3D Labs

40 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU - Cg

Typical concepts for a high-level shading language

Language is (almost) identical to DirectX HLSL

Syntax, operators, functions from C/C++

Conditionals and flow control

Backends according to hardware profiles

Support for GPU-specific features (compare to low-level)
 Vector and matrix operations

 Hardware data types for maximum performance

 Access‏to‏GPU‏functions:‏mul,‏sqrt,‏dot,‏…

 Mathematical functions for graphics, e.g. reflect

 Profiles for particular hardware feature sets

41 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg Shader

Direct X OpenGL

GPU

Offline or Rutume compile

Cg

Compiler
Compilation and

Optimization

Low-level

Assembly code

Internal machine

code

 Workflow in Cg

42 C-DAC hyPACK-2013 Basics of GPU Based Programming

3D Application
Vertex

Program

Connect

Vertex In

Frame Buffer
Fragment

Program

Shader

mainVs

Connect

Vertex In
Shader

Connector

First part of pipeline

Connectors: what kind of data is

transferred to/from vertex program?

Actual vertex shader

Phong Shading in Cg: Vertex Shader

43 C-DAC hyPACK-2013 Basics of GPU Based Programming

NVIDIA G80 Block Diagram

Very little of this is graphic specic

 ...but, assumes threads are independent

44 C-DAC hyPACK-2013 Basics of GPU Based Programming

Hyper “Core” Computers

Speculation about the computer of the next decade:

 10s of CPU cores
 Use for scheduling

 Use for \irregular" part of problem

 Maybe higher precision (correction steps)

 100s of GPU cores
 Use for \regular" part of problem

 NUMA (Non-Uniform Memory Access) for both
 Programming languages must expose this

 Runtime systems?

 Always out-of-(some)-core

 Clusters of these?
 OpenMP/MPI not sufficient

45 C-DAC hyPACK-2013 Basics of GPU Based Programming

Limitations of GPUs

If the GPU is so great, why are we still using the CPU?

You‏can‏not‏simply‏“port"‏existing‏code‏and‏algorithms!

 Data-stream mindset required
 Parallel algorithms

 New data structures (dynamic data structures are

troublesome)

 Not suitable to all problems
 Pointer chasing impossible or inecient

 Recursion

 Debugging is hard
 Hardware is designed without debug bus

 Driver is closed

 Huge performance clis

 No standard API
 More about this later...

46 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Programming

GPUs have traditionally been closed architectures.
 Must program them through closed-source graphics driver

 Driver is like an OS (threads, scheduling, protected

memory)

OpenGL/DirectX are standard, but
 Designed for graphics, not general purpose computations

 Many revisions of each standard

New revisions for each HW-generation

 Allows for \capabilities"

 Large variations between vendors

Both vendors now have dedicated GPGPU APIs
 Nvidia CUDA (Compute Unified Device Architecture)

 AMD CTM (Close To Metal) – AMD ATI - FireStream

GPGPU version" of hardware as well

47 C-DAC hyPACK-2013 Basics of GPU Based Programming

Computer Graphics

Hardware mimicked graphics

APIs

 It is possible to formulate

many problems in this

framework
 Uses graphics APIs

 Classical GPGPU"

CPU

Geometry

Rasterize

Shade pixels

Display

48 C-DAC hyPACK-2013 Basics of GPU Based Programming

Computer Graphics

Hardware mimicked graphics

APIs

 It is possible to formulate many

problems in this framework
 Uses graphics APIs

 Classical GPGPU"

DO NOT DO THIS ANYMORE!

 (Unless for graphics)

CPU

Geometry

Rasterize

Shade pixels

Display

Overview –

GPU Programming “Languages”

GPU – Programming : Zoo

50 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Renderman

Cg
HLSL

Sh

GLSL

SlabOps OpenVidia

BrookGPU

Rendertexture

GPU - The Language Zoo

OpenCL

51 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cook and Perlin first to develop languages for
performing shading calculations

Perlin computed noise functions procedurally;
introduced control constructs

Cook developed idea of shade trees @Lucasfilm

These ideas led to development of Renderman at
Pixar (Hanrahan et al) in 1988.

Renderman is STILL shader language of choice
for high quality rendering !

Languages intended for offline rendering; no
interactivity, but high quality.

GPU - Some History

52 C-DAC hyPACK-2013 Basics of GPU Based Programming

After RenderMan, independent efforts to develop high

level shading languages at SGI (ISL), Stanford

(RTSL).

ISL targeted fixed-function pipeline and SGI cards

(remember compiler from previous lecture): goal was

to map a RenderMan-like language to OpenGL

RTSL took similar approach with programmable

pipeline and PC cards (recall compiler from previous

lecture)

RTSL morphed into Cg.

GPU - Some History

53 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg was pushed by NVIDIA as a platform-neutral,
card-neutral programming environment.

In practice, Cg tends to work better on NVIDIA
cards (better demos, special features etc).

ATI made brief attempt at competition with
Ashli/RenderMonkey.

HLSL was pushed by Microsoft as a DirectX-
specific alternative.

In general, HLSL has better integration with the
DirectX framework, unlike Cg with
OpenGL/DirectX.

GPU - Some History

Overview –

C-like vertex, Cg, HLSL, GLSL,

Data Types, Shaders,Compilation

GPU – Level 1: Better Than Assembly ?

55 C-DAC hyPACK-2013 Basics of GPU Based Programming

Languages are specified in a C-like syntax.

The user writes explicit vertex and fragment
programs.

Code compiled down into pseudo-assembly

• this is a source-to-source compilation: no machine code
is generated.

Knowledge of the pipeline is essential

• Passing array = binding texture

• Start program = render a quad

• Need to set transformation parameters

• Buffer management a pain

GPU Lang. - Prog.: C-like vertex and fragment code

56 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Platform neutral, architecture
“neutral” shading language
developed by NVIDIA.

 One of the first GPGPU languages
used widely.

 Because Cg is platform-neutral,
many of the other GPGPU issues are
not addressed

• managing pbuffers

• rendering to textures

• handling vertex buffers

“As we started out with
Cg it was a great boost
to getting programmers
used to working with
programmable GPUs.
Now Microsoft has made
a major commitment
and in the long term we
don’t really want to be in
the programming
language busies”

David Kirk,

NVIDIA

GPU Lang. - Prog.: Cg

57 C-DAC hyPACK-2013 Basics of GPU Based Programming

Developed by Microsoft; tight coupling with
DirectX

Because of this tight coupling, many things are
easier (no RenderTexture needed !)

Xbox programming with DirectX/HLSL (XNA)

But…

Cell processor will use OpenGL/Cg

GPU Lang. - Prog.: HLSL

58 C-DAC hyPACK-2013 Basics of GPU Based Programming

 GLSL is the latest shader language, developed by

3DLabs in conjunction with the OpenGL ARB,

specific to OpenGL.

 Requires OpenGL 2.0

 NVIDIA‏doesn’t‏yet‏have‏drivers‏for‏OpenGL‏!!‏2.0‏

Demos (appear to be) emulated in software

 ATI appears to have native GL 2.0 support and thus

support for GLSL.

Multiplicity of languages likely to continue

GPU Lang. - Prog.: GLSL

59 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Scalars: float/integer/boolean

 Scalars can have 32 or 16 bit precision (ATI supports
24 bit, GLSL has 16 bit integers)

 vector: 3 or 4 scalar components.

 Arrays (but only fixed size)

 Limited floating point support; no underflow/overflow
for integer arithmetic

 No bit operations

Matrix data types

 Texture data type

• power-of-two issues appear to be resolved in
GLSL

• different types for 1D, 2D, 3D, cubemaps.

GPU Lang. - Prog.: Datatypes

60 C-DAC hyPACK-2013 Basics of GPU Based Programming

Data Binding modes:

 uniform: the parameter is fixed over a glBegin()-
glEnd() call.

 varying: interpolated data sent to the fragment
program (like pixel color, texture coordinates, etc)

 attribute: per-vertex data sent to the GPU from the
CPU (vertex coordinates, texture coordinates,
normals, etc).

 Data direction:

 in: data sent into the program (vertex coordinates)

 out: data sent out of the program (depth)

 inout: both of the above (color)

GPU Lang. - Prog.: DatatBinding

61 C-DAC hyPACK-2013 Basics of GPU Based Programming

Usual arithmetic and special purpose algebraic ops
(trigonometry, interpolation, discrete derivatives, etc)

No integer mod…

for-loops, while-do loops, if-then-else statements.

discard allows you to kill a fragment and end
processing.

Recursive function calls are unsupported, but simple
function calls are allowed

Always one “main” function that starts the program,
like C.

GPU Lang. - Prog.: Operations And Control Flow

62 C-DAC hyPACK-2013 Basics of GPU Based Programming

 This is the most painful part of working with shaders.

 All‏three‏languages‏provide‏a‏“runtime”‏to‏load‏
shaders, link data with shader variables, enable and
disable programs.

 Cg and HLSL compile shader code down to
assembly‏(“source-to-source”).‏

 GLSL relies on the graphics vendor to provide a
compiler directly to GPU machine code, so no
intermediate step takes place.

GPU Lang.-Prog.: working with Shaders : The Mechanics

63 C-DAC hyPACK-2013 Basics of GPU Based Programming

Step 1: Load the shader

Shader source

Create Shader Object

Load shader

from file

Compile shader

GPU Lang.-Prog.: working with Shaders : The Mechanics

64 C-DAC hyPACK-2013 Basics of GPU Based Programming

Main C code

Shader source

float3 main(

uniform float v,

sampler2D t){

…

}

handle for v

handle for t

Get

handles

Set values

for vars

GPU Lang.-Prog.: working with Shaders : The Mechanics

Step 2: Bind Variables

65 C-DAC hyPACK-2013 Basics of GPU Based Programming

Enable Shader

Enable parameters

Render something

Enable Program

Load shader(s) into

program

In GLSL

GPU Lang.-Prog.: working with Shaders : The Mechanics

Step 2: Run the Shaders

66 C-DAC hyPACK-2013 Basics of GPU Based Programming

Cg code can be compiled to fragment code for
different platforms (directx, nvidia, arbfp)

HLSL compiles directly to directx

GLSL compiles natively.

It is often the case that inspecting the Cg compiler
output reveals bugs, shows inefficiencies etc that
can be fixed by writing assembly code (like writing
asm routines in C)

In‏GLSL‏you‏can’t‏do‏this‏because‏the‏code‏is‏

compiled natively: you have to trust the vendor
compiler !

GPU Lang.-Prog.: Direct Compilation

67 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Shading languages like Cg, HLSL, GLSL are ways of

approaching Renderman but using the GPU.

 These will never be the most convenient approach for

general purpose GPU programming

 But they will probably yield the most efficient code

• you either need an HLL and great compilers

• or you suffer and program in these.

GPU Lang.-Prog.: Overview

68 C-DAC hyPACK-2013 Basics of GPU Based Programming

Writing code that works cross-platform, with all
extensions, is hard.

Wrappers take care of the low-level issues, use the
right commands for the right platform, etc.

Render Texture:

– Handles offscreen buffers and render-to-texture cleanly

– works in both windows and linux (only for OpenGL
though)

– de facto class of choice for all Cg programming (use Cg
for the code, and RenderTexture for texture
management).

GPU – Lang. Prog. ; Wrapper libraries

69 C-DAC hyPACK-2013 Basics of GPU Based Programming

Video and image processing library developed at

University of Toronto.

Contains a collection of fragment programs for basic

vision tasks (edge detection, corner tracking, object

tracking, video compositing, etc)

Provides a high level API for invoking these functions.

Works with Cg and OpenGL, only on linux (for now)

Level of transparency is low: you still need to set up

GLUT, and allocate buffers, but the details are

somewhat masked)

GPU – Lang. Prog. ; OpenVidia

70 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Create processing object:
• d=new FragPipeDisplay(<parameters>);

 Create image filter
• filter1 = new GenericFilter(…,<cg-

program>);

 Make some buffers for temporary results:
• d->init_texture(0, 320, 240, foo);

• d->init_texture4f(1, 320, 240, foo);

 Apply filter to buffer, store in output buffer
• d->applyFilter(filter1, 0,1);

GPU – Lang. Prog. : OpenVidia Example

71 C-DAC hyPACK-2013 Basics of GPU Based Programming

Main goal is to hide details of the runtime and distill
the essence of the computation.

These languages exploit the stream aspect of
GPUs explicitly

They differ from libraries by being general purpose.

They can target different backends (including the
CPU)

Either embed as C++ code (Sh) or come with an
associated compiler (Brook) to compile a C-like
language.

GPU – Lang. Prog. : High Level C-like languages

72 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Open-source code developed by group led by Michael
McCool at Waterloo

• Technical term is ‘metaprogramming’

• Code is embedded inside C++; no extra compile tools
are necessary.

• Sh uses a staged compiler: parts of code are compiled
when C++ code is compiled, and the rest (with certain
optimizations) is compiled at runtime.

• Has a very similar flavor to functional programming

• Parameter passing into streams is seamless, and
resource constraints are managed by virtualization.

GPU Lang. Prog. : High Level C-like languages :Sh

73 C-DAC hyPACK-2013 Basics of GPU Based Programming

 All kinds of other functions to extract data from streams
and textures.

 Lots of useful ‘primitive’ streams like passthru programs
and generic vertex/fragment programs, as well as
specialized lighting shaders.

 Sh is closely bound to OpenGL; you can specify all usual
OpenGL calls, and Sh is invoked as usual via a display()
routine.

 Plan is to have DirectX binding ready shortly (this may be
already be in)

 Because of the multiple backends, you can debug a shader
on the CPU backend first, and then test it on the GPU.

GPU Lang. Prog. : High Level C-like languages :Sh

And more ….. DirectX

74 C-DAC hyPACK-2013 Basics of GPU Based Programming

Open-source code developed by Ian Buck and
others at Stanford.

Intended as a pure stream programming language
with multiple backends.

Is not embedded in C code; uses its own compiler
(brcc) that generates C code from a .br file.

Workflow:

– Write Brook program (.br)

– Compile Brook program to C (brcc)

– Compile C code (gcc/VC)

GPU Lang. Prog. : High Level C-like languages

Brook GPU

75 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Designed for general-purpose computing (this is

primary difference in focus from Sh)

• You will almost never use any graphics

commands in Brook.

• Basic data type is the stream.

• Types of functions:

GPU Lang. Prog. : High Level C-like languages

Brook GPU

76 C-DAC hyPACK-2013 Basics of GPU Based Programming

• Types of functions:

– Kernel: takes one or more input streams and

produces an output stream.

– Reduce: takes input streams and reduces them to

scalars (or smaller output streams)

– Scatter: a[oi] = si. Send stream data to array, putting

values in different locations.

– Gather: Inverse of scatter operation. si = a[oi].

• Support of all operations are required … check.

GPU Lang. Prog. : High Level C-like languages

Brook GPU

77 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Brook is more general: you

don’t need to know graphics

to run it.

 Very good for prototyping

 You need to rely on

compiler being good.

 Many special GPU features

cannot be expressed cleanly.

 Sh allows better control over

mapping to hardware.

 Embeds in C++; no extra

compilation phase necessary.

 Lots of behind-the-scenes

work to get virtualization: is

there a performance hit ?

 Still requires some

understanding of graphics.

GPU Lang. Prog. : High Level C-like languages

Sh Vs Brook GPU

78 C-DAC hyPACK-2013 Basics of GPU Based Programming

C-like API for programming newer Nvidia GPUs

 Computation kernels are written in C
 Compiles with dedicated compiler, nvcc

 Kernels are executed as threads, threads organized

into blocks
 Programmer decides #threads, #threads/block, and

mem/block

 Exposes different kinds of memory
 Thread-local (register)

 Shared per block

 Global (not cached, write everywhere)

 Texture (cached read only memory)

 Constant(cached read only memory)

 Some synchronization primitives

 cudaMalloc, cudaMemcpy for allocating and copying

memory

NVIDIA CUDA (Compute Unified Device Architecture)

79 C-DAC hyPACK-2013 Basics of GPU Based Programming

 The advent of Cg, and then Brook/Sh signified a
huge increase in the number of GPU apps. Having
good programming tools is worth a lot !

 The tools are still somewhat immature; almost non-
existent debuggers and optimizers, and only one
GPU simulator (Sm).

 I‏shouldn’t‏have‏to‏worry‏about‏the‏correct‏
parameters to pass when setting up a texture for use
as a buffer: we need better wrappers.

GPU Lang. Prog. : High Level C-like languages

The Big Picture

80 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Compiler efforts are lagging application development:
more work is needed to allow for high level language
development without compromising performance.

 In order to do this, we need to study stream
programming. Maybe draw ideas from the functional
programming world ?

 Libraries are probably the way forward for now.

GPU Lang. Prog. : High Level C-like languages

The Big Picture

81 C-DAC hyPACK-2013 Basics of GPU Based Programming

Hyper “Core” Computers

Speculation about the computer of the next decade:

 10s of CPU cores
 Use for scheduling

 Use for \irregular" part of problem

 Maybe higher precision (correction steps)

 100s of GPU cores
 Use for \regular" part of problem

 NUMA (Non-Uniform Memory Access) for both
 Programming languages must expose this

 Runtime systems?

 Always out-of-(some)-core

 Clusters of these?
 OpenMP/MPI not sufficient

82 C-DAC hyPACK-2013 Basics of GPU Based Programming

Limitations of GPUs

If the GPU is so great, why are we still using the CPU?

You‏can‏not‏simply‏“port"‏existing‏code‏and‏algorithms!

 Data-stream mindset required
 Parallel algorithms

 New data structures (dynamic data structures are

troublesome)

 Not suitable to all problems
 Pointer chasing impossible or inecient

 Recursion

 Debugging is hard
 Hardware is designed without debug bus

 Driver is closed

 Huge performance clis

 No standard API
 More about this later...

83 C-DAC hyPACK-2013 Basics of GPU Based Programming

GPU Programming

GPUs have traditionally been closed architectures.
 Must program them through closed-source graphics driver

 Driver is like an OS (threads, scheduling, protected

memory)

OpenGL/DirectX are standard, but
 Designed for graphics, not general purpose computations

 Many revisions of each standard

New revisions for each HW-generation

 Allows for \capabilities"

 Large variations between vendors

Both vendors now have dedicated GPGPU APIs
 Nvidia CUDA (Compute Unified Device Architecture)

 AMD CTM (Close To Metal) – AMD ATI - FireStream

GPGPU version" of hardware as well

84 C-DAC hyPACK-2013 Basics of GPU Based Programming

Conclusions

 GPU Programming Language

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

OPECG-2009 -Hands-on session : Examples

85 C-DAC hyPACK-2013 Basics of GPU Based Programming

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. NVIDIA CUDA Reference http://www.nvidia.com/object/cuda_home.html
6. CUDA sample source code: http://www.nvidia.com/object/cuda_get_samples.html
7. List of NVIDIA GPUs compatible with CUDA: The href://www.nvidia.com/object/cuda_learn_products.html
8. Download the CUDA SDK: www.nvidia.com/object/cuda_get.html
9. Specifications of nVIDIA GeForce 8800 GPUs:
10. RAPIDMIND http://www.rapidmind.net
11. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
12. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
13. AMD http:www.amd.com
14. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
15. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
16. Merrimac - Stream Architecture Standford Brook for GPUs

http://www-graphics.stanford.edu/projects/brookgpu/

17. Standford : Merrimac - Stream Architecture http://merrimac.stanford.edu/
18. ATI RADEON - AMD http://www.canadacomputers.com/amd/radeon/
19. ATI & AMD - Technology Products http://ati.amd.com/products/index.html
20. Sparse Matrix Solvers on the GPU ; conjugate Gradients and Multigrid by Jeff Bolts, Ian Farmer, Eitan

Grinspum, Peter Schroder , Caltech Report (2003); Supported in part by NSF, nVIDIA, etc....
21. Scan Primitives for GPU Computing by Shubhabrata Sengupta, Mark Harris*, Yao Zhang and John D

Owens University of California Davis & *nVIDIA Corporation Graphic Hardware (2007).
22. Horm D; Stream reduction operations for GPGPU applciations in GPU Genes 2 Phar M., (Ed.) Addison

Weseley, March 2005; Chapter 36, pp. 573-589 Graphic Hardware (2007).
23. Bollz J., Farmer I., Grinspun F., Schroder F : Sparse Matris Solvers on the GPU ; Conjugate Gradients

and multigrid ACM Transactions on Graphics (Proceedings of ACM SIGRAPH 2003) 22, 2 (Jul y2003) pp
917-924 Graphic Hardware (2007).

24. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide - Version 1.1 November 2007

References

http://www-graphics.stanford.edu/projects/brookgpu/

86 C-DAC hyPACK-2013 Basics of GPU Based Programming

25. Tom R. Halfhill, Number crunching with GPUs PeakStream Math API Exploits Parallelism in Graphics
Processors, Ocotober 2006; Microprocessor http://www.mdronline.com

26. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

27. J. Tolke, M.Krafczyk Towards Three-dimensional teraflop CFD Computing on a desktop PC using
graphics hardware Institute for Computational Modeling in Civil Engineering, TU Braunschweig (2008)

28. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hoston, P.Hanrahan, Brook for GPUs ;
Stream Computing on GRaphics Hadrware, ACM Tran. GRaph (SIGGRAPH) 2008

29. Z. Fan, F. Qin, A.E. Kaufamm, S. Yoakum-Stover, GPU cluster for Hgh Performance Computing in :
Proceedings of ACM/IEEE Superocmputing Conference 2004 pp. 47-59.

30. J. Kriiger, R. Wetermann, Linear Algeria operators for GPU implementation of Numerical Algorithms
ACm Tran, Graph (SIGGRAPH) 22 (3) pp. 908-916. (2003)

31. Tutorial SC 2007 SC05 : High Performance Computing with CUDA
32. FASTRA http://www.fastra.ua.ac.bc/en/faq.html
33. AMD Stream Computing software Stack ; http://www.amd.com
34. BrookGPU : http://graphics standafrod.edu/projects/brookgpu/index.html
35. FFT – Fast Fourier Transform www.fftw.org
36. BLAS – Basic Linear Algebra Suborutines – www.netlibr.org/blas
37. LAPACK : Linear Algebra Package – www.netlib.org/lapack
38. Dr. Larry Seller, Senipr Principal Engineer; Larrabee : A Many-core Intel Architecture for Visual

computing, Intel Deverloper FORUM 2008
39. Tom R Halfhill, Intel’s Larrabee Redefines GPUs – Fully Programmable Many core Processor Reaches

Beyond Graphics, Microprocessor Report September 29, 2008
40. Tom R Halfhill AMD’s Stream Becomes a River – Parallel Processing Platform for ATI GPUs Reaches

More Systems, Microprocessor Report December 2008
41. AMD’s ATI Stream Platform http://www.amd.com/stream
42. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
43. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl

References

http://www.amd.com/stream

87 C-DAC hyPACK-2013 Basics of GPU Based Programming

44. Mary Fetcher and Vivek Sarkar, Introduction to GPGPUS – Seminar on Heterogeneous Processors,
Dept. of computer Science, Rice University, October 2007

45. OpenCL - The open standard for parallel programming of heterogeneous systems URL :
http://www.khronos.org/opencl

46. Tom R. Halfhill, Parallel Processing with CUDA Nvidia's High-Performance Computing Platform Uses
Massive Multithreading ; Microprocessors, Volume 22, Archive 1, January 2008
http://www.mdronline.com

47. Matt Pharr (Author), Randima Fernando, GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation ,Addison Wesley , August 2007

48. NVIDIA GPU Programming Guide http://www.nvidia.com

49. Perry H. Wang1, Jamison D. Collins1, Gautham N. Chinya1, Hong Jiang2, Xinmin Tian3 , EXOCHI: Architecture and

Programming Environment for A Heterogeneous Multi-core‏Multithreaded‏System,‏PLDI’07

50. Karl E. Hillesland, Anselmo Lastra GPU Floating-Point Paranoia, University of North Carolina at Chapel Hill

51. KARPINSKI, R. 1985. Paranoia: A floating-point benchmark. Byte Magazine 10, 2 (Feb.), 223–235.

52. GPGPU Web site : http://www.ggpu.org

53. Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce - 6800 GPU, Ajit Datar, Apurva

Padhye Computer Architecture

54. Nvidia 6800 chapter from GPU Gems 2

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

55. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

56. OpenGL programming guide (ISBN: 0201604582)

57. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

58. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

59. GPU‏Programming‏“Languages‏http://www.cis.upenn.edu/~suvenkat/700/

60. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk
61. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel

Computing Simula Research Laboratory October 24, 2007
62. Daniel Weiskopf, Basics of GPU-Based Programming, Institute of Visualization and Interactive Systems,

Interactive Visualization of Volumetric Data on Consumer PC Hardware: Basics of Hardware-Based Programming

University of Stuttgart, VIS 2003

References

An Overview of GPU Computing 88 hyPACK-2013

1. AMD Accelerated Parallel Processing (APP) SDK (formerly ATI Stream) with OpenCL 1.1 Support
http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx

2. AMD Accelerated Parallel Processing (APP) SDK (formerly ATI Stream) with AMD APP Math Libraries
(APPML); AMD Core Math Library (ACML); AMD Core Math Library for Graphic Processors (ACML-GPU)
http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx

3. AMD Accelerated Parallel Processing (AMD APP) Programming Guide OpenCL : August 2012
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming_Guide.pdf

4. AMD Developer Central - OpenCL Zone,
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx

5. AMD Developer Central - Programming in OpenCL
 http://developer.amd.com/zones/OpenCLZone/programming/Pages/default.aspx
6. AMD Developer Central - Programming in OpenCL - Benchmarks performance

http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance
.aspx

7. The open standard for parallel programming of heterogeneous systems URL :
http://www.khronos.org/opencl

8. OpenGL design http://graphics.stanford.edu/courses/cs448a-01-fall/design_opengl.pdf

9. OpenGL programming guide (ISBN: 0201604582)

10. Real time graphics architectures lecture notes http://graphics.stanford.edu/courses/cs448a-01-fall/

11. GeForce 256 overview http://www.nvnews.net/reviews/geforce_256/gpu_overviews.html

12. GPU‏Programming‏“Languages‏http://www.cis.upenn.edu/~suvenkat/700/

13. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan & VVR Talk
14. Johan Seland, GPU Programming and Computing, Workshop on High-Performance and Parallel

Computing Simula Research Laboratory October 24, 2007

References

http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/zones/OpenCLZone/Pages/default.aspx
http://developer.amd.com/zones/OpenCLZone/programming/Pages/default.aspx

An Overview of GPU Computing 89 hyPACK-2013

1. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_G
uide.pdf

2. NVIDIA Developer Zone http://developer.nvidia.com/category/zone/cuda-zone
3. NVIDIA CUDA Toolkit 4.0 (May 2012) http://developer.nvidia.com/cuda-toolkit-4.0
4. NVIDIA CUDA Toolkit 4.0 Downloads http://developer.nvidia.com/cuda-toolkit
5. NVIDIA Developer ZONE – GPUDirect http://developer.nvidia.com/gpudirect
6. NVIDIA OpenCL Programming Guide for the CUDA Architecture version 4.0 Feb, 2012 (2/14,2012)

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programmi
ng_Guide.pdf

7. Optimization : NVIDIA OpenCL Best Practices Guide Version 1.0 Feb 2012

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practi
ces_Guide.pdf

8. NVIDIA OpenCL JumpStart Guide - Technical Brief
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf

9. NVIDA CUDA C BEST PRACTICES GUIDE (Design Guide) V4.0, May 2012
10. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_

Guide.pdf
11. NVIDA CUDA C Programming Guide Version V4.0, May 2012 (5/6/2012)

12.http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming
_Guide.pdf

References

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit-4.0
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/gpudirect
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/OpenCL/NVIDIA_OpenCL_JumpStart_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

90 C-DAC hyPACK-2013 Basics of GPU Based Programming

 Thank You
 Any questions ?

