
1 An Overview of OpenCL C-DAC hyPACK-2013

Lecture Topic:

An Overview of OpenCL

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-4 : GPUs)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

2 An Overview of OpenCL C-DAC hyPACK-2013

Lecture Outline

Following topics will be discussed
 Part-I : An introduction to Heterogeneous comp. -

OpenCL

 Part-II : The OpencL Specification - Kernels

 Part-III : OpenCL Device Architectures

 Part-IV : OpenCL Basic Examples

 Part-V : Understanding OpenCL’s Concurrency

 and Execution Model

Source : References given in the presentation

Heterogeneous Computing with OpenCL

Source : NVIDIA, Khronos AMD, References

3 An Overview of OpenCL C-DAC hyPACK-2013

Introduction to Heterogeneous Computing

Why OpenCL ?

Part-1

4 An Overview of OpenCL C-DAC hyPACK-2013

Figure Floating-Point Operations per Second and Memory Bandwidth

for the CPU and GPU

Software in Many-core world

Source : NVIDIA, Khronos, References

5 An Overview of OpenCL C-DAC hyPACK-2013

Software in Many-core world

 Parallel Hardware delivers performance by running

multiple operations at the same time

 Concurrency (Stream of operations - threads)

 Resource Utilization

 Data Parallel /Task Parallel / Load Balancing

 Manipulating low-level details of parallel computer is

beyond our control – Performance

 Issues

• Number of Operations & Data Movement

Source : Khronos, OpenCL Prog, Guide by Aaftab Munshi etc. & References

6 An Overview of OpenCL C-DAC hyPACK-2013

GPU Computing drives new applications

• Reducing “Time to Discovery”

• 100 x Speedup changes science &

research methods

New applications drive the future of GPUs

• Drives new GPU capabilities

• Drives hunger for more performance

Performance =

 parallel hardware + scalable parallel program

Application

CPU GPU

Software in Many-core world

GPU Computing : Think in Parallel - Some Design Goals

Source : NVIDIA, Khronos, AMD, References

7 An Overview of OpenCL C-DAC hyPACK-2013

GPU Challenges with regard to Scientific Computing

GPU Programming : Two Main Challenges

 Example : Matrix Computations

• To port an existing scientific
application to a GPU

Challenge : Programmability

 The user must focus considerable effort on optimizing
performance by manually orchestrating data movement and
managing thread level parallelism on GPU.

 GPU memory exists on the card itself
• Must send matrix array over PCI-Express Bus

 Send A, B, C to GPU over PCIe

Perform GPU-based computations on A,B, C

 Read result C from GPU over PCIe

Application

CPU GPU

Source : NVIDIA, Khronous, AMD, References

8 An Overview of OpenCL C-DAC hyPACK-2013

Challenge
Example : Non-Scientific Computation - Video Games (Frames)

(A single bit difference in a rendered pixel in a real-time
graphics program may be discarded when generating
subsequence frames)

Scientific Computing : Single bit error - Propagates overall
error

Past/Current History : Most GPUs support single/double
precision, 32/64 bit floating point operation, - all GPUs have
necessarily implemented the full IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754)

GPU Programming : Two Main Challenges

Source : NVIDIA, Khronos AMD, References

9 An Overview of OpenCL C-DAC hyPACK-2013

 Performance /(Cost/Watt); Power for Core

 Structured Parallelism enables more flops less watts

Optimized for structured parallel execution

• Extensive ALU counts & Memory Bandwidth

• Cooperative multi-threading hides latency

Shared Instructions Resources

Fixed function units for parallel workloads dispatch

Extensive exploitations of Locality

GPU Computing : Think in Parallel : Why Are GPUs So Fast?

Software in Many-core world

Source : NVIDIA, Khronos AMD, References

10 An Overview of OpenCL C-DAC hyPACK-2013

Partition your computation to keep the GPU
multiprocessors equally busy

• Many threads, many thread blocks

Keep resource usage low enough to support multiple
active thread blocks per multiprocessor

• Registers, shared memory

GPU Computing: Use Parallelism Efficiently

GPU Computing : Think in Parallel

Source : NVIDIA, Khronos AMD, References

11 An Overview of OpenCL C-DAC hyPACK-2013

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one/ a few threads to load/computer data
shared by all threads

Use it to avoid non-coalesced access

• Stage loads and stores in shared memory to
re-order non-coalesceable addressing

• Matrix transpose example later

GPU Computing : Think in Parallel

GPU Computing: Take Advantage of Shared Memory

Application

CPU GPU

Source : NVIDIA, Khronos AMD, References

12 An Overview of OpenCL C-DAC hyPACK-2013

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

• GPU spends its translators on ALUs, not memory

Do more computation on the GPU to avoid costly data
transfers

• Even low parallelism computations can sometimes be
faster than transferring back and forth to host

GPU Computing : Think in Parallel

GPU Computing: Optimise Algorithms for the GPU

Source : NVIDIA, Khronos AMD, References

13 An Overview of OpenCL C-DAC hyPACK-2013

High Level Abstraction that hide complexity of hardware

A heterogeneous programming language exposes

heterogeneity

• Trend towards increasing abstraction

• One language does’nt have to address the needs of

every community of programmers

• High level frame works - High level languages and map

to a low-level hardware abstraction layer for portability

OpenCL is hardware-abstraction layer

Software in Many-core world

Source : NVIDIA, Khronos AMD, References

14 An Overview of OpenCL C-DAC hyPACK-2013

Introduction to OpenCL

Standardization

Part-2 (a)

Source : NVIDIA, Khronos AMD, References

15 An Overview of OpenCL C-DAC hyPACK-2013

To standardize general purpose

parallel programming for any

application

Suitable for Heterogeneous

systems – different

Mircoprocessor Architectures

(Ex : PCs - X86; PCs with

discrete or integrated GPUs,

Cell Phones, Embedded

Systems

OpenCL tries to Standardize Parallel Programming

Khronos OpenCL working group making aggressive progress

(www.khronos.org)
Source : NVIDIA, Khronos AMD, References

http://www.khronos.org/

16 An Overview of OpenCL C-DAC hyPACK-2013

What Does OpenCL Mean ? : Challenging Objectives :

Standardize framework and language for multiple
heterogeneous processors

Developed in collaboration with industry leaders

Software Developers

OpenCL enabled you to write parallel programs that will run
portably on many devices

Royalty free – with no cost to use the API

End-User Benefits

A wide range of innovative applications will be enabled and
accelerated by unleashing the parallel computing
capabilities of their systems and devices

OpenCL tries to Standardize Parallel Programming

Source : NVIDIA, Khronos AMD, References

17 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Processor Parallelism : Processor Parallelism

Source : NVIDIA, Khronos AMD, References

18 An Overview of OpenCL C-DAC hyPACK-2013

Why OpenCL

OpenCL tries to Standardize Parallel Programming

Source : Khronos, OpenCL Prog, Guide by Aaftab Munshi etc. &References

ICH

CPU GPU

GPU GMCH

DRAM

The future belongs to heterogeneous many-core platforms

Need Hybrid Programming on Heterogeneous Comp. Platforms

19 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

OpenCL Specification working group :

3DLabs, Activation Blizzard, AMD, Apples, ARM, Barco, Broadcom,
Codeplay, Electronic Arts, Ericsson, Freescale, Hi, IBM, Intel,
Imagine technologies, Motorla, Movid, Nokia, Nvidia, QNX,
RapidMind Samsung, Seaweed,Takuni, Texas Instruments,
University (Sweden), Microsoft

Source : NVIDIA, Khronos AMD, References

20 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL and the Khronos EcoSystem

Source : NVIDIA, Khronos AMD, References

21 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Why OpenCL

Co-existence of Accelerators

Intel Xeon (Phi) RC-FPGA, & GPGPUs

How our software should adapt to these platforms ?

Capacitance = 2.2 C

Voltage = 0.6V

Frequency = 0.5f

Power = 0.396 CV2f

Hybrid Programming on

Heterogeneous Comp.

Platforms

Heterogeneous Comp.

Platforms – Power &

Energy Efficiency

Source : NVIDIA, Khronos AMD, References

22 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL tries to Standardize Parallel Programming

Background & Challenging Objectives :

 OpenGL: Open Graphics Library

 Widely supported application programming interface
(API) for graphics ONLY

 OpenCL: "CL" Stands for Computing Language

 providing an API library

 Modifies C and C++ parallel programming

 New Initiatives for other programming
languages(Fortran)

Aim: to standardize general purpose parallel programming
 for any application Source : NVIDIA, Khronos AMD, References

23 An Overview of OpenCL C-DAC hyPACK-2013

 Diverse Industry Participation

• Processor vendors, System OEMS, Middleware

vendors, Application Developers

 Many Industry-leading experts involved in OpenCL’s

design

• A healthy diversity of industry perspectives

 Apple initially proposed the working group

• And served as specification editor

OpenCL Working Group : Challenging Objectives

The OpenCL Standard

Source : NVIDIA, Khronos AMD, References

24 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 Arrive at a common set of programming standards that are
acceptable to a range of competing needs and requirements

 The Khronos consortium – manages the OpenCL standard

• Developed an applications programming interface (API)
that is general enough to run on significantly different
architectures while being adaptable enough that each
hardware platforms can still obtain high performance.

• Using the core language and correctly following the
specification, any program designed for one-vendor can
execute on another’s hardware.

Source : NVIDIA, Khronos AMD, References

25 An Overview of OpenCL C-DAC hyPACK-2013

Challenging Objectives :

 Diverse Industry Participation

 Processor vendors, System OEMS, Middleware vendors,
Application Developers

 Many Industry-leading experts involved in OpenCL’s design

 A healthy diversity of industry perspectives

 Apple initially proposed the working group

 And served as specification editor

The OpenCL Standard

Source : NVIDIA, Khronos AMD, References

26 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 OpenCL C is a restricted version of the C99 language with
extension appropriate for executing data-parallel code on a
variety of heterogeneous devices.

 Aimed for full support for the IEEE 754 formats

 Programming language, well suited to the capabilities of
current heterogeneous platforms

Source : NVIDIA, Khronos AMD, References

27 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Standard

 Challenging Objectives :

 The model set forth by OpenCL creates portable, vendor-
and device-independent programs that are capable of
being accelerated on many different platforms.

• The OpenCL API is C wit h a C++ Wrapper API that is
defined in terms of the C-API.

• There are third-party bindings for many languages,
including Java, Python, and .NET

• The code that executes on an OpenCL device, which in
general is not the same device as the host-CPU, is
written in the OpenCL C language.

Source : NVIDIA, Khronos AMD, References

28 An Overview of OpenCL C-DAC hyPACK-2013

 Threading in Model for data level parallelism OpenCL

 Closely resembles the models in AMD-ATI Stream, CUDA
& RapidMind

 OpenCL threading is largely implicit

 OpenCL allows programmers to manage threads more
explicitly if programmers wish

 Task-level parallelism

 Concurrently execute multiple kernels on multiple kernels
on multiple CPUs, GPUs or systems with mixed
architecture

OpenCL : Standardize Parallel Programming

Source : NVIDIA, Khronos AMD, References

29 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Use all computational resources in system

 Program GPUs, CPUs and other processors as peers

 Support both data- and task- parallel compute models

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience” functions

 Implementation on a range of embedded, desktop, and server systems

 HPC desktop, and handheld profiles in on specification

 Drive future hardware requirements

 Floating point precision requirements

 Application to both consumer and HPC applications

Source : NVIDIA, Khronos AMD, References

30 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

Source : Khronous, References

 Efficient c-based parallel programming model

 Abstract the specified of underlying hardware

 Abstraction is low-level, high-performance but device-portable

 Approachable –but primarily targeted at expert developers

 Ecosystem foundation – no middleware or “convenience”
functions

31 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Design Requirements

 Implementation on a range of embedded, desktop, and server
systems

 HPC desktop, and handheld profiles in on specification

 Drive future hardware requirements

 Floating point precision requirements

 Application to both consumer and HPC applications

Source : NVIDIA, Khronos AMD, References

32 An Overview of OpenCL C-DAC hyPACK-2013

 Use all computational resources in system

 GPUs and CPUs as peers

 Data- and task- parallel compute model

 Efficient parallel programming model

 Based on C

 Abstract the specifics of underlying hardware

 Specify accuracy of floating-point computations

 IEEE 754 compliant rounding behaviour

 Define maximum allowable error of math functions

Design Goals of OpenCL

Source : NVIDIA, Khronos AMD, References

33 An Overview of OpenCL C-DAC hyPACK-2013

 Data-parallel execution model must be implemented by all OpenCL compute
devices

 Some computer devices such as CPUs can also execute task parallel
compute kernels

 Executes as a single work-item

 A compute kernel written in OpenCL

 A native C / C++ function

OpenCL Task Parallel Execution Model

Source : NVIDIA, Khronos AMD, References

34 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL – Models

Part-2 (b)

Source : NVIDIA, Khronos AMD, References

35 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

36 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

37 An Overview of OpenCL C-DAC hyPACK-2013

Discover the completion that make-up the heterogeneous

system

Probe the characteristics of these components, so that the

software can adapt to specific features of different

hardware elements

Create the blocks of instructions (Kernels) that will run on

the platform

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

38 An Overview of OpenCL C-DAC hyPACK-2013

Set up and manipulate memory objects involved in the

computation.

 Execute the kernels in the right order and on the right

components of the system

Collect the final results

• Above steps are accomplished through a series of

APIs inside OpenCL plus a programming environment

for the kernels

Conceptual Foundations of OpenCL

An Application for a heterogeneous platform must carry

out the following steps.

Source : NVIDIA, Khronos AMD, References

39 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification – Models

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

Source : NVIDIA, Khronos AMD, References

40 An Overview of OpenCL C-DAC hyPACK-2013

• Platform Layer

 Query and select computer devices in the system

 Initialize a compute device(s)

 Create compute contexts and work-queues

• Runtime

 Resource management

 Execute compute kernels

• Compiler

 A subset of ISO C99 with appropriate language additions

 Compile and build compute program executable

 Online or offline

The OpenCL Specification – Models

 OpenCL Software Stack

Source : NVIDIA, Khronos AMD, References

41 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

• High Level description of the heterogeneous

system

 Execution Model

• An abstract representation of how stream of

instructions execute on the heterogeneous

system

The OpenCL Specification – Models

Source : NVIDIA, Khronos AMD, References

42 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Memory Models

• The Collection of memory regions within

OpenCL and how they interact during at

OpenCL computation

 Programming Model

• The high-level abstractions a programmer uses

when designing algorithms to implement an

application

The OpenCL Specification – Models

Source : NVIDIA, Khronos AMD, References

43 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification

 The OpenCL specification is defined in four parts,

called models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

Source : NVIDIA, Khronos AMD, References

44 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification

Platform Model

(In brief)

Part-2 (c)

45 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Specifies that there is one processor coordinating the execution
(the host) and one or more processors capable of executing
OpenCL C Code (the devices).

 It defines an abstract hardware model that is used by programmers
when writing OpenCL functions (Called Kernels) that execute on the
devices.

 The platform model defines the relation between the host an
device.

• i.e., OpenCL implementation executing on a host x86 GPU,
which is using a GPU device as an accelerator

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

46 An Overview of OpenCL C-DAC hyPACK-2013

 Platform model :

 Platforms can be thought of a vendor – specific
implementations of the OpenCL API.

 The platform model also presents an abstract device
architecture that programmers target writing OpenCL C code.

 Vendors map this abstraction architecture to the physical
hardware.

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

47 An Overview of OpenCL C-DAC hyPACK-2013

Host-Device Interaction

 Platform Model

• Provides an abstract hardware model for devices

• Present an abstract device architecture that programmers target
when writing OpenCL C code.

• Vendor-specific implementation of the OpenCL API.

OpenCL PLATFROM AND DEVICES

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing elements

• OpenCL device schedule execution of instructions.

48 An Overview of OpenCL C-DAC hyPACK-2013

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

 Device

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

P

E

P

E

P

E
. . . P

E

Compute unit

Host

The platform model defines an abstract architecture for devices.

• The host is connected to one or more devices

• Device is where the stream of instructions (or kernels) execute (an

OpenCL device is often referred to as a compute device

• A device can be a CPU, GPU, DSP, or any other processor

provided by Hardware and supported by the OpenCL Vendor

OpenCL Platform Model

OpenCL

Device Compute Unit

49 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Platform Model

 One Host + one or more compute Devices

 Each compute Device is connected to one or more

Compute Units.

• Each compute Unit is further divided into one or more

Processing Elements

Source : NVIDIA, Khronos AMD, References

50 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system ?

cl_int

ClGetPlatformIds(cl_unit num_entries,

 cl_platform_Id *platforms,

 cl_unit *num_platforms)

OpenCL PLATFROM Model

 Platform Model

• Defines a device as an array of compute units

• Compute units are further divided into processing
elements

• OpenCL device schedule execution of instructions.
Source : NVIDIA, Khronos AMD, References

51 An Overview of OpenCL C-DAC hyPACK-2013

How to discover available platforms for a given system.

 Application calls ClGetPlatformIds() twice

• The first call passes an unsigned int pointer as the
num_platforms argument and NULL is passes as the
platform argument.

‾ The programmer can then allocate space to hold the
platform information.

• The second call, a cl_platform_id pointer is passed to
the implementation with enough space allocated for
num_entries platforms.

OpenCL PLATFORM Model

Source : NVIDIA, Khronos AMD, References

52 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The ClGetPlatformInfo()call determines implementation

The clGetDeviceIDs()call works very similar to
ClGetPlatformId()

How to use device_type argument ?

 GPUs : cl_DEVICE_TYPE_GPU

 CPUs : cl_DEVICE_TYPE_CPU

 All devices : cl_DEVICE_TYPE_ALL & other options

Cl_GetDeviceinfo() is called to retrieve information such as name,
type, and vendor from each device.

OpenCL PLATFROM AND DEVICES

Source : NVIDIA, Khronos AMD, References

53 An Overview of OpenCL C-DAC hyPACK-2013

After platforms have been discovered, How to determine which
implementation (vendor) the platform was defined by ?

The clGetDeviceIDs()

cl_int

clGetDeviceIDs(cl_platform_id platform,

 cl_DEVICE_TYPE_GPU device_type,

 cl_unit num_entries,

 cl_device_id *devices,

 cl_uint *num_devices)

OpenCL PLATFROM Model

54 An Overview of OpenCL C-DAC hyPACK-2013

How to get printed information about the OpenCL, supported

platforms and devices in a system ?

CLinfo prorgam in the AMD APP SDK

• Uses clGetplatforminfo()and clGetDeviceInfo()

• Hardware details such as memory size and bas widths are

available using the commands

• $./CLinfo program gives complete information

OpenCL PLATFORM Model

55 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Number of platforms : 1

Platform Profiles : FULL_PROFILE

Platform Version : OpenCL 1.1 AMD SDK –v2.4

Platform Name : AMD Accelerated Parallel Processing

Platform Vendor : Advanced Micro Devices, Inc.

Number of Devices : 2

Device Type : CL_DEVICE_TYPE_GPU

Name : Cypress

Max Compute Units : 20

Address bits 32

$./CLinfo

56 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Max Memory Allocation: 268435456

Global Memory size : 1073741824

Constant buffer size : 65536

Local Memory type : Scratchpad

Local Memory size : 32768

Device endianess : little

Device Type : CL_DEVICE_TYPE_CPU

Max Compute units : 16

Name : AMD Phenom™ 11 X4 945
Processor

$./CLinfo

Source : NVIDIA, Khronos AMD, References

57 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification

Execution Model

(In brief)

Part-2 (d)

58 An Overview of OpenCL C-DAC hyPACK-2013

 Execution model :

 Defines

• How the OpenCL environment is configured on the host

• How kernels are executed on device

 This includes

• Setting up an OpenCL context on the host,

• Providing mechanism for host-device interaction, &

• defining a concurrency model used for kernel execution on
device

• The host sets up a kernel for the GPU to run and instantiates
it with some special degree of parallelism.

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

59 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model

 Application consists of two distinct parts

 The host program

• Runs on the host

• OpenCL does not define the details of how the host

progrma works, only how it interacts with objects

defined in OpenCL

 A Collection of Kernels

• The Kernel execute on the OpenCL device

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

60 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Execution Model - Kernels

 A Collection of Kernels

• Execute on the OpenCL device

• Do the real work of an OpenCL application

• Simple functions transform input memory objects into

output memory objects

Execution Model - Kernels

 OpenCL defines two types of Kernels

• OpenCL Kernels & Native Kernels

The OpenCL Execution Model

61 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model : Defines how the kernels execute

 Several Steps Exist.

• FIRST : How an individual kernel runs on an

OpenCL device ?

• Second: How the host defines the context for

kenrel execution

• THIRD: How the kernels are enqueued for

execution

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

62 An Overview of OpenCL C-DAC hyPACK-2013

 Execution Model - Kernels

 OpenCL Kernels

• Written in OpenCL C programming language and

compiled with the OpenCL Compiler

• All OpenCL implementations must support OpenCL

Kernels

 Native Kernels

• Functions created outside of OpenCL and accessed

within OpenCL through a function pointer. (An

Optional functionality within in OpenCL exist)

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

63 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL Execution Environment defines the

following how the kernel execute

 Contexts

 Command Queues

 Events

 Memory Objects (Buffers -large array /images

• Buffers (allocate buffer & return memory object)

• Image (2D & 3D)

 Flush & Finish

The OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

64 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

How a Kernel Execute on an OpeCL Device

(In brief)

Part-2 (e)

65 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Execution Model

Source : Khronous, & References

 OpenCL Program :

 Kernels

• Basic unit of executable – similar to a C function’

• Data-parallel or task parallel

 Host Program

• Collection of computer kernels and internal functions

• Analogous to a dynamic library

66 An Overview of OpenCL C-DAC hyPACK-2013

 Compute kernel

 Basic unit of executable code – similar to a C function

 Data-parallel or task-parallel

 Compute Program

 Collection of computer kernels and internal functions

 Analogous to a dynamic library

 Applications queue compute kernel execution instances

 Queued in-order

 Executed in-order or out-of-order

 Events are used to implement appropriate synchronization of execution
instances

OpenCL Execution Model

67 An Overview of OpenCL C-DAC hyPACK-2013

1. A kernel defined on the Host

2. Issues a command : The host program issues a

command that submits the kernel for execution on an OpenCL

device.

3. Creation of Integer index space : The OpenCL runtime

system creates an integer index space

4. Work-item : An instance of the Kernel executes for each

point in this index space and each such instance of an

executing a kernel a work-item

 Work-item is identified by its coordinates in the index space

& these coordinates are the global ID for the work-item.

The OpenCL Execution Model

 How a Kernel Execute on an OpeCL Device ?

68 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Approach :

 The unit of concurrent execution in OpenCL is a work-

item

 Map a single iteration of the loop to a work-item

 Tell the OpenCL runtime to generate as many work-

items as elements in the input and output arrays

 Allow the runtime to map those work-items to the

underlying hardware i.e. CPU or GPU Cores in

whatever way it views appropriate.

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

69 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL implements hierarchy concurrent model

 OpenCL describes execution in fine-grained work-items

and can dispatch vast number of work-items on

architecture with hardware support for fine-grained

threading

When a kernel is executed, the programmer specifies the

number of work-items

• Work-items have unique global IDs from the index

space

Work-items are organized into work-groups. Work-

groups have a unique work-group ID

Work-items have a unique local ID within a work-group

Kernel Execution on an OpenCL Device

70 An Overview of OpenCL C-DAC hyPACK-2013

Define N-Dimensional computation domain

Work-items should be created as an n-dimensional range

(NDRange)

Each independent element of execution in N-D domain is

called a work-item

The N-D domain defines the total number of work-items that

execute in parallel – global work size.

The host program involves a kernel over an index space

called an NDRange

• NDRange = “N-dimensional Range” & it can be a 1, 2 or

3-dimensional Range

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

71 An Overview of OpenCL C-DAC hyPACK-2013

 Work-items can be grouped together – work-group

Work-items in work-group can communicate with each

other

 Can synchronize executing among work-items in group to

coordinate memory access

 Execute multiple work-groups in parallel –

 Provide more coarse grained decomposition of index

space

 Mapping of global work-size to work-groups

 Implicit or explicit

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

72 An Overview of OpenCL C-DAC hyPACK-2013

work-item

Work-items are created as an NDRange and grouped in workgroups.

WG

<0,0>

WG

<1,0>
. . .

WG

<K,0>

WG

<0,1>

.

.

.

WG

<i,j>

WG

<0,L>

WG

<K,L>

WI

<0,0>

WI

<1,0>
. . .

WI

<M,0>

WI

<0,1>

.

.

.

WI

<0,N>

WI

<M,N>

NDRange Work-group(i, j)

An index space with N dimensions require work-groups to be

specified using the same N dimensions : thus, a three

dimensional index space requires three-dimensional work-groups.

Work-groups & Work-items

Scalability : Divide work-items of an NDRange into smaller, equally

sized workgroups.

Kernel Execution on an OpenCL Device

73 An Overview of OpenCL C-DAC hyPACK-2013

More about workgroups & work-items

An NDRange is a one-, two-, or three- dimensional index

space of work-items that will often map to the dimensions of

either the input or the output data.

The dimensions of the NDRange are specified as an N-

element array of type size_t where N represents the number

of dimensions used to described the work-items being

created.

Kernel Execution on an OpenCL Device

74 An Overview of OpenCL C-DAC hyPACK-2013

 Kernels are the part of an OpenCL program that actually execute

on a device. The OpenCL API

 Enables an application to create a context for management of

the execution of OpenCL commands, including those

• describing the movement of data between and OpenCL

memory structures and

• the execution of kernel code that process this data to

perform some meaningful task.

 The goal is often to represent parallelism programmability at the

finest granularity.

 The generalization of the OpenCL interface and the lowest level

kernel language allows efficient mapping to a wide range of

hardware

Kernel Execution on an OpenCL Device

Source : NVIDIA, Khronos AMD, References

75 An Overview of OpenCL C-DAC hyPACK-2013

Work-groups & work-items

 Note that OpenCL requires that the index space sizes are

evenly divisible by the work-group sizes in each dimension.

 For hardware efficiency, the work-group size is usually fixed

to a favorable size

• To satisfy the divisibility requirement, round-up the index

space size in each dimension is required.

• Specify the extra work-items in each dimension in such way

that these extra items return immediately without outputting

any data

• Developer can pass “NULL” (implementation takes care-off)

Kernels and the OpenCL Execution Model

76 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

Context

(In brief)

Part-2 (f)

77 An Overview of OpenCL C-DAC hyPACK-2013

 Kernels are defined on the host and host the establishes

the context for the kernels.

 Host defines the “NDRange”

 Host defines the “queues “ that control the details of how

and when the kernels execute

 (Important functions are defined in APIs within OpenCL’s

 definition.)

Task : Host Defines the Context for the OpenCL Application

 The context defines the environment within which the

kernels are defined and execute

OpenCL Execution Model : Contexts

78 An Overview of OpenCL C-DAC hyPACK-2013

 How to co-ordinate the mechanisms for host-device

interaction ?

 How to manages the memory objects that are available on

the device ?

 How to keep track of the programs and kernels that are

created for each device ?

 Support of APIs

 Before a host can request that a kernel be executed on a

device, a context must be configured on the host.

• Enables it to pass commands and data to the device

OpenCL Execution Model : Contexts

79 An Overview of OpenCL C-DAC hyPACK-2013

 The API function to create a context is clCreateContext()

 The context is an abstract container that exists on the host.

 A context

• Coordinates the mechanisms for host-device interaction,

• Manages the memory objects that are available to the

devices

• Keeps track of the programs and kernels that are created for

each device.

 The properties argument is used to restrict the scope of the

context

• Context may provide a specific platform ,enable graphics

interoperability, or enable other parameters in the future.

OpenCL Execution Model : Contexts

80 An Overview of OpenCL C-DAC hyPACK-2013

 A context

• The number and IDs of the devices that the

programmer wants to associate with the context must

be supplied.

Remark : In OpenCL, the process of discovering platforms

and devices and setting up a context is tedious. However,

after the code to perform these steps is written once, it can

be reused or almost any project.

OpenCL Execution Model : Contexts

81 An Overview of OpenCL C-DAC hyPACK-2013

 A context is defined in terms of the following resources :

• Devices : the collection of OpenCL devices to be used by

the host

• Kernels : the OpenCL functions that run on the OpenCL

device.

• Program Objects : the program source code and

executable that implement the kernels

• Memory Objects : : a set of objects in memory that are

visible to OpenCL devices and contain values that can be

operated on by instances of a kernel.

OpenCL Execution Model : Contexts

 How context includes OpenCL Devices and a program

object from which the kernels are pulled for execution ?

82 An Overview of OpenCL C-DAC hyPACK-2013

 The context is created and manipulated by host using the

functions from the OpenCL API

• On Heterogeneous platform, the host may choose the

GPU, other cores on the CPU, or combination of these.

• Once the choice made, the choice defines the OpenCL

devices within the current context

• Program Objects : One of more program objects that

contain the code for the kernels.

• These can be thought as a “ Dynamic library from which

the functions used by a kernel are pulled.

OpenCL Execution Model : Contexts

83 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 The program object is built at runtime within the host

program

• Which target platform will be standard to OpeCL

Specification ?

• How de we specify this information in host program ?

 Built the program object from the source at runtime.

• Compile the program source code to create the code for

kernel. (The host program defines devices within the

context)

OpenCL Execution Model : Contexts

84 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 More about Source Code :

 Regular String either statistically defined in the host

program

 Loaded from a file at runtime

 Dynamically generated inside the host program

OpenCL Execution Model : Contexts

 Context includes OpenCL Devices and a program object

from which the kernels are pulled for execution

85 An Overview of OpenCL C-DAC hyPACK-2013

More about Program Objects :

 More about Source Code :

 Regular String either statistically defined in the host

program

 Loaded from a file at runtime

 Dynamically generated inside the host program

OpenCL Execution Model : Contexts

 Context includes OpenCL Devices and a program object

from which the kernels are pulled for execution

86 An Overview of OpenCL C-DAC hyPACK-2013

clCreateContext(

 const cl_context_properties *properties,

 cl_unit num_devices,

 const cl_Device_id *devices,

 void (CL_CALLBACK *pfn_notify) (

 const char *errinfo,

 const void *private_info

 size_t cb,

 void *user_data)

 void *user_data,

 cl_int *errcode_ret}

OpenCL Execution Model : Contexts

87 An Overview of OpenCL C-DAC hyPACK-2013

 “Context”; How the OPenCL Kernels works with memory

?

 What is needed for Command queue ?

 Detailed memory model needs to be understand and How the

openCL memory works at higher level ?

 About Heterogeneous Systems :

• Multiple Address Spaces to manage

 OpenCL introduced the concept of Memory Object

• Explicitly defined on the host

• Explicitly moved between the host and the OpenCL

devices

OpenCL Execution Model : Context

88 An Overview of OpenCL C-DAC hyPACK-2013

 The OpenCL specification also provides an API call tat alleviates the
need to build a list of devices.

• clCreateContextFromType() allows a programmer to

create a context that automatially includes all devices of the
specified type (e.g., CPUS, GPUs, and all devices)

• After a creating a context, the function
clGetContextinfo() can be used to query information

such as the number of devices present and device structures.

 In OpenCL, the process of discovering platforms and devices and
setting up a context is tedious. However, after the code to

perform these steps is written once, it can be reused or almost any
project.

OpenCL Execution Model : Contexts

89 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Context is the

OpenCL Devices

Program Objects

Kernels

Memory Object

that a kernel uses when it executes

OpenCL Execution Model : Context

Command-Queues :

How the host program issues commands to the

OpenCL devices ?

90 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Context is the heart of any OpenCL application

 Context provide a container for

associating devices,

Memory Objects (e.g., buffers and images),

command-queue (providing interface between the

context and an individual object)

 Context drives the communication with, and between, specific

drives and OpenCL defines it memory model in terms of these

OpenCL Execution Model : Context

91 An Overview of OpenCL C-DAC hyPACK-2013

A brief summary of OpenCL Context

 Example : A memory object is allocated with a context but

can be updated by a particular device, and OpenCL/memory

guarantees that all devices, within the same context, will see

these updates as well defined synchronizing points

 Context – update as the program progresses, allocating or

deleting memory objects and so on.

associating devices,

Memory Objects (e.g., buffers and images),

command-queue (providing interface between the

context and an individual object)

OpenCL Execution Model : Context

92 An Overview of OpenCL C-DAC hyPACK-2013

In general, an application’s OpenCL Usage look similar to

this Context

1. Query which platforms are present

2. Query the set of devices supported by each platform

a. Choose the select devices, using clGetDeviceInfo(),

on specific capabilities

3. Create contexts from a selection of devices (each context

must be created with devices from a single platform), then

with a context you can

OpenCL Execution Model : Context

93 An Overview of OpenCL C-DAC hyPACK-2013

In general, an application’s OpenCL Usage look similar to this Context

3. Create contexts from a selection of devices (each context must be

created with devices from a single platform), then with a context you can

a. Create one or more command-queues

b. Create programs to run on one or more associated

devices

c. Create a kernel from those programs

d. Allocate memory buffer and images either on the host or

on the device

e. Write or copy data to and from a particular device

f. Submit kernels (setting the appropriate arguments to a

command-queue for execution

OpenCL Execution Model : Context

94 An Overview of OpenCL C-DAC hyPACK-2013

Context

Platform 1

CPU GPU

Context

GPU

Platform 1 Platform 2

OpenCL Execution Model : Context

 Given a platform and a list of associated devices, an

OpenCL context is created with the command

ClCreateContext(), and with a

platform and device type

ClCreateContexFromType()

can be used,

OpenCL Platform,

Devices and Contexts

Source : NVIDIA, Khronos AMD, References

95 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL Specification :Execution Model

Command-Queues

(In brief)

Part-2 (f)

Source : NVIDIA, Khronos AMD, References

96 An Overview of OpenCL C-DAC hyPACK-2013

What is command-queues ?

 The interaction between the host and the OpenCL

devices occurs through commands posted by a host to the

command-queue.

 These commands wait in the command-queue until they

execute on the OpenCL device

 Check for successful completion of “definition of the

context” A command-queue is created by the host and

attached to a single OpenCL device after the context has

been defined.

OpenCL Execution Model : Command-Queues

97 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

 The host places commands into the command-queue, and

commands are then scheduled for execution on the

associated device. OpenCL supports three types of

commands :

 Kernel Execution commands : executes a kernel on the

processing elements of an OpenCL device

Memory commands : transfer data between the host and

different memory objects move data between memory

objects, or map and unmap memory objects from the host

address space.

 Synchronization commands : put constraints on the

order in which commands execute.

OpenCL Execution Model : Command-Queues

98 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

Mechanism that the host uses to request action by the

devices.

Communication with a device occurs by submitting

commands to a command-queue.

Each command-queue is associated with only one device

• Step 1 : Host decides which device to work with

• Step 2 : A context is created

• Step 3 : One command-queue needs to be created per

device

Whenever the host needs an action to be performance by

a device, it will submit commands to the proper command

queue.

OpenCL Execution Model : Command-Queues

99 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queues

 The API clCreateCommandQueue() is used to create a

command queue and associate it with a device.

 Cl_Command_queue

 clCreateCommandQueue(

 cl_context context,

 cl_device_id device,

 cl_command_queue_properties properties

 cl_int* errcode_ret)

 OpenCL uses default in-order command queue

 If out-of-order queues are used, it is up to the user to specify

dependencies that enforce a correct execution order.

OpenCL Execution Model : Command-Queues

100 An Overview of OpenCL C-DAC hyPACK-2013

 About command-queue

 Any API that specifies host-device interaction will always

begin with clEnqueue and require a command queue as

a parameter.

 For ex :

• the ClEnqueueReadBuffer()command requests that

the device send data to the host and

• clEngueueNDRangeKernel() requests that a kernel is

executed on the device.

OpenCL Execution Model : Command-Queue

101 An Overview of OpenCL C-DAC hyPACK-2013

 Remarks : context & command-queue

 First Step - Context : The programmer defines the

context and the command-queues, defines memory and

the program objects

 The programmer builds any data structures needed on

the host to support the application

 Next Step - Command queue :

• Memory objects are moved from host onto the devices

• Kernel arguments are attached to memory objects

and then submitted the command-queue for execution

OpenCL Execution Model : Command-Queues

102 An Overview of OpenCL C-DAC hyPACK-2013

 Remarks : context & command-queue

 Next Step - Command queue :

• When the kernel has completed its work, memory

objects produced in the computation may be copied

back on the host.

Other Information : command-queue

 What is the order in which the commands execute ?

 How the commands execution relates to the execution of

the host program. ?

OpenCL Execution Model : Command-Queues

103 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

The commands always execute asynchronously to the host

program

The host program submits commands to the command-

queue and then continue without waiting for a commands to

finish

 If necessary, for the host to wait on a command, this can

be explicitly established with a synchronization

Commands within a single queue execute relative to each

other in one of the two modes :

 In-order execution & Out-or-order execution

OpenCL Execution Model : Command-Queue

104 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

 Errors : Multiple executions occurring in-side an application

may lead to potential disaster i.e. abnormal exist with error

messages

• Data may be accidently used before it has been written

or kernels may be execute in an order that leads to

wrong answers.

 The programmer needs some way to manager any

constraints on the commands.

 Synchronization commands can be used to tell set of

kernels to wait until an earlier set finishes.

OpenCL Execution Model : Command-Queues

105 An Overview of OpenCL C-DAC hyPACK-2013

Other Information : command-queue

 To support custom synchronization protocols, commands

submitted the command-queue generate event objects.

 A command can be told to wait until certain conditions on

the event object exists.

 It is possible to associate multiple queues with a single

queues with a single context for any of the OpenCL

devices within that context,

• These two queues rub concurrently and independently

with no explicit mechanism within OpenCL to

synchronize between them.

OpenCL Execution Model : Command-Queue

Source : NVIDIA, Khronos AMD, References

106 An Overview of OpenCL C-DAC hyPACK-2013

What is an event ?

 Any operation that enqueues a command into a command queue

– that is any API call the begins with clEnqueue – produces an

event. Events have two main roles to OpenCL

1. Representing dependencies

2. Providing a mechanism for profiling

 API Calls the begin with clEnqueue also take a “wait list” of

events as a parameter.

 By generating an event for one API call and passing it as an argument
to a successive call, OpenCL allows us to represent dependencies.

 A ClEnqueue call will block until all events in its wait list have

completed.

OpenCL PLATFORM AND DEVICES: Events

107 An Overview of OpenCL C-DAC hyPACK-2013

 The Execution Environment

 Contexts

 Command Queues

 Events

 Memory Objects (Buffers -large array /images

• Buffers (allocate buffer & return memory object)

• Image (2D & 3D)

 Flush & Finish

OpenCL : Specification : Heterogeneous Prog.

108 An Overview of OpenCL C-DAC hyPACK-2013

Part-2(f)

OpenCL Specification :

Memory Model

109 An Overview of OpenCL C-DAC hyPACK-2013

 Memory model :

 Defines the abstract memory hierarchy that kernels use,
regardless of the actual underlying memory architecture

 The memory model closely resembles current GPU memory

hierarchies. Other accelerators has no limited adoptability.

 To support code portability, OpenCL’s approach is to define an
abstract memory model that programmers can target when
writing code and vendors can map to their actual memory
hardware

 The memory spaces (global memory, constant memory, local
memory, private memory) defined by OpenCL are used and are
relevant within OpenCL programs.

 The memory spaces of OpenCL closley model those of modern
GPUs

The OpenCL Specification

Source : NVIDIA, Khronos AMD, References

110 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Memory Model defines five distinct memory-
regions

 Host memory

 Global memory

 Constant Memory

 Local Memory

 Private Memory

OpenCL : Specification : Heterogeneous Prog.

 OpenCL Writing kernels

 Kernels begin with the keyword _kernel and must have a
return type of void.

Source : NVIDIA, Khronos AMD, References

111 An Overview of OpenCL C-DAC hyPACK-2013

 The Execution model tells

 How the kernel executes ?

 How they interact with other kernels ?

OpenCL : Specification : Execution Model

 Used “Memory Objects” for an associated command-

queue

 How safe these memory objects can be used ?

 OpenCL defines two types of memory objects

 Buffer Object

 Image Object

 OpenCL – specify sub regions of memory objects as

distinct memory objects

112 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Memory Model defines five distinct memory-
regions

 Host memory

 Global memory

 Constant Memory

 Local Memory

 Private Memory

OpenCL : Specification : Heterogeneous Prog.

 OpenCL Writing kernels

 Kernels begin with the keyword _kernel and must

have a return type of void.

113 An Overview of OpenCL C-DAC hyPACK-2013

 Host Memory

A summary of memory model to OpenCL

Compute unit 1

Private

memory 1

Private

memory M

PE 1 PE M

. . .

Local

memory 1

Compute unit N

Private

memory 1

Private

memory M

PE 1 PE M

. . .

Local

memory N

Global/Constant memory data cache

OpenCL Device

Global /constant memory

OpenCL Device Memory

 ...

Host

114 An Overview of OpenCL C-DAC hyPACK-2013

 Implements a relaxed consistency,
shared memory model

 Multiple distinct address spaces

 Address spaces can be collapsed
depending on the device’s memory
subsystem

 Address qualifiers

 _private

 _local

 _constant and_global

 Example:

• _global float4 *p;

OpenCL Memory Model

Source : Khronos, References

115 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL’S approach is to define an abstract memory model

 Programmers can target when writing code
 Vendors can map to their actual memory hardware
 The memory spaces defined by OpenCL :

• Global Memory
• Constant Memory
• Local Memory
• Private Memory

 The key words associated with each space can be used to
specify where a variable should be created or where the data
that it points to resides.

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

Source : NVIDIA, Khronos AMD, References

116 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Global Memory :

 Visible to all compute units on the device.
 Whenever the data is transferred from the host to device, the

data will resides in global memory.
 And data transfer from the device to host must also reside in

global memory :

• The key-word __global is added to a pointer
declaration to specify that data retrenched by the pointer,
resides in global memory,

117 An Overview of OpenCL C-DAC hyPACK-2013

The abstract memory model defined by OpenCL.

Kernel-wide

scope

Workgroup

scope

Work-item

scope

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Private Private Private

Work-

item

Workgroup

Work-

item

Work-

item

Kernel

Global memory
Constant memory

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

• Global Memory
• Constant Memory
• Local Memory
• Private Memory

Usually, the memory
spaces of openCL
closely model those
of modern GPUs.

Source : NVIDIA, Khronos AMD, References

118 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Constant Memory :

 Not specifically designed for every type of read-only data but,
rather, for data where each element is accessed
simultaneously by all work-items.

 Variables whose values never change also fall in the category.
 Constant memory is modeled as apart of global memory, so

memory objects that are transferred to global memory can be
specified as constant.
• Data is mapped to constant memory by using the key-

word __constant.

Source : NVIDIA, Khronos AMD, References

119 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Local Memory :
 Scratchpad memory whose address space is unique to each

compute device :
 Local memory is modeled as being shared by a workgroup.
 Variables whose values never change also fall in the category.

• Calling clSetKernelArg() with a size, but no
argument allows local memory to be allocated at runtime, where a
kernel parameter is defined as a __local pointer.

• Data is mapped to constant memory by using the key-word
__constant.

Arrays can also be declared statically in local memory by
appending the keyword _local, although this require
specifying that array size at compile time.

120 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

 Private Memory :

Memory unique to an individual work-item.

 Local variables and non-pointer kernel arguments are private by
default.

• These variable are mapped to registers.

Source : NVIDIA, Khronos AMD, References

121 An Overview of OpenCL C-DAC hyPACK-2013

AMD RadeonTM HD6970

Global memory
Constant memory

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private

Workgroup

Local Memory

Work-

item

Private

Work-

item

Private Private

Work-

item

Workgroup

Kernel

Global memory
Constant memory

Local

Memory

Work-

item

Private

Work-

item

Private

SIMD core 23

Local

Memory

Work-

item

Private

Work-

item

Private

SIMD core 1

Local Memory

SIMD core 0

Register file (256KB)

Mapping from the memory model defined by OpenCL to the architecture of an AMD Radeon 6970
GPU. Simple private memory will be stored in registers; complex addressing or excessive use will
be stored in DRAM.

The OpenCL : Abstract Memory Model Defined

OpenCL : Memory Model

122 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : Writing Kernels

 OpenCL C kernels are similar to C functions and will be executed
once for every work-item that is created. :

 Buffers can be declared in global memory (_global) or

constant memory (_constant) memory.
 Images are assigned to global memory. Access qualifiers

(_read_only, _write_only, and _read_write) can
also be optimally specified

 The __local qualifier is used to declare memory that is
shared between all work-items in a workgroup.

 Declare local memory allocations can be done differently
using kernel-scope level..

123 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : Writing Kernels

 OpenCL devices, particularly GPUs, performance vary increase by
using local memory to cache data that will be used multiple times
by a work-item or by multiple work-items in the same
workgroup.

When developing a kernel, we can achieve this with an explicit

assignment from a global memory pointer to a local memory
pointer.

 Once work-item completes its execution, none of its state
information or local memory storage is persistent.

 Any results that need to be kept must be transferred to global
memory.

124 An Overview of OpenCL C-DAC hyPACK-2013

Part-2(g)

OpenCL Specification :

Memory Objects

Source : NVIDIA, Khronos AMD, References

125 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects

 OpenCL applications often work with large arrays on multi-
dimensional matrices. This data needs to be physically present on a
device before execution can begin

1. First Step : Data must be encapsulated as a memory object

2. Second Step : transfer the data to a device

 OpenCL define two types of memory objects

 clEnqueue also take a “wait list” of events as a parameter.

1. Buffers : equivalent to arrays in C, created using malloc(), where
data elements are stored contiguously in memory.

2. Images : Designed as opaque objects, allowing data for padding
and other optimizations that may improve performance on
devices.

OpenCL PLATFORM AND DEVICES: Memory Objects

126 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects :

 Memory object is valid only within a simple context, after creation of
memory object.

1. To satisfy, the data Dependencies, OpenCL runtime manages
movement to and from specific devices.

 Memory Objects : Buffers

 Buffers may help to visualize a memory object as a pointer that is
valid on a device. (similar to call to malloc, in C or C++’s a new
pointer

 The function clCreateBuffer() allocates the buffer and

returns a memory object

OpenCL PLATFORM AND DEVICES: Memory Objects

127 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Buffers

 Buffers may help to visualize a memory object as a pointer that is
valid on a device. (similar to call to malloc, in C or C++’s a new
pointer

 The function clCreateBuffer() allocates the buffer and

returns a memory object

 Creating a buffer requires supplying the size of the buffer and a
context in which the buffer will be allocated

 Buffer is visible for all devices associated with the context.

 Supply flags : Optionally, the caller can supply flags that specify that
the data is read-only, write-only or read-write.

OpenCL PLATFORM AND DEVICES: Memory Objects

128 An Overview of OpenCL C-DAC hyPACK-2013

Cl_memclCreateBuffer(

cl_context context,

cl_mem_flags flags,

Size_t size,

void *host_ptr,

cl_int *errcode_ret)

 Memory Objects : Buffers

 Supply flags : Creating and initializing a buffer with other flags (simple
option is to supply a host pointer with data used to initialize the
buffer)

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Buffers

129 An Overview of OpenCL C-DAC hyPACK-2013

 Run-time determines the precise time the data is moved.

• The buffer is linked to a context, not a device

• If a kernel that is dependent on such a buffer is executed
on a discrete accelerator device such as a GPU, the buffer
may be transferred to the device.

 Memory Objects : Buffers

 Data contained in host-memory is transferred to and from an
OpenCL buffer using the command

• ClEnqueueWriteBuffer() and

• ClEnqueueReadBuffer()

OpenCL PLATFORM AND DEVICES: Memory Objects

130 An Overview of OpenCL C-DAC hyPACK-2013

Cl_int

clEnqueueWriteBuffer(

cl_command_queue command_queue,

cl_mem buffer,

Cl_bool blocking_write,

size_t offset,

Size_t cb

const void *ptr,

cl_unit num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Buffers

131 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Buffers

 Similar to other enqueue operations, reading or writing a buffer

requires a command queue to manage the execution schedule.

 The enqueue function requires the buffer, the number of bytes to
transfer, and an offset within the buffer.

 The block_write option should be set to CL_TRUE if the

transfer into an openCL buffer until the operation has completed.

 Setting the block_write option to CL_FALSE allows

clEnqueue-WriteBuffer to return before the write to
CL_FALSE allows clEnqueueWriteBuffer() to return before

the write operation has completed.

OpenCL PLATFORM AND DEVICES: Memory Objects

132 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Images are type of OpenCL memory object that abstract the storage of
physical data to allow for devices-specific optimization

 Use clGetDeviceInfo() to check the support of all OpenCL

Devices.

 Purpose of using Images : to allow the hardware to take advantage of
spatial locality and to utilize the hardware acceleration available on
many devices.

 Unlike buffers, images cannot be directly referenced as if they were
arrays.

OpenCL PLATFORM AND DEVICES: Memory Objects

Source : NVIDIA, Khronos AMD, References

133 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Images are type of OpenCL memory object that abstract the Images are
an example of the OpenCL standard being dependent on the underlying
hardware of a particular device.

 The elements of an image are represented by a format descriptor
(cl_image_format).

 The format descriptor specifies how the image elements are stored in
memory based on the concepts of channels

• The channels order specifies the number of elements that make up
an image element (up to four elements, based on the traditional use
of RGBA pixels), and the channel type specifies the size of each
element.

• These elements can be sized from 1 to 4 bytes and in various
different formats (e.g., integer or floating point)

OpenCL PLATFORM AND DEVICES: Memory Objects

134 An Overview of OpenCL C-DAC hyPACK-2013

 Memory Objects : Images

 Creating an OpenCL image is done using the command
(clCreateImage2D() or clCreateImage3D()

 Additional arguments are required when creating an image object
versus those specified for creating a buffer.

• First, the height and the width of the image must be given (and a
depth for the three-dimensional case)

• Image pitch (number of bytes between the start of one image and the
start of the next.) may be specified if initialization data is provided.

 Additional parameters are required when reading or writing an image.

Within a kernel, images are accessed with built-in functions specific to
data type.

OpenCL PLATFORM AND DEVICES: Memory Objects

135 An Overview of OpenCL C-DAC hyPACK-2013

Cl_mem

clCreateImage2D(

cl_context context,

cl_mem_flags flags,

const cl_image_format *image_format

size_t image_width,

Size_t image_height,

const image_row_pitch,

void *host_ptr

cl_int *errcode_ret,

OpenCL PLATFORM AND DEVICES: Memory Objects

Memory Objects : Images

136 An Overview of OpenCL C-DAC hyPACK-2013

 Creating an OpenCL Program Object

 Process of creating a kernel (Character string, Character
array, Program object

 Intermediate OpenCL –ICD; NVIDIA –PTX, AMD-IL

 Final and Intermediate representations

OpenCL : Specification : Heterogeneous Prog.

137 An Overview of OpenCL C-DAC hyPACK-2013

 OpenCL Kernel

 Get kernel object

 Execute kernels on a device

 Extract a kernel from a program

• To request from the compiled program object

OpenCL : Specification : Heterogeneous Prog.

Source : NVIDIA, Khronos AMD, References

138 An Overview of OpenCL C-DAC hyPACK-2013

Part-2 (h)

OpenCL Specification :

Details on…. on Programming Model

139 An Overview of OpenCL C-DAC hyPACK-2013

The OpenCL Specification

Source : Khronous, & References

 The OpenCL specification is defined in four parts, called
models, that can be summarized as follows.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

140 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 Defines how the concurrency model is mapped to physical hardware.
The hardware thread contexts that execute the kernel must be
created and mapped to actual GPU hardware units.

 OpenCL C code (Written to run on an OpenCL device) called a
program. A program is a collection of functions called kernels, where
kernels are units of execution that can be scheduled to run on a
device

 OpenCL software links only to a common runtime layer (called the
ICD); & uses dynamic library interface at runtime

 Compiled at runtime through a series of API calls (The source code is
turned into a program object (OpenCL program object) & then
compiled to the generate the OpenCL Kernel object that can be used
to execute kernels on a device.

The OpenCL Specification

141 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 The data within the kernel is allocated by the programmer to
specific parts of an abstract memory hierarchy.

 The runtime and driver will map these abstract memory space to
the physical memory.

 The hardware threads contexts that execute the kernel must be
created and mapped to actual GPU hardware units

 Executing a kernel requires dispatching it through an enqueue
function.

The OpenCL Specification

142 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Programming model :

 The process of creating kernel involves three steps.

• Step 1 : The OpenCL source code is stored in a character string. If the
source code is stored in a file on a disk, it must be read into the
memory and stored as a character array.

• Step 2 : The source code is turned into a object, cl_program, by
calling clCreateProgramWithSource().

• Step 3 : The program object is then compiled, for one or more
OpenCL devices, with clBuildPorgram(), If there are compile
errors, they will be reported here.

 OpenCL provides APIs which takes a list of binaries that matches the
device list.

The OpenCL Specification

143 An Overview of OpenCL C-DAC hyPACK-2013

Important Steps in OpenCL Implementation

Part-3

Source : NVIDIA, Khronos AMD, References

144 An Overview of OpenCL C-DAC hyPACK-2013

Query platform

Query devices

Command queue

Create buffers

Compile program

Compile kernel

Set arguments

Executive kernel

C
o
m

p
ile

r

P
la

tf
o

rm
 l
a
y
e

r
R

u
n

ti
m

e
 l
a
y
e

r

Figure 4.2 Programming steps to writing a complete OpenCL applications

OpenCL Implementation Steps

145 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the platforms

Step 2 : Discover and initialize the devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

Step 7 : Create and compile the program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items structure

Step 11 : Enqueue the kernel for execution

Step 12 : Read the output buffer back to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

146 An Overview of OpenCL C-DAC hyPACK-2013

Step 1 : Discover and initialize the

platforms

Step 2 : Discover and initialize the

devices

Step 3 : Create context

Step 4 : Create a command queue

Step 5 : Create device buffers

Step 6 : Write host data device buffers

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

147 An Overview of OpenCL C-DAC hyPACK-2013

Step 7 : Create and compile the

program

Step 8 : Create the kernel

Step 9 : Set the kernel arguments

Step 10 : Configure the work -items

structure

Step 11 : Enqueue the kernel for

execution

Step 12 : Read the output buffer back

to the host

Step 13 : Release OpenCL resources

 OpenCL Important Steps – Implementation

The OpenCL specification

in four parts, called

models.

 Platform Model

 Execution Model

 Memory Model

 Programming Model

148 An Overview of OpenCL C-DAC hyPACK-2013

• Create an OpenCL context on the first available device

• Create a command –queue on the first available device

• Load a kernel file (hello-world.cl) and build it into a

program object

• Create a kernel object for the kernel function

hello_world()

• Query the kernel for execution

• Read the results of the kernel back into the result

buffer

 OpenCL Important Steps – Implementation

149 An Overview of OpenCL C-DAC hyPACK-2013

_kernel void hello_kernel(_global *, *,)

{

 int gid = get_global_id(0);

 ………

 }

int main (int argc, char** argv)

{

// Create an OpencL context on first available platform

// Create an command-queue on the first device

// available on the created context

 OpenCL Important Steps – Implementation

150 An Overview of OpenCL C-DAC hyPACK-2013

// Create OpenCL kernel

// Create memory objects that will be used as

// arguments to kernel.

// First create Host memory arrays that will be used to

// store the arguments to the kernel

// Set the kernel arguments

//Queue the kernel up for execution across the array

//Read the output buffer back to the Host

//Output the result buffer

 OpenCL Important Steps – Implementation

151 An Overview of OpenCL C-DAC hyPACK-2013

 The flush and finish commands are two different types of barrier
operations for a command queue.

 The clFinish() function blocks until all of the commands in a

command queue have completed.

 The clFlush() function blocks until all of the commands in a

command queue have been removed from the queue.

cl_int clFlush(cl_command_queue command_queue)

cl_int clFinish(cl_command_queue command_queue)

OpenCL PLATFORM AND DEVICES: Flush & Finish

152 An Overview of OpenCL C-DAC hyPACK-2013

 What is an OpenCL C Code ?

 OpenCL C Code (Written to run on an OpenCL device) is called a
program.

 A program is a collection of functions called kernels, where kernels are
units of execution that can be scheduled to run a device.

 There is no need for an OpenCL application to have been prebuilt
against the AMD, NVIDIA, or Intel runtime.

 OpenCL software links to a command runtime layer (called the ICD); all
platform-specific SDK activity is delegated to a vendor runtime through
a dynamic library interface.

• ICD: Installable Client Driver for OpenCL

Creating an OpenCL Program Object

OpenCL : The Execution Environment

153 An Overview of OpenCL C-DAC hyPACK-2013

 What is an OpenCLTM ICD ?

 The OpenCL ICD (Installable Client Driver) is a means of allowing
multiple OpenCL implementations to co-exist and applications to select
between them at runtime.

 User application is responsible for selecting which of the OpenCL
platforms present on a system it wishes to use, instead of just requesting
system default.

 Using

 clGetPlatfromIDs() & ClGetPlatfromInfo()

functions to examine the list of available OpenCL implementations and
selecting the one which best suites user requirements.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

154 An Overview of OpenCL C-DAC hyPACK-2013

 About OpenCLTM ICD - Vendor Platform

 At this point, OpenCL Studio selects either the NVIDIA or AMD
platform.

 There is no support for multiple platforms yet, but that will likely be
another abstraction to manage multiple platforms and devices.

 The AMD driver lets you choose between the CPU and the GPU

 NVIDIA however only supports the “CUDA enabled NVIDIA GPU”

Creating an OpenCL Program Object

OpenCL : The Execution Environment

155 An Overview of OpenCL C-DAC hyPACK-2013

 About OpenCLTM ICD - Vendor Platform

 At this point, OpenCL Studio selects either the NVIDIA or AMD
platform.

 There is no support for multiple platforms yet, but that will likely be
another abstraction to manage multiple platforms and devices

 The AMD driver lets you choose between the CPU and the GPU

 NVIDIA however only supports the “CUDA enabled NVIDIA GPU”

Creating an OpenCL Program Object

OpenCL : The Execution Environment

Source : NVIDIA, Khronos AMD, References

156 An Overview of OpenCL C-DAC hyPACK-2013

 How to create OpenCL Kernel ?

What is the process of creating a kernel ?

1. The OpenCL C source code is stored in a character string. If the source
code is stored in a file on a disk, it must be read into memory and
stored as a character array.

2. The source code is turned into a program object cl_program, by

calling clCreateProgramWithSource().

3. The program object is then compiled, for one or more OpenCL
devices, with clBuildProgram(), If there are compile errors,

they will be reported here.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

157 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 AMD: In the AMD runtime, there are two main classes of devices : x86
CPUs and GPUs

• X86 CPUs clBuildProgram() generates x86 instructions that

can be directly executed on the device.

• For the GPUs, it will create AMD’s GPU intermediate language (IL), a
high-level intermediate language that represents a single work-

item & compiled for a specific GPU’s architecture later.

(Generating ISA -code specific instruction set architecture)

 The advantage of using such an IL is to allow the GPU ISA itself to
change from one device or generation to another in what is still a very
rapidly developing architectural space

Creating an OpenCL Program Object

OpenCL : The Execution Environment

158 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 Additional Feature : Build process is the ability to generate both the
final binary format and various intermediate representations

 Serialize these binaries (Write them to out to disk)

 OpenCL provides a function to return information about program
objects, clGetPrograminfo()

• Flags to this function : cl_PROGRAM_BINARIES, which

returns a vendor-specific set of binary objects generated by

clBuildProgram()

 OpenCL provides clCreateProgramWithBinary(), which

takes a list of binaries that matches its device list.

Creating an OpenCL Program Object

OpenCL : The Execution Environment

159 An Overview of OpenCL C-DAC hyPACK-2013

 Is “Binary Representation “ very vendor specific ?

 NVIDIA: calling its intermediate representation PTX (PTX is an
intermediate assembly language for NVIDIA GPUs) NVCC is the
NVIDIA compiler driver

 PTX: a low-level parallel thread execution virtual machine and
instruction set architecture (ISA). PTX exposes the GPU as a data-
parallel computing device.

 PTX defines a virtual machine and ISA for general purpose
parallel thread execution. . (ISA - code specific instruction set
architecture)

Binary Representation on GPUs

OpenCL : The Execution Environment

160 An Overview of OpenCL C-DAC hyPACK-2013

• PTX programs are translated at install time to the target
hardware instruction set.

• PTX-to-GPU translator and driver enable NVIDIA GPUs to be

used as programmable parallel computers.

• Provide a stable ISA that spans multiple GPU generations.

• Achieve performance in compiled applications comparable to

native GPU performance.

 Is “Binary Representation “ very vendor specific ?

NVIDIA :

Binary Representation on GPUs

OpenCL : The Execution Environment

161 An Overview of OpenCL C-DAC hyPACK-2013

 Extract kernel from the cl_program
 Similar to obtaining an exported function from a dynamic Lib.

• The name of the kernel that the program exports is used to
request it from the compiled program object.

• The name of the kernel is passed to clCreateKernel(),

along with the program object, and the kernel object will be
returned if the program object was valid and the particular
kernel is found.

 A few more steps are required before the kernel can actually be
executed.

 How to obtain “cl_kernel” object that can be used to
execute kernels on a device ?

The OpenCL Kernel

OpenCL : The Execution Environment

162 An Overview of OpenCL C-DAC hyPACK-2013

 Executing a kernel requires dispatching it through an enqueue
function

 Specify each kernel argument individually using the function

clSetKernelArg()

• This function takes kernel object, an index specifying the
argument number, the size of the argument, and a pointer to
the argument..

What are the steps required before the kernel can actually be
executed ?

The OpenCL Kernel

OpenCL : The Execution Environment

163 An Overview of OpenCL C-DAC hyPACK-2013

 When a kernel is executed, this information is used to transfer
arguments to the device

 After any required memory objects are transferred to the device
and the kernel arguments are set, the kernel is ready to be
executed.

 Requesting that a device begin executing a kernel is done with a
call to clEngueueNDRangeKernel()

What are the steps required before the kernel can actually be
executed ?

The OpenCL Kernel

OpenCL : The Execution Environment

164 An Overview of OpenCL C-DAC hyPACK-2013

cl_int

clEngueueNDRangeKernel(

cl_command_queue command_queue

cl_kernel kernel,

cl_uint work_dim

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_unit num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

OpenCL : The Execution Environment

165 An Overview of OpenCL C-DAC hyPACK-2013

 A command queue should be specified so that the target device is
known

 The clEngueueNDRangeKernel() call is asynchronous

• It will return immediately after the command is enqueued in
the command queue and likely before the kernel has even
started exeuction.

• Either clWaitForEvent() or clFinfish() can be
used to block execution on the host until the kernel completes.

The OpenCL Kernel : clEngueueNDRangeKernel()

OpenCL : The Execution Environment

166 An Overview of OpenCL C-DAC hyPACK-2013

 At this point, we have presented all the required host API
commands needed to enable the reader to run a complete
OpenCL Program

The OpenCL Kernel : clEngueueNDRangeKernel()

OpenCL : The Execution Environment

167 An Overview of OpenCL C-DAC hyPACK-2013

Example Program -1

Part-4 (a)

168 An Overview of OpenCL C-DAC hyPACK-2013

Addition of two vectors : How to define workgroups & work-items

 work-items within a workgroup can perform “barrier synchronization”

 work-items within a workgroup can access to a shared memory address space.
(Does not affect the scalability of a large concurrent dispatch)

 Example Program : Addition of two vectors of size 1024

• The workgroup size might be specified as

 size_t workGroupSize(3) = (64,1,1);

- Total number of work-items for array : 1024

- Total number of workgroups : 1024/64 = 64 workgroups

Kernels and the OpenCL Execution Model

169 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Example Program : Addition of two vectors (Sequential)

 Algorithm executes a loop with as many iterations as there are
elements to compute.

 Each loop iterations adds the corresponding locations in the input
arrays together and stores the result into the output array.

Kernels and the OpenCL Execution Model

//Perform element-wise addition of A & B and

//Stores in C – There are N elements per array

void vecadd(int *C, int *A, int *B, int N)

{

 for(int =0; i < n; i++)

 {

 C[i] = A[i] + B[i];

 }

}

170 An Overview of OpenCL C-DAC hyPACK-2013

 Example Program : Addition of two vectors (Multi-Core Device)

 Use low level coarse-grained threading API (POSIX threads) (One
can use Data Parallel model such as OpenMP).

• Divide the work (i.e., loop iterations) between the threads

• Work per iteration is (loop counter) may be small or large.
Use Strip mining to chunk the loop iterations into a large
granularity.

Kernels and the OpenCL Execution Model

Source : NVIDIA, Khronos AMD, References

171 An Overview of OpenCL C-DAC hyPACK-2013

Source : Khronous, & References

 Example Program : Addition of two vectors (Multi-Core Device)

Kernels and the OpenCL Execution Model

//Perform element-wise addition of A & B and

//Stores in C – There are N elements per array

//and NP CPU Cores

void vecadd(int *C, int *A, int *B, int N,int NP,int tid)

{

 int Elept = N/NP; // elements per thread

 for(int = tid*Elept; i < (tid+1)*Elept; i++)

 {

 C[i] = A[i] + B[i];

 }

}

172 An Overview of OpenCL C-DAC hyPACK-2013

 When an OpenCL device begins executing a kernel, it provides intrinsic
function that allow a work-item to identify itself

• Current work-item position is given by OpenCL Intrinsic function
get_global_id(0)

Kernels and the OpenCL Execution Model

Example Program : Addition of two vectors (OpenCL)

// Perform element-wise addition of A & B & Stores in C

// N work items will be created to execute this kernel.

__kernel

void vecadd(_global int *C,

 _global int *A,

 _global int *B)

{

 int tid = get_global_id(0);

 C[tid] = A[tid] + B[tid];

}

Source : NVIDIA, Khronos AMD, References

173 An Overview of OpenCL C-DAC hyPACK-2013

Example Program -2

Part-4 (a)

174 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 Simple Matrix Multiplication Example:

OpenCL host programs can be written in either C or using the

OpenCL, C++ Wrapper API.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A

by Matrix B and storing the result in Matrix C.
• The two outer loops are used to iterative over each element of the

output matrix
• The innermost loop will iterate over the individual elements of the

input elements of the input matrices to calculate the result of each
output location.

175 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 Simple Matrix Multiplication Example:

OpenCL host programs can be written in either C or using the

OpenCL, C++ Wrapper API.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A

by Matrix B and storing the result in Matrix C.
• The two outer loops are used to iterative over each element of the

output matrix
• The innermost loop will iterate over the individual elements of the

input elements of the input matrices to calculate the result of each
output location.

176 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Serial Implementation

// Iteration over the rows of Matrix A

for (int i = 0; i< heightA; i++)

{

 // Iteration over the columns of MatrixB

 for (int j = 0; j< widthB; j++) {

 C[i][j] = 0;

 // Multiply and accumulate over values in the current row

 // of A and column of B

 for (int k = 0; k< widthA; k++) {

 C[i][j] += A[i][k] * B[k][j];

 }

 }

}

177 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL : to write data-parallel programs

 OpenCL Simple Implementation : Matrix Multiplication

 Two outer loops work independently of each other

 Separate work-item can be created for each output element of
the matrix

 The two outer for-loops are mapped to the two dimensional
range of work-item for the kernel.

 Serial implementation : C or C++

• The code iterates over three nested for loops, multiplying Matrix A
by Matrix B and storing the result in Matrix C.

• The two outer loops are used to iterative over each element of the
output matrix

• The innermost loop will iterate over the individual elements of the
input elements of the input matrices to calculate the result of each
output location.

178 An Overview of OpenCL C-DAC hyPACK-2013

Each output value in a matrix multiplication is
generated independently of all others.

wb

Hb

Ha

Wa Wb

Ha

A C

B

row

OpenCL : to write data-parallel programs

 Each work-item reads in
its own row of Matrix A
and its column of Matrix
B.

 The data being read is
multiplied and written at
the appropriate location
of the output Matrix C

OpenCL Simple Implementation : Matrix Multiplication

179 An Overview of OpenCL C-DAC hyPACK-2013

OpenCL PLATFROM AND DEVICES

Data Parallel Kernel Implementation

// Iteration over the rows of Matrix A

for (int i = 0; i< heightA; i++)

{

 // Iteration over the columns of MatrixB

 for (int j = 0; j< widthB; j++) {

 C[i][j] = 0;

 // Multiply and accumulate over values in the current row

 // of A and column of B

 for (int k = 0; k< widthA; k++) {

 C[i][j] += A[i][k] * B[k][j];

 }

 }

}

180 An Overview of OpenCL C-DAC hyPACK-2013

Work-group

(0,W/16-1)

Work-group

(0,0)

Work-group

(0, 1)

Work-group

(1,0)

Work-group

(W/16-1,0)

16

W

H

16

Input image workgroup configuration

W

16
Workgroups

H

16
Workgroups

Each element of the input image is handled by one work-item. Each work-item
calculates its data’s coordinates and writes image out.

OpenCL : Work-items & work-Groups

181 An Overview of OpenCL C-DAC hyPACK-2013

Step 1: Set Up Environment
In this step, we declare a context, choose a device type, and create the context
and a command queue. Throughout this example, the ci ErrNum variable
should always be checked to see if an error code is returned by the
implementation.

cl_int ciErrNum;

//Use the first platform

cl_platform_i d platform;

ci ErrNum = clGet PIatformlDs (1, &platform, NULL);

//Use the first device

cl_device_id device;

ciErrNum = clGetDevice IDs(

 piatform,

 CL_DEVICE_TYPE_ALL,

 1,

 &device,

 NULL);

 Simple Matrix Multiplication Example

Source : NVIDIA, Khronos AMD, References

182 An Overview of OpenCL C-DAC hyPACK-2013

context_properties cps[3]={;

 CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0};

//Create the context

cl_context ctx = clCreateContext(

 cps,

 1,

 &device,

 NULL,

 NULL,

 &ciErrNum);

//Create the command queue

cl_command_queue myqueue = clCreateCommandQueue{

 ctx,

 device,

 0,

 &ciErrNum0;

 Simple Matrix Multiplication Example

Source : NVIDIA, Khronos AMD, References

183 An Overview of OpenCL C-DAC hyPACK-2013

Step 2: Declare Buffers and Move Data
Declare buffers on the device and enqueue copies of input matrices to the
device. Also declare the output buffer.

 // We assume that A, B, C are float arrays which

 // have been declared and initialized

 // Allocate space for Matrix A on the device

 cl_mem buf ferA = cl CreateBuf fer(

 ctx,

 CL_MEM_READ_ONLY,

 wA*hA*si zeof(float),

 NULL,

 &ci ErrNum);

// Copy Matrix A to the device

 ci ErrNum = clEnqueueWriteBuffe-(

 myqueue,

 bufferA,

 CL_TRUE, 0,

 wA*hA*sizeof(float), (void *)A, 0.

 NULL, NULL);

 Simple Matrix Multiplication Example

184 An Overview of OpenCL C-DAC hyPACK-2013

// Copy Matrix A to the device

 ci ErrNum = clEnqueueWriteBuffe-(

 myqueue,

 bufferA,

 CL_TRUE,

 0,

 wA*hA*sizeof(float),

 (void *)A,

 0.

 NULL,

 NULL);

// Allocate space for Matrix B on the device

 cl_mem bufferB = clCreateBuffer(

 ctx,

 CL_MEM_READ_ONLY,

 wB*hB*si zeof(float),

 NULL,

 &ci ErrNum);

 Simple Matrix Multiplication Example

185 An Overview of OpenCL C-DAC hyPACK-2013

// Copy Matrix B to the device

cl ErrNum = clEnqueueWri teBuffer(

 myqueue,

 bufferB,

 CL_TRUE,

 0,

 wB*hB*si zeof(float),

 (void *)B,

 0,

 NULL,

 NULL);

// A1 locate space for Matrix C on the device

 cl_mem bufferC = cl CreateBuffer(

 ctx,

 CL_MEM_READ_ONLY,

 hA*wB*sizeof(float),

 NULL.

 &ci ErrNum);

 Simple Matrix Multiplication Example

186 An Overview of OpenCL C-DAC hyPACK-2013

Step 3: Runtime Kernel Compilation
Compile the program from the kernel array, build the program, and define
the kernel.

 // We assume that the program source is stored in the variable

 // 'source' and is NULL terminated

cl_programiriyprog = clCreateProgramWithSource (

 ctx,

 1,

 (const char**)&source,

 NULL,

 &ci ErrNum);

// Compi 1 p the program. Passing NULL for the 'devi ce_]1st'

// argume.it targets all devices in the context ciErrNum=clBuildProgram(myprog, 0,

NULL, NULL, NULL, NULL);

// Create, the kernel

cl_kernel mykernel = clCreateKernel(

 myprog,

 "simpleMulti ply",

 &ci ErrNum);

Simple Matrix Multiplication Example

187 An Overview of OpenCL C-DAC hyPACK-2013

Step 4: Run the Program
Set kernel arguments and the workgroup size. We can then enqueue kernel
onto the command queue to execute on the device.

//Set the kernel arguments

clSetKernelArg(my kernel, 0, si zeof(cl_mem), (void *)&d_C); clSetKernelArg(mykernel, 1,

sizeof(cl_int), (void *)&wA);

cl Set Kernel Arg(my kernel , 2 , sizeof(cl_int), (void *)&hA); clSetKerne1Arg(my kernel, 3,

sizeof(cl_int), (void *)&wB); clSetKernelArg(my kernel, 4. si zeof(cl_i nt), (void*)&hB);

cl SetKernel Arg(mykernel , 5, sizeof (cl__mem), (void *)&d_A);

cl Set Kernel Arg(my kerne 1 , 6, sizeof(cl__mem) , (void *)&d_B);

// Set local and global workgroup sizes

//We assume the matrix dimensions are divisible by 16

size_t1ocalws[2] = 116 ,161 ;

size„t globalws[2] = iwC, hC};

 Simple Matrix Multiplication Example

188 An Overview of OpenCL C-DAC hyPACK-2013

// Execute the kernel

ciErrNum = clEnqueueNDRangeKernel(

 myqueue,

 mykernel ,

 2,

 NULL,

 globalws,

 1ocalws,

 0,

 NULL,

 NULL);

 Simple Matrix Multiplication Example

189 An Overview of OpenCL C-DAC hyPACK-2013

Step 5: Obtain Results to Host
After the program has run, we enqueue a read back of the result matrix
from the device buffer to host memory.

// Read the output data back to the host

ciErrNum = cl EnqueueReadBuffer(

 myqueue,

 d_C,

 CL_TRUE,

 0,

 wC*hC*si zeof(float),

 (void *)C, 0,

 NULL,

 NULL);

The steps outlined here show an OpenCL implementation of matrix
multiplication that can be used as a baseline. In later chapters, we use
our understanding of data-parallel architectures to improve the
performance of particular data-parallel algorithms.

 Simple Matrix Multiplication Example

190 An Overview of OpenCL C-DAC hyPACK-2013

 History of OpenCL

Easing cross-platform development with major enhancements

for stream software strategy

 GPU Programming – OpenGL, DirectX, NVIDIA (CUDA),

AMD (Brook+)

Aggressively expanding stream strategy to consumer segment

OpenCL Summary

191 An Overview of OpenCL C-DAC hyPACK-2013

A new computer language that works across GPUs and CPUs

 C /C++ with extensions

Familiar to developers

 Includes a rich set of built-in functions

Makes it easy to develop data- and task- parallel compute

programs

Defines hardware and numerical precision requirements

Open standard for heterogeneous parallel computing

OpenCL Summary

192 An Overview of OpenCL C-DAC hyPACK-2013

1. Randi J. Rost, OpenGL – shading Language, Second Edition, Addison Wesley 2006
2. GPGPU Reference http://www.gpgpu.org
3. NVIDIA http://www.nvidia.com
4. NVIDIA tesla http://www.nvidia.com/object/tesla_computing_solutions.html
5. RAPIDMIND http://www.rapidmind.net
6. Peak Stream - Parallel Processing (Acquired by Google in 2007) http:/www.google.com
7. guru3d.com http://www.guru3d.com/news/sandra-2009-gets-gpgpu-support/

ATI & AMD http://ati.amd.com/products/radeon9600/radeon9600pro/index.html
8. AMD http:www.amd.com
9. AMD Stream Processors http://ati.amd.com/products/streamprocessor/specs.html
10. RAPIDMIND & AMD http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
11. General-purpose computing on graphics processing units (GPGPU)

http://en.wikipedia.org/wiki/GPGPU
12. Khronous Group, OpenGL 3, December 2008 URL : http://www.khronos.org/opencl
13. OpenCL - The open standard for parallel programming of heterogeneous systems URL :

http://www.khronos.org/opencl

14. Programming the GPU and a brief intro to the OPENGL shading language – Marcel Cohan
& VVR Talk

15. David B Kirk, Wen-mei W. Hwu nvidia corporation, 2010, Elsevier, Morgan Kaufmann
Publishers, 2011

16. Benedict R Gaster, Lee Howes, David R Kaeli, Perhadd Mistry Dana Schaa,
Heterogeneous Computing with OpenCL, Elsevier, Moran Kaufmann Publishers, 2011

17. The OpenCL 1.2 Specification (Document Revision 15) Last Released November 15, 2011
Editor : Aaftab Munshi Khronos OpenCL Working Group

18. The OpenCL 1.1 Quick Reference card

References

http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://www.rapidmind.net/News-Aug4-08-SIGGRAPH.php
http://en.wikipedia.org/wiki/GPGPU
http://www.khronos.org/opencl
http://www.khronos.org/opencl

193 An Overview of OpenCL C-DAC hyPACK-2013

19. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx AMD APP
SDK with OpenCL 1.2 Support

20. http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#oneAMD-
APP-SDKv2.7 (Linux) with OpenCL 1.2 Support

21. http://icl.cs.utk.edu/magma/software/ MAGMA OpenCL
22. http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx Getting

Started with OpenCL
23. http://developer.amd.com/openclforum AMD Developer OpenCL FORUM
24. http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopencl

performance.aspx AMD Developer Central - Programming in OpenCL - Benchmarks
performance

25. http://developer.amd.com/sdks/AMDAPPSDK/assets/opencl-1.2.pdf OpenCL 1.2 (pdf
file)

26. http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx AMD OpenCL
Emulator-Debugger

27. http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf The OpenCL 1.2 Specification
(Document Revision 15) Last Released November 15, 201 Editor : Aaftab Munshi <I>
Khronos OpenCL Working Group

28. http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/ OpenCL1.1 Reference
Pages

References

Source : NVIDIA, Khronos AMD, References

http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx#one
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/zones/OpenCLZone/pages/GettingStarted.aspx
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/openclforum
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/benchmarkingopenclperformance.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://developer.amd.com/zones/opensource/pages/ocl-emu.aspx
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

194 An Overview of OpenCL C-DAC hyPACK-2013

Any Questions ?

Thank you

Source : NVIDIA, Khronos AMD, References

