
Prog. on Intel Xeon-Phi : Tuning & Perf. 1 C-DAC hyPACK-2013

Lecture Topic :

Intel Xeon-Phi : Tuning & Performance

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Application Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

Mode 3 : Intel Xeon Phi Coprocessors

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Prog. on Intel Xeon-Phi : Tuning & Perf. 2 C-DAC hyPACK-2013

 Understanding of Intel Multi-Core Systems with Intel Xeon
Phi Programming from Performance Point of View

Lecture Outline

Following topics will be discussed

An Overview of Intel Xeon Phi – Tuning & Perf.

Prog. on Intel Xeon-Phi : Tuning & Perf. 3 C-DAC hyPACK-2013

 Intel Xeon Phi Coprocessor : Prog. Env &

Tips for obtaining Performance (Part-I)

Prog. on Intel Xeon-Phi : Tuning & Perf. 4 C-DAC hyPACK-2013

 Shared Address Space Programming
(Offload, Native, Host)

 OpenMP, Intel TBB, Cilk Plus, Pthreads

 Message Passing Programming

 (Offload – MIC Offload /Host Offload)
 (Symmetric & Coprocessor /Host)

 Hybrid Programming
 (MPI – OpenMP, MPI Cilk Plus

 MPI-Intel TBB)

 Xeon Phi : Programming Environment

Source : References & Intel Xeon-Phi; http://www.intel.com/

Application

Host Coprocessor

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 5 C-DAC hyPACK-2013

 Rule of thumb : An application must scale well
past one hundred threads on Intel Xeon
processors to profit from the possible higher
parallel performance offered with e.g. the Intel
Xeon Phi coprocessor.

 The scaling would profit from utilizing the highly
parallel capabilities of the MIC architecture, you
should start to create a simple performance graph
with a varying number of threads (from one up to
the number of cores)

Intel Xeon-Phi : Shared Address Space Prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 6 C-DAC hyPACK-2013

 What we should know from programming point
of view : We treat the coprocessor as a 64-bit x86 SMP-
on-a-chip with an high-speed bi-directional ring
interconnect, (up to) four hardware threads per core and
512-bit SIMD instructions.

 With the available number of cores, we have easily
200 hardware threads at hand on a single Intel
Xeon coprocessor.

 Resource availability and Memory access is an
important for threading on all 60 Cores.

Intel Xeon-Phi : Shared Address Prog.

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 7 C-DAC hyPACK-2013

Keys to Productive Performance

Choose the right Multi-core centric or Many-
core centric model for your application

Vectorize your application (today)

Use the Intel vectorizing compiler

Parallelize your application (today)

with MPI (or other multi-process model)

With threads (via Intel ® Cilk TM Plus,
OpenMP*, Intel ® Threading Building
Blocks, Pthreads, etc.)

Go asynchronous to overlap computation and
communication

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 8 C-DAC hyPACK-2013

Performance on Xeon Phi using different prog.

 What we should know from programming point
of view : We treat the coprocessor as a 64-bit x86
SMP-on-a-chip with an high-speed bi-directional
ring interconnect, (up to) four hardware threads
per core and 512-bit SIMD instructions.

 With the available number of cores, we have easily
200 hardware threads at hand on a single
coprocessor.

Intel Xeon-Phi : Performance-Tips

Prog. on Intel Xeon-Phi : Tuning & Perf. 9 C-DAC hyPACK-2013

About Hyper-Threading

 hyper-threading hardware threads can be
switched off and can be ignored.

Intel Xeon System & Xeon-Phi

About Threading on Xeon-Phi Coprocessor

 The multi-threading on each core is primarily
used to hide latencies that come implicitly with
an in-order microarchitecture. Unlike hyper-
threading these hardware threads cannot be
switched off and should never be ignored.

 In general a minimum of three or four active
threads per cores will be needed.

Performance on Xeon Phi using different prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 10 C-DAC hyPACK-2013

Summary: Tricks for Performance

 Use asynchronous data transfer and double buffering offloads
to overlap the communication with the computation

 Optimizing memory use on Intel MIC architecture target relies
on understanding access patterns

 Loop Optimizations may benefit performance

Source : References & Intel Xeon-Phi; http://www.intel.com/

Performance on Xeon Phi using different prog.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 11 C-DAC hyPACK-2013

 Data should be aligned to 64 Bytes (512 Bits) for the
MIC architecture, in contrast to 32 Bytes (256 Bits) for
AVX and 16 Bytes (128 Bits) for SSE.

 Due to the large SIMD width of 64 Bytes vectorization is
even more important for the MIC architecture than for
Intel Xeon!

 The MIC architecture offers new instructions like

 gather/scatter,

 fused multiply-add,

 masked vector instructions etc.

which allow more loops to be parallelized on the
coprocessor than on an Intel Xeon based host.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 12 C-DAC hyPACK-2013

Intel Xeon Phi Coprocessor : Native Compilation

Use pragmas like

#pragma ivdep,

#pragma vector always,

#pragma vector aligned,

#pragma simd

etc. to achieve autovectorization.

Autovectorization is enabled at default optimization level -O2.
Requirements for vectorizable loops can be found references.

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 13 C-DAC hyPACK-2013

 Let the compiler generate vectorization reports
using the compiler option -vecreport2 to see if
loops were vectorized for MIC (Message "*MIC*
Loop was vectorized" etc).

 The options -opt-report-phase hlo (High
Level Optimizer Report) or

 -opt-report-phase ipo_inl (Inlining
report) may also be useful.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 14 C-DAC hyPACK-2013

 Explicit vector programming is also possible via Intel
Cilk Plus language extensions (C/C++ array notation,
vector elemental functions, ...) or the new SIMD
constructs from OpenMP 4.0 RC1.

 Vector elemental functions can be declared by
using __attributes__((vector)). The
compiler then generates a vectorized version of a
scalar function which can be called from a
vectorized loop.

Intel Xeon Phi Coprocessor :Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 15 C-DAC hyPACK-2013

 One can use intrinsics to have full control over the vector
registers and the instruction set.

 Include <immintrin.h> for using intrinsics.

 Hardware prefetching from the L2 cache is enabled per
default.

 In addition, software prefetching is on by default at
compiler optimization level -O2 and above. Since Intel
Xeon Phi is an inorder architecture, care about
prefetching is more important than on out-of-order
architectures.

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 16 C-DAC hyPACK-2013

 The compiler prefetching can be influenced by setting
the compiler switch -opt-prefetch = n.

 Manual prefetching can be done by using intrinsics
(_mm_prefetch()) or

 pragmas (#pragma prefetch var).

Intel Xeon Phi Coprocessor : Native Compilation

To achieve good Performance - Following
information should be kept in mind.

Prog. on Intel Xeon-Phi : Tuning & Perf. 17 C-DAC hyPACK-2013

 Intel Xeon Phi Coprocessor : Prog. Env &

Tips for obtaining Performance (Part-II)

Prog. on Intel Xeon-Phi : Tuning & Perf. 18 C-DAC hyPACK-2013

Optimization Framework

A collection of methodology and tools that enable the developers to
express parallelism for Multicore and Manycore Computing

18

Step 1: Leverage Optimized Tools, Library

Step 2: Scalar, Serial Optimization /Memory Access

Step 3: Vectorization & Compiler

 Step 4: Parallelization

Step 5: Scale from Multicore to Manycore

Source : References & Intel Xeon-Phi; http://www.intel.com/

Objective: Turning unoptimized program into a scalable, highly parallel
application on multicore and manycore architecture

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 19 C-DAC hyPACK-2013

A Family of Parallel Programming Models
Developer Choice

19

Intel® Cilk™
Plus

C/C++
language

extensions to
simplify

parallelism

Open sourced

Also an Intel
product

Intel®
Threading
Building
Blocks

Widely used
C++ template

library for
parallelism

Open sourced

Also an Intel
product

Domain-
Specific
Libraries

Intel®
Integrated

Performance
Primitives

Intel® Math
Kernel Library

Established
Standards

Message
Passing

Interface (MPI)

OpenMP*
(offload TR

coming “real
soon”)

Coarray
Fortran

OpenCL*

Research and
Development

Intel®
Concurrent
Collections

Intel® Offload
Extensions

Intel® SPMD
Parallel

Compiler (ispc)

Applicable to Multicore and Manycore Programming

Step 1 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 20 C-DAC hyPACK-2013

Objective of Scalar and Serial Optimization

 Obtain the most efficient implementation for the problem at
hand

 Identify the opportunity for vectorization and parallelization

 Create Base to account for vectorization and parallelization
gains
 Avoid situation when vectorized, slower code was parallelized and

create a false impression of performance gain

20

Source : References & Intel Xeon-Phi; http://www.intel.com/

Step 2 :

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 21 C-DAC hyPACK-2013

Algorithmic Optimizations

 Elevate constants out of the core loops
 Compiler can do it, but it need your cooperation
 Group constants together

 Avoid and replace expensive operations
 divide a constant can usually be replace by multiplying its reciprocal

 Strength reduction in hot loop
 People like inductive method, because it’s clean
 Iterative can strength reduce the operation involved
 In this example, exp() is replace by a simple multiplication

21

const double dt = T / (double)TIMESTEPS;

const double vDt = V * sqrt(dt);

for(int i = 0; i <= TIMESTEPS; i++){

 double price = S * exp(vDt * (2.0 * i -

TIMESTEPS));

 cell[i] = max(price - X, 0);

}

const double factor = exp(vDt * 2);

double price = S * exp(-

vDt(2+TIMESTEPS));

for(int i = 0; i <= TIMESTEPS; i++){

 price = factor * price;

 cell[i] = max(price - X, 0);

}

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 22 C-DAC hyPACK-2013

Use Compiler Optimization Switches

Optimization Done Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program -fast
(same as: -ipo –O3 -no-prec-div -static -xHost)

OpenMP 3.0 support -openmp

Automatic parallelization -parallel

22

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 23 C-DAC hyPACK-2013

Vectorization and SIMD Execution

 SIMD
 Flynn’s Taxonomy: Single Instruction, Multiple Data
 CPU perform the same operation on multiple data elements

 SISD
 Single Instruction, Single Data

 Vectorization
 In the context of Intel® Architecture Processors, the process of transforming a scalar

operation (SISD), that acts on a single data element to the vector operation that that
act on multiple data elements at once(SIMD).

 Assuming that setup code does not tip the balance, this can result in more compact
and efficient generated code

 For loops in ”normal” or ”unvectorized” code, each assembly instruction deals with
the data from only a single loop iteration

23

Source : References & Intel Xeon-Phi; http://www.intel.com/

Step 3 :

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 24 C-DAC hyPACK-2013

SIMD Abstraction – Options Compared

24

Vector intrinsics (mm_add_ps, addps)

C/C++ Vector Classes (F32vec16, F64vec8)

Intel® Cilk™ Plus technology

Elemental Functions and Array Notation:

Compiler-based autovectorization annotation #pragma
vector, #pragma ivdep,#pragma simd

Programmer control

Ease of use / code
maintainability

(depends on problem)

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 25 C-DAC hyPACK-2013

Get Your Code Vectorized by Intel Compiler

 Data Layout, AOS -> SOA

 Data Alignment (next slide)

 Make the loop innermost

 Function call in treatment
 Inline yourself
 inline! Use __forceinline
 Define your own vector version
 Call vector math library - SVML

 Adopt jumpless algorithm

 Read/Write is OK if it’s continuous

 Loop carried dependency

25

for(int i = TIMESTEPS; i > 0; i--)

#pragma simd

#pragma unroll(4)

for(int j = 0; j <= i - 1; j++)

 cell[j]=puXDf*cell[j+1]+pdXDf*cell[j];

CallResult[opt] = (Basetype)cell[0];

for (j=1; j<MAX; j++)

 a[j] = a[j] + c * a[j-n];

Not a true dependency
A true dependency

Array of Structures

S0 X0 T0

S1 X1 T1

… … …

Structure of Arrays

S0 S1 …

X0 X1 …

S0 S1 …

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 26 C-DAC hyPACK-2013

Options for Parallelism on
Intel® Architecture

 What’s available on Intel® host processor are also available on Intel® target
coprocessor

 Many others (boost) are ported to the coprocessor

 Choose the best threading model your problem dictates

26

pthreads*

OpenMP*

Intel® Cilk™ Plus

Intel® TBB

More control

Ease of use
maintainability

• Well known industry standard

• Best suited when resource utilization is
known at design time

• C++ template Library of parallel algorithms,
containers

• Load balancing via work stealing

• Keyword extension of C/C++, Serial
equivalence via compiler

• Load balancing via work stealing

• Time-tested industry standard for Unix-like

• Common denominator or other high level
threading libraries

Step 4 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 27 C-DAC hyPACK-2013

Options for Parallelism – pthreads*

 POSIX* Standard for thread API with 20 years history

 Foundation for other high level threading libraries

 Independently exist on the host and Intel® MIC

 No extension to go from the host to Intel® MIC

 Advantage: Programmer has explicit control
 From workload partition to thread creation, synchronization, load

balance, affinity settings, etc.

 Disadvantage: Programmer has too much control
 Code longevity
 Maintainability
 Scalability

27

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 28 C-DAC hyPACK-2013

 Partition the workload to avoid load imbalance
 Understand static vs. dynamic workload partition

 Use pthread API, define, initialize, set, destroy
 Set CPU affinity with pthead_setaffinity_np()
 Know the thread enumeration and avoid core 0
 Core 0 boots the coprocessor, job scheduler, service interrupts

Core 0

0

2
4

1

2
4

2

2
4

3

Core 1

4

1

2

3

Core 2

8

5

6

7

Core 60

2
4

0

2
3

7

2
3

8

2
3

9

Thread Affinity using pthreads*

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 29 C-DAC hyPACK-2013

Options for Parallelism – OpenMP*

 Compiler directives/pragmas based threading constructs
 Utility library functions and Environment variables

 Specify blocks of code executing in parallel

 Fork-Join Parallelism:
 Master thread spawns a team of worker threads as needed
 Parallelism grow incrementally

29

Parallel Regions Master Thread

#pragma omp parallel sections

{

 #pragma omp section

 task1();

 #pragma omp section

 task2();

 #pragma omp section

 task3();

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 30 C-DAC hyPACK-2013

OpenMP* Performance, Scalability Issues

 Manage Thread Creation Cost
 Create threads as early as possible, Maximize

the work for worker threads
 IA threads take some time to create, But once

they’re up, they last till the end

 Take advantage of memory locality, use
NUMA memory manager
 Allocate the memory on the thread that will

access them later on.
 Try not to allocate the memory the worker

threads use in the main thread

 Ensure your OpenMP* program works
serially, compiles without openmp*
 Protect OpenMP* API calls with _OPENMP,
 Make sure serial works before enable

OpenMP* (e.g. compile with –openmp)

 Minimize the thread synchronization
 use local variable to reduce the need to access

global variable

#ifdef _OPENMP

int ThreadNum = omp_get_max_threads();

omp_set_num_threads(ThreadNum);

#else

int ThreadNum = 1;

#endif

#pragma omp parallel

{

 #ifdef _OPENMP

 int threadID = omp_get_thread_num();

 #else

 int threadID = 0;

 #endif

 float *CallResult = (float *) scalable_aligned_malloc

 (mem_size, SIMDALIGN);

 float *PutResult = (float *) scalable_aligned_malloc

 (mem_size, SIMDALIGN);

}

#pragma omp parallel for

for (int k = 0; k < RAND_N; k++)

 h_Random[k] = cdfnorminv ((k+1.0)/(RAND_N+1.0));

#pragma omp parallel for

for(int opt = 0; opt < OPT_N; opt++)

{

 CallResultList[opt] = 0;

 CallConfidenceList[opt] = 0;

}

Source : References & Intel Xeon-Phi;
http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 31 C-DAC hyPACK-2013

Scale from Multicore to Manycore

31

A Tale of Two Architectures
Intel® Xeon® processor Intel® Xeon Phi™ Coprocessor

Sockets 2 1

Clock Speed 2.6 GHz 1.1 GHz

Execution Style Out-of-order In-order

Cores/socket 8 Up to 61

HW Threads/Core 2 4

Thread switching HyperThreading Round Robin

SIMD widths 8SP, 4DP 16SP, 8DP

Peak Gflops 692SP, 346DP 2020SP, 1010DP

Memory Bandwidth 102GB/s 320GB/s

L1 DCache/Core 32kB 32kB

L2 Cache/Core 256kB 512kB

L3 Cache/Socket 30MB none

Step 5 :

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 32 C-DAC hyPACK-2013

Assessing potential

 Threads
 Code analysis – loop nesting, iteration counts, determinism
 Intel Vtune™ Amplifier timeline analysis – existence of applciation

serialization
 Performance vs. threads – knee of the curve

 Vectorization
 VTune Amplifier hot spots and compiler VEC reports
 HW PerfMon-based evaluation
 Performance vs. vectorization on/off

 Bandwidth
 HW PerfMon-based evaluation

32

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 33 C-DAC hyPACK-2013

More on Thread Affinity

 Bind the worker threads to certain processor core/threads

 Minimizes the thread migration and context switch

 Improves data locality; reduce coherency traffic

 Two components to the problem:
 How many worker threads to create?
 How to bind worker threads to core/threads?

 Two ways to specify thread affinity
 Environment variables OMP_NUM_THREADS, KMP_AFFINITY
 C/C++ API: kmp_set_defaults("KMP_AFFINITY=compact")

omp_set_num_threads(244);

 Add to your source file#include <omp.h>
 Compiler with –openmp
 Use libiomp5.so

33

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 34 C-DAC hyPACK-2013

The Optimal Thread Number

 Intel MIC maintains 4 hardware contexts per core
 Round-robin execution policy,
 Require 2 threads for decent performance
 Financial algorithms takes all 4 threads to peak

 Intel Xeon processor optionally use HyperThreading
 Execute-until-stall execution policy
 Truly compute intensive ones peak with 1 thread per core
 Finance algorithms likes HyperThreading, 2 threads per core

 Use OpenMP application with NCORE number of cores
 Host only: 2 x ncore (or 1x if HyperThreading disabled)
 MIC Native: 4 x ncore
 Offload: 4 x (ncore-1) OpenMP runtime avoids the core OS runs

34

Source : References & Intel Xeon-Phi; http://www.intel.com/

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 35 C-DAC hyPACK-2013

 Intel Xeon Phi Coprocessor : Prog. Env &

Tips for obtaining Performance (Part-III)

Prog. on Intel Xeon-Phi : Tuning & Perf. 36 C-DAC hyPACK-2013

Use Compiler Optimization Switches

Optimization Done Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen; -prof-use

Optimize for speed across the entire program -fast
(same as: -ipo –O3 -no-prec-div -static -xHost)

OpenMP 3.0 support -openmp

Automatic parallelization -parallel

36

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Intel Xeon Phi Coprocessor : Prog. Env &

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 37 C-DAC hyPACK-2013

Performance: Intel Xeon-Phi Coprocessor

 Vectorization is key for performance

Sandybridge, MIC, etc.

Compiler hints

Code restructuring

 Many-core nodes present scalability
challenges

Memory contention

Memory size limitations
Source : References & Intel Xeon-Phi; http://www.intel.com/

Prog.API - Multi-Core Systems with Devices

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 38 C-DAC hyPACK-2013

Options for Vectorization : Use Tools

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Prog. Env. Perf Issuses

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 39 C-DAC hyPACK-2013

Tuning & Performance :

 Using intrinsics with manual data prefetching and
register blocking can still considerably increase
the performance.

 Try to get a suitable vectorization and write cache
and register efficient code, i.e. values stored in
registers should be reused as often as possible in
order to avoid cache and memory access.

Optimised Offloaded Code

Intel Xeon Phi : Coprocessors – Intel

Compiler’s Offload Programs

Prog. on Intel Xeon-Phi : Tuning & Perf. 40 C-DAC hyPACK-2013

 Quantification of Overheads : Use
Tools on Intel Xeon Phi

 Prog.on Shared Address Space
Platforms (UMA/NUMA)
 Data Parallel Fortran 2008, Pthreads,

OpenMP, Intel TBB Cilk Plus
 Explicit Message Passing - MPI –

Cluster of Message Passing Multi-
Core systems

Pthreads

0

2
4

1

2
4

2

2
4

3

OpenMP

4

1

2

3

Intel TBB

8

5

6

7

MPI

2
4

0

2
3

7

2
3

8

2
3

9

Intel Xeon Phi Prog. : Tools to Measure Overheads

Source : References & Intel Xeon-Phi; http://www.intel.com/

Cilk plus

5
4

5
1

5
2

5
3

Compiler

0

2
4

1

2
4

2

2
4

3

Coprocessor

1
5

0

0
9

0

1
2

0

2
0

3

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 41 C-DAC hyPACK-2013

Intel Xeon & Xeon Phi : Execution Modes

main()

Intel ® Xeon Phi™
Coprocessor

Intel® Xeon

main()

Native Offload

 Card is an SMP machine running Linux

 Separate executables run on both MIC
and Xeon
 e.g. Standalone MPI applications

 No source code modifications most of
the time
 Recompile code for Xeon Phi™

Coprocessor

 Autonomous Compute Node (ACN)

 “main” runs on Xeon

 Parts of code are offloaded to MIC

 Code that can be
 Multi-threaded, highly parallel

 Vectorizable

 Benefit from large memory BW

 Compiler Assisted vs. Automatic
 #pragma offload (…)

foo()

Intel® Xeon

main()

Intel® Xeon Phi™
Coprocessor

 Quantification of Overheads – Explicit / Implicit Data Transfer –
Using Offload

Prog. on Intel Xeon-Phi : Tuning & Perf. 42 C-DAC hyPACK-2013

Pros:
 Compilation with an additional Intel compiler flag

(-mmic);

 Scalability tests: fast and smooth;

 Quick analysis with Intel tools (VtuneT, Itac Intel

Trace Analyzer and Collector;

 Porting time: one day with validation of the

numerical result;

 expert developer of FARM, with good knowledge

of the Intel Compiler, But with only a basic

knowledge of MIC.

 Best scalability with OpenMP and Hybrid.
 Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon-Phi : Programming Env.

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 43 C-DAC hyPACK-2013

Porting on MIC : Issues to be addressed

 MPI Init routine problem: increasing CPU time
for increasing number of processes; Same problem
when using two MICs together;

 Detailed analysis of OpenMP threads & thread affinity
and Memory available per thread

 Execution time depends strongly from code
vectorization, so compiler vectorization for data
parallel and task parallel constructs

 code re-structure and memory access pattern are a
key point to have a vectorizable satisfactory overall
Performances.

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Xeon Phi : Programming Environment

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 44 C-DAC hyPACK-2013

Intel Xeon Phi : Performance Issues

 Limited problem size or limited exposure
 Inherent lack of available parallelism
 Parallelism not adequately exposed by programmer

 Excessive synchronization
 Inhibits harvesting thread parallelism

 ISA-specific issues
 Data structures excessively rely on scatter/gather
 Use of 64b integer indices and 64 INT FP conversion

 Offload overhead
 Excessive communication/computation ratio, unhidden communication

 Memory footprint and working set size
 Limited to 8GB, unless you “overlay,” e.g. with offload

 44

Source : References & Intel Xeon-Phi; http://www.intel.com/

Factors to work around

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 45 C-DAC hyPACK-2013

 Objective: Move data from memory to L1 or L2 Cache in
anticipation of CPU Load/Store

 More import on in-order Intel Xeon Phi Coprocessor

 Less important on out of order Intel Xeon Processor

 Compiler prefetching is on by default for Intel® Xeon Phi™
coprocessors at –O2 and above

 Compiler prefetch is not enabled by default on Intel® Xeon®
Processors
 Use external options –opt-prefetch[=n] n = 1.. 4

 Use the compiler reporting options to see detailed diagnostics of
prefetching per loop
 Use -opt-report-phase hlo –opt-report 3

45

Intel Xeon Phi : Performance Issues

Prefetch on Intel Multicore and Many-core

Prog. on Intel Xeon-Phi : Tuning & Perf. 46 C-DAC hyPACK-2013

Automatic Prefetches

Loop Prefetch

 Compiler generated prefetches target memory access in a
future iteration of the loop

 Target regular, predictable array and pointer access

Interactions with Hardware prefetcher

 Intel® Xeon Phi™ Comprocessor has a hardware L2 prefetcher

 If Software prefetches are doing a good job, Hardware
prefetching does not kick in

 References not prefetched by compiler may get prefetched by
hardware prefetcher

46

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 47 C-DAC hyPACK-2013

Explicit Prefetch

 Use Intrinsics
 _mm_prefetch((char *) &a[i], hint);

See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)
 But you have to specify the prefetch distance
 Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler

user guide, e.g. _mm512_prefetch_i32gather_ps

 Use a pragma / directive (easier):
 #pragma prefetch a [:hint[:distance]]
 You specify what to prefetch, but can choose to let compiler figure

out how far ahead to do it.

 Use Compiler switches:
 -opt-prefetch-distance=n1[,n2]
 specify the prefetch distance (how many iterations ahead, use n1 and

prefetches inside loops. n1 indicates distance from memory to L2.

47

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 48 C-DAC hyPACK-2013

Streaming Store
 Avoid read for ownership for certain memory write operation

 Bypass prefetch related to the memory read

 Use #pragma vector nontemporal(v1,…) to drop a hint to compiler

 Without Streaming Stores 448 Bytes read/write per iteration

48

for (int chunkBase = 0; chunkBase < OptPerThread; chunkBase +=
CHUNKSIZE)

{

#pragma simd vectorlength(CHUNKSIZE)

#pragma simd

#pragma vector aligned

#pragma vector nontemporal (CallResult, PutResult)

 for(int opt = chunkBase; opt < (chunkBase+CHUNKSIZE); opt++)

 {

 float CNDD1;

 float CNDD2;

 float CallVal =0.0f, PutVal = 0.0f;

 float T = OptionYears[opt];

 float X = OptionStrike[opt];

 float S = StockPrice[opt];

 ……

 CallVal = S * CNDD1 - XexpRT * CNDD2;

 PutVal = CallVal + XexpRT - S;

 CallResult[opt] = CallVal ;

 PutResult[opt] = PutVal ;

 }

}

 With Streaming Stores, 320
Bytes read/write per
iteration

 Relief Bandwidth pressure;
improve cache utilization

 –vec-report6 displays
the compiler action

bs_test_sp.c(215): (col. 4) remark: vectorization support:
streaming store was generated for CallResult.

bs_test_sp.c(216): (col. 4) remark: vectorization support:
streaming store was generated for PutResult.

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 49 C-DAC hyPACK-2013

Data Blocking
 Partition data to small blocks that fits in L2 Cache

 Exploit data reuse in the application.
 Ensure the data remains in the cache across multiple uses
 Using the data in cache remove the need to go to memory
 Bandwidth limited program may execute at FLOPS limit

 Simple case of 1D
 Data size DATA_N is used WORK_N times from 100s of threads
 Each handles a piece of work and have to traverse all data

 Without Blocking

49

#pragma omp parallel for

for(int wrk = 0; wrk < WORK_N; wrk++)

{

 initialize_the_work(wrk);

 for(int ind = 0; ind < DATA_N; ind++)

 {

 dataptr datavalue = read_data(dataind);

 result = compute(datavalue);

 aggregate = combine(aggregate, result);

 }

 postprocess_work(aggregate);

}

for(int BBase = 0; BBase < DATA_N; BBase += BSIZE)

{

#pragma omp parallel for

 for(int wrk = 0; wrk < WORK_N; wrk++)

 {

 initialize_the_work(wrk);

 for(int ind = BBase; ind < BBase+BSIZE; ind++)

 {

 dataptr datavalue = read_data(ind);

 result = compute(datavalue);

 aggregate[wrk] = combine(aggregate[wrk], result);

 }

 postprocess_work(aggregate[wrk]);

 }

}

 100s of thread pound on different
area of DATA_N

 Memory interconnet limit the
performance

 Cacheable BSIZE of data is processed by all
100s threads a time

 Each data is read once kept reusing until all
threads are done with it

With Blocking

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 50 C-DAC hyPACK-2013

 Allocated memory on heap

 _mm_malloc(int size, int aligned)

 scalable_aligned_malloc(int size, int aligned)

 Declarations memory:

 __attribute__((aligned(n))) float v1[];

 __declspec(align(n)) float v2[];

 Use this to notify compiler

 __assume_aligned(array, n);

 Natural boundary

 Unaligned access can fault the processor

 Cacheline Boundary

 Frequently accessed data should be in 64

 4K boundary

 Sequentially accessed large data should be in 4K boundary

50

Instruction Length Alignment

SSE 128 Bits 16 Bytes

AVX 256 Bits 32 Bytes

IMCI 512 Bits 64 Bytes

Source : References & Intel Xeon-Phi; http://www.intel.com/

Memory Alignment

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 51 C-DAC hyPACK-2013

Double Buffering Example
 Transfer and work on a dataset in small pieces

 While part is being transferred, work on another part!

Host Target

data
block

data
block

data
block

data
block

data
block

data
block

data
block

data
block

process

process

process

process

Pre-work

Iteration 0

Iteration 1

Iteration n

data
block

Last
Iteration

data
block

process

Iteration n+1

Source : References & Intel Xeon-Phi; http://www.intel.com/

Intel Xeon Phi : Performance Issues

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 52 C-DAC hyPACK-2013

Memory Mapping

 Translation of address issued by some device (e.g., CPU or I/O
device) to address sent out on memory bus (physical address)

Mapping is performed by memory management units

Implementation: Matrix into Matrix Multiplication using mmap
(Assume that Matrix Size A = 1,00,000 Real float and Matrix Size B =
1,00,000 Real float)

Computing – Enabling Huge Memory – Implementation
using Memory Mapping (mmap)

Prog. on Intel Xeon-Phi : Tuning & Perf. 53 C-DAC hyPACK-2013

Program

Virtual Address

Offset Page No

Page Table Ptr

Register

Page Mechanism Main Memory

Page Frame

Page Offset

Page Table

Page Frame & Offset

Address Mapping Function (Review)

Computing – Enabling Huge Memory – Implementation
using Memory Mapping (mmap)

Prog. on Intel Xeon-Phi : Tuning & Perf. 54 C-DAC hyPACK-2013

 IA processors support multiple page sizes; commonly 4K and 2MB

 Some applications will benefit from using huge pages

 Applications with sequential access patterns will improve due to larger
TLB “reach”

 TLB miss vs. Cache miss

 TLB miss means walking the 4 level page table hierarchy

 Each page walk could result in additional cache misses

 TLB is a scarce resource and you need to “manage” them well

 On Intel® Xeon Phi™ Coprocessor

 64 entries for 4K, 8 entries for 2MB

 Additionally, 64 entries for second level DTLB.

 Page cache for 4K, L2 TLB for 2MB pages

 Linux supports huge pages – CONFIG_HUGETLBFS

 2.6.38 also has support for Transparent Huge Pages (THP)

 Pre-faulting via MAP_POPULATE flag to mmap()

Memory – Huge Pages and Pre-faulting

Intel Xeon Phi :Coprocessor Offload Prog.

Prog. on Intel Xeon-Phi : Tuning & Perf. 55 C-DAC hyPACK-2013

Intel Xeon Phi : The Intel Composer XE 2013

55

Source : References & Intel Xeon-Phi; http://www.intel.com/

 The Intel Composer XE – Development tool and SDK suite available for
developing Intel Xeon Phi

• It includes C/C++ Fortran Complier

• It includes runtime libraries like OpenMP, thread etc. Debuging tool
and math kernel library (MKL)

• Supports various parallel programming models fro Intel Xeon Phi
such as Intel Cilk Plus, Intel Threading Building blocks (TBB),
OpenMP and Pthread

• It includes Intel MKL

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 56 C-DAC hyPACK-2013

Intel Trace Analyzer and Collector (ITAC)

56

Source : References & Intel Xeon-Phi; http://www.intel.com/

 Intel MPI, Intel Trace Analyzer and Collector(ITAC) on MIC

• Intel Trace Collector gathers information from running programs into a
trace file, and the Intel Trace Analyzer allows the collected data to be
viewed and analyzed after a run.

• The Intel Trace Analyzer and Collector support processors and
coprocessors.

• The Trace Collector can integrate information from multiple sources
including an instrumented Intel MPI Library and PAPI.

• Trace file from an application running on the host system and
coprocessor simultaneously can be generated

• Generate trace file only on Coprocessor system

http://www.intel.com/
http://www.intel.com/

Prog. on Intel Xeon-Phi : Tuning & Perf. 57 C-DAC hyPACK-2013

 An Overview of Intel Xeon-Phi Coprocessor Architecture &
Software Environment is discussed

 Programming paradigms on Intel Xeon-Phi Coprocessor
are discussed

 Tips for Tuning & Performance Issues on Intel Xeon-Phi
Coprocessor are discussed

Summary

An Overview of Prog. Env on Intel Xeon-Phi

Prog. on Intel Xeon-Phi : Tuning & Perf. 58 C-DAC hyPACK-2013

 Thank You
 Any questions ?

