
Prog. on Intel Xeon-Phi :  Tuning & Perf. 1 C-DAC hyPACK-2013 

Lecture Topic : 

Intel Xeon-Phi  : Tuning & Performance  

Hybrid Computing – Coprocessors/Accelerators 
Power-Aware Computing – Performance of 

Application Kernels 

C-DAC  Four Days Technology Workshop 

ON 

 hyPACK-2013  

Mode 3 : Intel Xeon Phi  Coprocessors 

Venue : CMSD, UoHYD ;  Date : October 15-18, 2013 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 2 C-DAC hyPACK-2013 

 

 Understanding of Intel Multi-Core Systems with Intel Xeon 
Phi Programming from Performance Point of View 

 

Lecture Outline  

Following topics will be discussed 

An Overview of Intel Xeon Phi – Tuning & Perf. 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 3 C-DAC hyPACK-2013 

 Intel Xeon Phi Coprocessor : Prog. Env & 

Tips for obtaining Performance (Part-I) 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 4 C-DAC hyPACK-2013 

 Shared Address Space Programming 
(Offload, Native, Host) 

    OpenMP, Intel TBB, Cilk Plus, Pthreads 

 Message Passing Programming  

      (Offload – MIC Offload  /Host Offload) 
         (Symmetric  & Coprocessor /Host) 

 Hybrid Programming  
           (MPI – OpenMP,  MPI Cilk Plus  

            MPI-Intel TBB)  

        Xeon Phi : Programming Environment 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Application 

Host Coprocessor 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 5 C-DAC hyPACK-2013 

 Rule of thumb :  An application must scale well 
past one hundred threads on Intel Xeon 
processors to profit from the possible higher 
parallel performance offered with e.g. the Intel 
Xeon Phi coprocessor.  

 

 The scaling would profit from utilizing the highly 
parallel capabilities of the MIC architecture, you 
should start to create a simple performance graph 
with a varying number of threads (from one up to 
the number of cores) 

Intel Xeon-Phi : Shared Address  Space Prog. 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 6 C-DAC hyPACK-2013 

 What we should know from programming point 
of view : We treat the coprocessor as a 64-bit x86 SMP-
on-a-chip with an high-speed bi-directional ring 
interconnect, (up to) four hardware threads per core and 
512-bit SIMD instructions.  

 

 With the available number of cores, we have easily 
200 hardware threads at hand on a single Intel 
Xeon coprocessor. 

 

 Resource availability and Memory access is an 
important for threading on all 60 Cores.  

Intel Xeon-Phi : Shared Address  Prog. 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 7 C-DAC hyPACK-2013 

Keys to Productive Performance 

Choose the right Multi-core centric or Many-
core centric model for your application 

Vectorize your application (today) 

Use the Intel vectorizing compiler 

Parallelize your application (today) 

with MPI (or other multi-process model) 

With threads (via Intel ® Cilk TM Plus, 
OpenMP*, Intel ® Threading Building 
Blocks, Pthreads, etc.) 

Go asynchronous to overlap computation and 
communication 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon-Phi : Programming  Env. 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 8 C-DAC hyPACK-2013 

Performance on Xeon Phi using different prog. 

 What we should know from programming point 
of view : We treat the coprocessor as a 64-bit x86 
SMP-on-a-chip with an high-speed bi-directional 
ring interconnect, (up to) four hardware threads 
per core and 512-bit SIMD instructions.  

 

 With the available number of cores, we have easily 
200 hardware threads at hand on a single 
coprocessor.  

Intel Xeon-Phi : Performance-Tips 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 9 C-DAC hyPACK-2013 

About Hyper-Threading  

 hyper-threading hardware threads can  be 
switched off and can be ignored. 

Intel Xeon System & Xeon-Phi  

About Threading  on Xeon-Phi Coprocessor 

 The multi-threading on each core is primarily 
used to hide latencies that come implicitly with 
an in-order microarchitecture. Unlike hyper-
threading these hardware threads cannot be 
switched off and should never be ignored.  

 In general a minimum of three or four active 
threads per cores will be needed. 

Performance on Xeon Phi using different prog. 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 10 C-DAC hyPACK-2013 

Summary: Tricks for Performance 

 Use asynchronous data transfer and double buffering offloads 
to overlap the communication with the computation 

 Optimizing memory use on Intel MIC architecture target relies 
on understanding access patterns 

 Loop Optimizations may benefit performance 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Performance on Xeon Phi using different prog. 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 11 C-DAC hyPACK-2013 

 Data should be aligned to 64 Bytes (512 Bits) for the 
MIC architecture, in contrast to 32 Bytes (256 Bits) for 
AVX and 16 Bytes (128 Bits) for SSE. 

 Due to the large SIMD width of 64 Bytes vectorization is 
even more important for the MIC architecture than for 
Intel Xeon!  

 The MIC architecture offers new instructions like  

 gather/scatter,  

 fused multiply-add,  

 masked vector instructions etc.  

which allow more loops to be parallelized on the 
coprocessor than on an Intel Xeon based host. 

Intel Xeon Phi Coprocessor :Native Compilation 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 12 C-DAC hyPACK-2013 

Intel Xeon Phi Coprocessor : Native Compilation 

Use pragmas like  

#pragma ivdep,  

#pragma vector always,  

#pragma vector aligned,  

#pragma simd  

etc. to achieve autovectorization.  

Autovectorization is enabled at default optimization level -O2. 
Requirements for vectorizable loops can be found references. 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 13 C-DAC hyPACK-2013 

 Let the compiler generate vectorization reports 
using the compiler option -vecreport2 to see if 
loops were vectorized for MIC (Message "*MIC* 
Loop was vectorized" etc).  

 

 The options -opt-report-phase hlo (High 
Level Optimizer Report) or  

    -opt-report-phase ipo_inl (Inlining 
report) may also be useful. 

Intel Xeon Phi Coprocessor : Native Compilation 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 14 C-DAC hyPACK-2013 

 Explicit vector programming is also possible via Intel 
Cilk Plus language extensions (C/C++ array notation, 
vector elemental functions, ...) or the new SIMD 
constructs from OpenMP 4.0 RC1. 

 Vector elemental functions can be declared by 
using __attributes__((vector)). The 
compiler then generates a vectorized version of a 
scalar function which can be called from a 
vectorized loop. 

Intel Xeon Phi Coprocessor :Native Compilation 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 15 C-DAC hyPACK-2013 

 One can use intrinsics to have full control over the vector 
registers and the instruction set. 

 Include <immintrin.h> for using intrinsics. 

 Hardware prefetching from the L2 cache is enabled per 
default.  

 In addition, software prefetching is on by default at 
compiler optimization level -O2 and above. Since Intel 
Xeon Phi is an inorder architecture, care about 
prefetching is more important than on out-of-order 
architectures. 

 

Intel Xeon Phi Coprocessor : Native Compilation 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 16 C-DAC hyPACK-2013 

 The compiler prefetching can be influenced by setting 
the compiler switch -opt-prefetch = n.  

 

 Manual prefetching can be done by using intrinsics 
(_mm_prefetch()) or  

     pragmas (#pragma prefetch var). 

Intel Xeon Phi Coprocessor : Native Compilation 

To achieve good Performance  - Following 
information should be kept in mind.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 17 C-DAC hyPACK-2013 

 Intel Xeon Phi Coprocessor : Prog. Env & 

Tips for obtaining Performance (Part-II) 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 18 C-DAC hyPACK-2013 

Optimization Framework 

A collection of methodology and tools that enable the developers to 
express parallelism for Multicore and Manycore Computing 

18 

Step 1:  Leverage Optimized Tools, Library 

Step 2:  Scalar, Serial Optimization /Memory Access 

Step 3:  Vectorization  & Compiler 

 Step 4:  Parallelization 

Step 5:  Scale from Multicore to Manycore 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Objective: Turning unoptimized program into a scalable, highly parallel 
application on multicore and manycore architecture 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 19 C-DAC hyPACK-2013 

A Family of Parallel Programming Models 
Developer Choice 

19 

 

Intel® Cilk™ 
Plus 

 

 

 

C/C++ 
language 

extensions to 
simplify 

parallelism 

 

 

 

Open sourced 

Also an Intel 
product 

 

 

Intel® 
Threading 
Building 
Blocks 

 

Widely used 
C++ template 

library for 
parallelism 

 

 

 

Open sourced 

Also an Intel 
product 

 

 

Domain-
Specific 
Libraries 

 

Intel® 
Integrated 

Performance 
Primitives 

 

Intel® Math 
Kernel Library 

 

 

Established 
Standards 

 

Message 
Passing 

Interface (MPI) 

 

OpenMP* 
(offload TR 

coming “real 
soon”) 

 

Coarray 
Fortran 

OpenCL* 

 

 

Research and 
Development 

 

Intel® 
Concurrent 
Collections 

 

Intel® Offload 
Extensions 

 

Intel® SPMD 
Parallel 

Compiler (ispc) 

Applicable to Multicore and Manycore Programming 

Step 1 :  

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 20 C-DAC hyPACK-2013 

Objective of Scalar and Serial Optimization 

 Obtain the most efficient implementation for the problem at 
hand 

 Identify the opportunity for vectorization and parallelization  

 Create Base to account for vectorization and parallelization 
gains 
 Avoid situation when vectorized, slower code was parallelized and 

create a false impression of performance gain 

20 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Step 2 :  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 21 C-DAC hyPACK-2013 

Algorithmic Optimizations 

 Elevate constants out of the core loops 
 Compiler can do it, but it need your cooperation 
 Group constants together 

 Avoid and replace expensive operations 
 divide a constant can usually be replace by multiplying its reciprocal 

 Strength reduction in hot loop  
 People like inductive method, because it’s clean 
 Iterative can strength reduce the operation involved 
 In this example, exp() is replace by a simple multiplication 

 

21 

 

const double      dt = T / (double)TIMESTEPS; 

const double     vDt = V * sqrt(dt); 

for(int i = 0; i <= TIMESTEPS; i++){ 

    double price = S * exp(vDt * (2.0 * i - 

TIMESTEPS)); 

    cell[i] = max(price - X, 0); 

} 

const double factor = exp(vDt * 2); 

double        price = S * exp(-

vDt(2+TIMESTEPS)); 

for(int i = 0; i <= TIMESTEPS; i++){ 

    price = factor * price; 

    cell[i] = max(price - X, 0); 

} 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 22 C-DAC hyPACK-2013 

Use Compiler Optimization Switches 

Optimization Done Linux* 

Disable optimization -O0 

Optimize for speed (no code size increase) -O1 

Optimize for speed (default) -O2 

High-level loop optimization -O3 

Create symbols for debugging -g 

Multi-file inter-procedural optimization -ipo 

Profile guided optimization (multi-step build) -prof-gen 

-prof-use 

Optimize for speed across the entire program -fast  
(same as: -ipo –O3 -no-prec-div -static -xHost) 

OpenMP 3.0 support -openmp 

Automatic parallelization -parallel 

22 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 23 C-DAC hyPACK-2013 

Vectorization and SIMD Execution 

 SIMD 
 Flynn’s Taxonomy: Single Instruction, Multiple Data 
 CPU perform the same operation on multiple data elements 

 SISD 
 Single Instruction, Single Data 

 Vectorization 
 In the context of Intel® Architecture Processors, the process of transforming a scalar 

operation (SISD), that acts on a single data element to the vector operation that that 
act on multiple data elements at once(SIMD). 

 Assuming that setup code does not tip the balance, this can result in more compact 
and efficient generated code 

 For loops in ”normal” or ”unvectorized” code, each assembly instruction deals with 
the data from only a single loop iteration 

23 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Step 3 :  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 24 C-DAC hyPACK-2013 

SIMD Abstraction – Options Compared 

24 

Vector intrinsics (mm_add_ps, addps) 

C/C++ Vector Classes (F32vec16, F64vec8)  

Intel® Cilk™ Plus technology  

Elemental Functions and Array Notation:   

Compiler-based autovectorization annotation #pragma 
vector, #pragma ivdep,#pragma simd 

Programmer control 

Ease of use / code 
maintainability 

(depends on problem) 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 25 C-DAC hyPACK-2013 

Get Your Code Vectorized by Intel Compiler 

 Data Layout, AOS -> SOA 

 Data Alignment (next slide) 

 Make the loop innermost  

 Function call in treatment 
 Inline yourself 
 inline! Use __forceinline 
 Define your own vector version  
 Call vector math library - SVML 

 Adopt jumpless algorithm 

 Read/Write is OK if it’s continuous 

 Loop carried dependency 

25 

for(int i = TIMESTEPS; i > 0; i--) 

#pragma simd  

#pragma unroll(4) 

for(int j = 0; j <= i - 1; j++) 

 cell[j]=puXDf*cell[j+1]+pdXDf*cell[j]; 

CallResult[opt] = (Basetype)cell[0]; 

for (j=1; j<MAX; j++)  

 a[j] = a[j] + c * a[j-n];  

Not a true dependency 
A true dependency 

Array of Structures  

S0 X0 T0 

S1 X1 T1 

… … … 

Structure of Arrays 

S0 S1 … 

X0 X1 … 

S0 S1 … 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 26 C-DAC hyPACK-2013 

Options for Parallelism on 
Intel® Architecture 

 What’s available on Intel® host processor are also available on Intel® target 
coprocessor 

 Many others (boost) are ported to the coprocessor 

 Choose the best threading model your problem dictates 

26 

pthreads* 

OpenMP* 

Intel® Cilk™ Plus 

Intel® TBB 

More control 

Ease of use 
maintainability 

• Well known industry standard 

• Best suited when resource utilization is 
known at design time 

• C++ template Library of parallel algorithms, 
containers 

• Load balancing via work stealing 

• Keyword extension of C/C++, Serial 
equivalence via compiler  

• Load balancing via work stealing 

• Time-tested industry standard for Unix-like 

• Common denominator or other high level 
threading libraries 

Step 4 :  

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 27 C-DAC hyPACK-2013 

Options for Parallelism – pthreads* 

 POSIX* Standard for thread API with 20 years history 

 Foundation for other high level threading libraries 

 Independently exist on the host and Intel® MIC 

 No extension to go from the host to Intel® MIC 

 Advantage: Programmer has explicit control 
 From workload partition to thread creation, synchronization, load 

balance, affinity settings, etc.  

 Disadvantage: Programmer has too much control 
 Code longevity 
 Maintainability 
 Scalability 

27 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 28 C-DAC hyPACK-2013 

 Partition the workload to avoid load imbalance 
 Understand static vs. dynamic workload partition  

 Use pthread API, define, initialize, set, destroy 
 Set CPU affinity with pthead_setaffinity_np() 
 Know the thread enumeration and avoid core 0 
 Core 0 boots the coprocessor, job scheduler, service interrupts 

Core 0 

0
 

2
4

1
 

2
4

2
 

2
4

3
 

Core 1 

4
 

1
 

2
 

3
 

Core 2 

8
 

5
 

6
 

7
 

Core 60 

2
4

0
 

2
3

7
 

2
3

8
 

2
3

9
 

Thread Affinity using pthreads* 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 29 C-DAC hyPACK-2013 

Options for Parallelism – OpenMP* 

 Compiler directives/pragmas based threading constructs  
 Utility library functions and Environment variables 

 Specify blocks of code executing in parallel 

 

 

 

 

 

 Fork-Join Parallelism:  
 Master thread spawns a team of worker threads as needed 
 Parallelism grow incrementally 

 

 

29 

Parallel Regions Master Thread 

#pragma omp parallel sections 

{ 

    #pragma omp section 

    task1(); 

    #pragma omp section 

    task2(); 

    #pragma omp section 

    task3(); 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 30 C-DAC hyPACK-2013 

OpenMP* Performance, Scalability Issues 

 Manage Thread Creation Cost 
 Create threads as early as possible, Maximize 

the work for worker threads 
 IA threads take some time to create, But once 

they’re up, they last till the end 

 Take advantage of memory locality, use 
NUMA memory manager 
 Allocate the memory on the thread that will 

access them later on. 
 Try not to allocate the memory the worker 

threads use in the main thread 

 Ensure your OpenMP* program works 
serially, compiles without openmp*  
 Protect OpenMP* API calls with _OPENMP,   
 Make sure serial works before enable 

OpenMP* (e.g. compile with –openmp) 

 Minimize the thread synchronization 
 use local variable to reduce the need to access 

global variable  

#ifdef _OPENMP 

int ThreadNum = omp_get_max_threads(); 

omp_set_num_threads(ThreadNum);  

#else 

int ThreadNum = 1;  

#endif 

#pragma omp parallel 

{ 

   #ifdef _OPENMP 

   int threadID = omp_get_thread_num(); 

   #else 

   int threadID = 0;  

   #endif 

 

   float *CallResult = (float *) scalable_aligned_malloc 

                                (mem_size, SIMDALIGN); 

   float *PutResult  = (float *) scalable_aligned_malloc 

                                (mem_size, SIMDALIGN); 

 

} 

#pragma omp parallel for 

for (int k = 0; k < RAND_N; k++) 

   h_Random[k] = cdfnorminv ((k+1.0)/(RAND_N+1.0)); 

 

#pragma omp parallel for 

for(int opt = 0; opt < OPT_N; opt++) 

{ 

   CallResultList[opt]     = 0; 

   CallConfidenceList[opt] = 0; 

} 

Source : References &  Intel Xeon-Phi;  
http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 31 C-DAC hyPACK-2013 

Scale from Multicore to Manycore 

31 

A Tale of Two Architectures 
Intel® Xeon® processor Intel® Xeon Phi™ Coprocessor 

Sockets 2 1 

Clock Speed 2.6 GHz 1.1 GHz 

Execution Style Out-of-order In-order 

Cores/socket 8 Up to 61 

HW Threads/Core 2 4 

Thread switching  HyperThreading Round Robin 

SIMD widths 8SP, 4DP 16SP, 8DP 

Peak Gflops 692SP, 346DP 2020SP, 1010DP 

Memory Bandwidth 102GB/s 320GB/s 

L1 DCache/Core 32kB 32kB 

L2 Cache/Core 256kB 512kB 

L3 Cache/Socket 30MB none 

Step 5 :  

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 32 C-DAC hyPACK-2013 

Assessing potential 

 Threads 
 Code analysis – loop nesting, iteration counts, determinism 
 Intel Vtune™ Amplifier timeline analysis – existence of applciation 

serialization 
 Performance vs. threads – knee of the curve 

 Vectorization 
 VTune Amplifier hot spots and compiler VEC reports 
 HW PerfMon-based evaluation 
 Performance vs. vectorization on/off 

 Bandwidth 
 HW PerfMon-based evaluation 

 

32 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 33 C-DAC hyPACK-2013 

More on Thread Affinity 

 Bind the worker threads to certain processor core/threads 

 Minimizes the thread migration and context switch  

 Improves data locality; reduce coherency traffic 

 Two components to the problem: 
 How many worker threads to create? 
 How to bind worker threads to core/threads? 

 Two ways to specify thread affinity 
 Environment variables OMP_NUM_THREADS, KMP_AFFINITY 
 C/C++ API: kmp_set_defaults("KMP_AFFINITY=compact") 

omp_set_num_threads(244); 

 Add to your source file#include <omp.h> 
 Compiler with –openmp 
 Use libiomp5.so 

33 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 34 C-DAC hyPACK-2013 

The Optimal Thread Number 

 Intel MIC maintains 4 hardware contexts per core 
 Round-robin execution policy,  
 Require 2 threads for decent performance 
 Financial algorithms takes all 4 threads to peak 

  Intel Xeon processor optionally use HyperThreading 
 Execute-until-stall execution policy 
 Truly compute intensive ones peak with 1 thread per core 
 Finance algorithms likes HyperThreading, 2 threads per core 

 Use OpenMP application with NCORE number of cores 
 Host  only: 2 x ncore  (or 1x if HyperThreading disabled) 
 MIC Native: 4 x ncore  
 Offload: 4 x (ncore-1)  OpenMP runtime avoids the core OS runs  

34 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 35 C-DAC hyPACK-2013 

 Intel Xeon Phi Coprocessor : Prog. Env & 

Tips for obtaining Performance (Part-III) 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 36 C-DAC hyPACK-2013 

Use Compiler Optimization Switches 

Optimization Done Linux* 

Disable optimization -O0 

Optimize for speed (no code size increase) -O1 

Optimize for speed (default) -O2 

High-level loop optimization -O3 

Create symbols for debugging -g 

Multi-file inter-procedural optimization -ipo 

Profile guided optimization (multi-step build) -prof-gen;   -prof-use 

Optimize for speed across the entire program -fast  
(same as: -ipo –O3 -no-prec-div -static -xHost) 

OpenMP 3.0 support -openmp 

Automatic parallelization -parallel 

36 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

 Intel Xeon Phi Coprocessor : Prog. Env & 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 37 C-DAC hyPACK-2013 

Performance: Intel Xeon-Phi Coprocessor  

 Vectorization is key for performance 

Sandybridge, MIC, etc. 

Compiler hints 

Code restructuring 

 Many-core nodes present scalability 
challenges 

Memory contention 

Memory size limitations 
Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Prog.API - Multi-Core Systems with Devices  

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 38 C-DAC hyPACK-2013 

Options for Vectorization : Use Tools  

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon-Phi : Prog.  Env. Perf  Issuses 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 39 C-DAC hyPACK-2013 

Tuning & Performance :  

 Using intrinsics with manual data prefetching and 
register blocking can still considerably increase 
the performance. 

 

 Try to get a suitable vectorization and write cache 
and register efficient code, i.e. values stored in 
registers should be reused as often as possible in 
order to avoid cache and memory access. 

Optimised  Offloaded Code  

Intel Xeon Phi : Coprocessors – Intel  

Compiler’s Offload Programs 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 40 C-DAC hyPACK-2013 

 Quantification of Overheads : Use 
Tools on Intel Xeon Phi 

 Prog.on Shared Address Space 
Platforms (UMA/NUMA) 
 Data Parallel Fortran 2008, Pthreads, 

OpenMP, Intel TBB Cilk Plus 
 Explicit Message Passing  - MPI – 

Cluster of Message Passing Multi-
Core systems  

Pthreads 

0
 

2
4

1
 

2
4

2
 

2
4

3
 

OpenMP  

4
 

1
 

2
 

3
 

Intel TBB  

8
 

5
 

6
 

7
 

MPI  

2
4

0
 

2
3

7
 

2
3

8
 

2
3

9
 

Intel Xeon Phi Prog. : Tools to Measure Overheads 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Cilk plus 

5
4

 

5
1

 

5
2

 

5
3

 

Compiler  

0
 

2
4

1
 

2
4

2
 

2
4

3
 

Coprocessor 

1
5

0
 

0
9

0
 

1
2

0
 

2
0

3
 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 41 C-DAC hyPACK-2013 

Intel Xeon & Xeon Phi : Execution Modes 

main() 

Intel ® Xeon Phi™  
Coprocessor 

Intel® Xeon 

main() 

Native Offload 

 Card is an SMP machine running Linux 

 Separate executables run on both MIC 
and Xeon 
 e.g. Standalone MPI applications  

 No source code modifications most of 
the time 
 Recompile code for Xeon Phi™ 

Coprocessor 

 Autonomous Compute Node (ACN) 

 “main” runs on Xeon 

 Parts of code are offloaded to MIC 

 Code that can be 
 Multi-threaded, highly parallel  

 Vectorizable 

 Benefit from large memory BW 

 Compiler Assisted vs. Automatic  
 #pragma offload (…) 

foo() 

Intel® Xeon 

main() 

Intel® Xeon Phi™ 
Coprocessor 

 Quantification of Overheads – Explicit / Implicit Data Transfer – 
Using Offload 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 42 C-DAC hyPACK-2013 

Pros:  
 Compilation with an additional Intel compiler flag 

(-mmic); 

 Scalability tests: fast and smooth; 

 Quick analysis with Intel tools (VtuneT, Itac Intel 

Trace Analyzer and Collector; 

 Porting time: one day with validation of the 

numerical result; 

 expert developer of FARM, with good knowledge 

of the Intel Compiler, But with only a basic 

knowledge of MIC. 

 Best scalability with OpenMP and Hybrid. 
 Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon-Phi : Programming  Env. 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 43 C-DAC hyPACK-2013 

Porting on MIC : Issues to be addressed 

  MPI Init routine problem: increasing CPU time 
for increasing number of processes; Same problem 
when using two MICs together; 

 Detailed analysis of OpenMP threads & thread affinity 
and Memory available per thread  

 Execution time depends strongly from code 
vectorization, so compiler vectorization  for data 
parallel and task parallel constructs  

 code re-structure and memory access pattern are a 
key point to have a vectorizable satisfactory overall  
Performances. 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

        Xeon Phi : Programming Environment 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 44 C-DAC hyPACK-2013 

Intel Xeon Phi : Performance Issues 

 Limited problem size or limited exposure 
 Inherent lack of available parallelism 
 Parallelism not adequately exposed by programmer 

 Excessive synchronization 
 Inhibits harvesting thread parallelism 

 ISA-specific issues 
 Data structures excessively rely on scatter/gather 
 Use of 64b integer indices and 64 INT FP conversion 

 Offload overhead 
 Excessive communication/computation ratio, unhidden communication 

 Memory footprint and working set size 
 Limited to 8GB, unless you “overlay,” e.g. with offload 

 

 44 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Factors to work around 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 45 C-DAC hyPACK-2013 

 Objective: Move data from memory to L1 or L2 Cache in 
anticipation of CPU Load/Store 

 More import on in-order Intel Xeon Phi Coprocessor 

 Less important on out of order Intel Xeon Processor 

 Compiler prefetching is on by default for Intel® Xeon Phi™ 
coprocessors at –O2 and above 

 Compiler prefetch is not enabled by default on Intel® Xeon® 
Processors 
 Use external options –opt-prefetch[=n] n = 1.. 4 

 Use the compiler reporting options to see detailed diagnostics of 
prefetching per loop 
 Use -opt-report-phase hlo –opt-report 3 

45 

Intel Xeon Phi : Performance Issues 

Prefetch on Intel Multicore and Many-core 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 46 C-DAC hyPACK-2013 

Automatic Prefetches 

Loop Prefetch  

 Compiler generated prefetches target memory access in a 
future iteration of the loop 

 Target regular, predictable array and pointer access 
 

Interactions with Hardware prefetcher 

 Intel® Xeon Phi™ Comprocessor has a hardware L2 prefetcher 

 If Software prefetches are doing a good job, Hardware 
prefetching does not kick in 

 References not prefetched by compiler may get prefetched by 
hardware prefetcher 

46 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 47 C-DAC hyPACK-2013 

Explicit Prefetch 

 Use Intrinsics 
  _mm_prefetch((char *) &a[i], hint); 

See xmmintrin.h for possible hints  (for L1, L2, non-temporal, …) 
 But you have to specify the prefetch distance 
 Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler 

user guide, e.g. _mm512_prefetch_i32gather_ps 

 Use a pragma / directive  (easier): 
 #pragma prefetch  a   [:hint[:distance]] 
 You specify what to prefetch, but can choose to let compiler figure 

out how far ahead to do it. 

 Use  Compiler switches: 
  -opt-prefetch-distance=n1[,n2] 
 specify the prefetch distance (how many iterations ahead, use n1 and 

prefetches inside loops.  n1 indicates distance from memory to L2. 

47 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 48 C-DAC hyPACK-2013 

Streaming Store 
 Avoid read for ownership for certain memory write operation 

 Bypass prefetch related to the memory read 

 Use #pragma vector nontemporal(v1,…) to drop a hint to compiler 

 Without Streaming Stores 448 Bytes read/write per iteration 

48 

for (int chunkBase = 0; chunkBase < OptPerThread; chunkBase += 
CHUNKSIZE) 

{ 

#pragma simd vectorlength(CHUNKSIZE) 

#pragma simd 

#pragma vector aligned 

#pragma vector nontemporal (CallResult, PutResult) 

      for(int opt = chunkBase; opt < (chunkBase+CHUNKSIZE); opt++) 

      { 

         float CNDD1; 

         float CNDD2; 

         float CallVal =0.0f, PutVal  = 0.0f; 

         float T = OptionYears[opt]; 

         float X = OptionStrike[opt]; 

         float S = StockPrice[opt]; 

                        …… 

                         

         CallVal  = S * CNDD1 - XexpRT * CNDD2; 

         PutVal  = CallVal  +  XexpRT - S; 

         CallResult[opt] = CallVal ; 

         PutResult[opt] = PutVal ; 

      } 

} 

 With Streaming Stores, 320 
Bytes read/write per 
iteration 

 Relief Bandwidth pressure; 
improve cache utilization 

 –vec-report6 displays 
the compiler action 

bs_test_sp.c(215): (col. 4) remark: vectorization support: 
streaming store was generated for CallResult. 

bs_test_sp.c(216): (col. 4) remark: vectorization support: 
streaming store was generated for PutResult. 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 49 C-DAC hyPACK-2013 

Data Blocking 
 Partition data to small blocks that fits in L2 Cache 

 Exploit data reuse in the application. 
 Ensure the data remains in the cache across multiple uses 
 Using the data in cache remove the need to go to memory 
 Bandwidth limited program may execute at FLOPS limit 

 Simple case of 1D  
 Data size DATA_N is used WORK_N times from 100s of threads  
 Each handles a piece of work and have to traverse all data 

               Without Blocking 

49 

#pragma omp parallel for 

for(int wrk = 0; wrk < WORK_N; wrk++) 

{ 

     initialize_the_work(wrk); 

     for(int ind = 0; ind < DATA_N; ind++) 

     { 

        dataptr  datavalue = read_data(dataind); 

        result = compute(datavalue); 

        aggregate = combine(aggregate, result); 

     } 

     postprocess_work(aggregate); 

} 

for(int BBase = 0; BBase < DATA_N; BBase += BSIZE) 

{ 

#pragma omp parallel for 

    for(int wrk = 0; wrk < WORK_N; wrk++) 

    { 

         initialize_the_work(wrk); 

         for(int ind = BBase; ind < BBase+BSIZE; ind++) 

         { 

            dataptr  datavalue = read_data(ind); 

            result = compute(datavalue); 

            aggregate[wrk] = combine(aggregate[wrk], result); 

          } 

          postprocess_work(aggregate[wrk]); 

    } 

} 

 100s of thread pound on different 
area of DATA_N 

 Memory interconnet limit the 
performance 

 Cacheable BSIZE of data is processed by all 
100s threads a time 

 Each data is read once kept reusing until all 
threads are done with it 
 

With Blocking 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 50 C-DAC hyPACK-2013 

 Allocated memory on heap 

 _mm_malloc(int size, int aligned) 

 scalable_aligned_malloc(int size, int aligned) 

 Declarations memory: 

 __attribute__((aligned(n))) float v1[]; 

 __declspec(align(n)) float v2[]; 

 Use this to notify compiler  

 __assume_aligned(array, n); 

 Natural boundary 

 Unaligned access can fault the processor 

 Cacheline Boundary 

 Frequently accessed data should be in 64 

 4K boundary 

 Sequentially accessed large data should be in 4K boundary 

50 

Instruction Length Alignment 

SSE 128 Bits 16 Bytes 

AVX 256 Bits 32 Bytes 

IMCI 512 Bits 64 Bytes 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Memory Alignment 

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 51 C-DAC hyPACK-2013 

Double Buffering Example 
 Transfer and work on a dataset in small pieces 

 While part is being transferred, work on another part! 

Host Target 

data 
block 

data 
block 

data 
block 

data 
block 

data 
block 

data 
block 

data 
block 

data 
block 

process 

process 

process 

process 

Pre-work 

Iteration 0 

Iteration 1 

Iteration n 

data 
block 

Last  
Iteration 

data 
block 

process 

Iteration n+1 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

Intel Xeon Phi : Performance Issues 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 52 C-DAC hyPACK-2013 

Memory Mapping 

 Translation of address issued by some  device (e.g., CPU or I/O 
device) to  address sent out on memory bus  (physical address) 

Mapping is performed by memory  management units 

 

Implementation: Matrix into Matrix Multiplication using mmap 
(Assume that Matrix Size A =  1,00,000 Real float and Matrix Size B = 
1,00,000  Real float) 

Computing – Enabling Huge Memory – Implementation 
using Memory Mapping (mmap) 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 53 C-DAC hyPACK-2013 

Program 

Virtual Address 

Offset Page No 

Page Table Ptr 

Register 

Page Mechanism Main Memory 

Page Frame 

Page Offset 

Page Table 

Page  Frame & Offset 

Address Mapping Function  (Review) 

Computing – Enabling Huge Memory – Implementation 
using Memory Mapping (mmap) 



Prog. on Intel Xeon-Phi :  Tuning & Perf. 54 C-DAC hyPACK-2013 

 IA processors support multiple page sizes; commonly 4K and 2MB 

 Some applications will benefit from using huge pages  

 Applications with sequential access patterns will improve due to larger 
TLB “reach” 

 TLB miss vs. Cache miss 

 TLB miss means walking the 4 level page table hierarchy 

 Each page walk could result in additional cache misses 

 TLB is a scarce resource and you need to “manage” them well 

 On Intel® Xeon Phi™ Coprocessor 

 64 entries for 4K, 8 entries for 2MB 

 Additionally, 64 entries for second level DTLB.  

 Page cache for 4K, L2 TLB for 2MB pages 

 Linux supports huge pages – CONFIG_HUGETLBFS 

 2.6.38 also has support for Transparent Huge Pages (THP) 

 Pre-faulting via MAP_POPULATE flag to mmap() 

 

 

 

Memory – Huge Pages and Pre-faulting 

Intel Xeon Phi :Coprocessor Offload Prog.   



Prog. on Intel Xeon-Phi :  Tuning & Perf. 55 C-DAC hyPACK-2013 

Intel Xeon Phi : The Intel Composer  XE 2013 

55 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

 The Intel Composer XE – Development tool and SDK suite available for 
developing Intel Xeon Phi 

 

• It includes C/C++ Fortran Complier  

 

• It includes runtime libraries like OpenMP, thread etc. Debuging tool 
and math kernel library (MKL) 

 

• Supports various parallel programming models fro Intel Xeon Phi 
such as Intel Cilk Plus, Intel Threading  Building blocks (TBB), 
OpenMP and Pthread 

 

• It includes Intel MKL  

 

 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 56 C-DAC hyPACK-2013 

Intel Trace Analyzer and Collector (ITAC)  

56 

Source : References &  Intel Xeon-Phi;  http://www.intel.com/  

 Intel MPI, Intel Trace Analyzer and Collector(ITAC) on MIC 

 

• Intel Trace Collector gathers information from running programs into a 
trace file, and the Intel Trace Analyzer allows the collected data to be 
viewed and analyzed after a run. 

 

• The Intel Trace Analyzer and Collector support processors and 
coprocessors. 

 

• The Trace Collector can integrate information from multiple sources 
including an instrumented Intel  MPI Library and PAPI. 

 

• Trace file from an application running on the host system and 
coprocessor simultaneously can be generated  

 

• Generate trace file only on Coprocessor system  

 

http://www.intel.com/
http://www.intel.com/


Prog. on Intel Xeon-Phi :  Tuning & Perf. 57 C-DAC hyPACK-2013 

 

 An Overview of Intel Xeon-Phi Coprocessor Architecture & 
Software Environment is discussed 
 

 Programming paradigms on Intel Xeon-Phi Coprocessor  
are discussed 

 

 Tips for Tuning & Performance Issues on Intel Xeon-Phi 
Coprocessor are discussed 

Summary  

An Overview of Prog. Env on Intel Xeon-Phi  



Prog. on Intel Xeon-Phi :  Tuning & Perf. 58 C-DAC hyPACK-2013 

 Thank You  
   Any questions ? 


