
OpenMP
Application Program

Interface

Version 4.0 - July 2013

Copyright © 1997-2013 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted,
provided the OpenMP Architecture Review Board copyright notice and
the title of this document appear. Notice is given that copying is by
permission of OpenMP Architecture Review Board.

This page is intentionally blank.

i

CONTENTS

1. Introduction . 1

1.1 Scope . 1

1.2 Glossary . 2

1.2.1 Threading Concepts . 2

1.2.2 OpenMP Language Terminology . 2

1.2.3 Synchronization Terminology . 8

1.2.4 Tasking Terminology . 8

1.2.5 Data Terminology . 10

1.2.6 Implementation Terminology . 12

1.3 Execution Model . 14

1.4 Memory Model . 17

1.4.1 Structure of the OpenMP Memory Model 17

1.4.2 Device Data Environments . 18

1.4.3 The Flush Operation . 19

1.4.4 OpenMP Memory Consistency . 20

1.5 OpenMP Compliance . 21

1.6 Normative References . 22

1.7 Organization of this document . 23

2. Directives . 25

2.1 Directive Format . 26

2.1.1 Fixed Source Form Directives . 27

2.1.2 Free Source Form Directives . 28

2.1.3 Stand-Alone Directives . 31

2.2 Conditional Compilation . 32

2.2.1 Fixed Source Form Conditional Compilation Sentinels 32

ii OpenMP API • Version 4.0 - July 2013

2.2.2 Free Source Form Conditional Compilation Sentinel 33

2.3 Internal Control Variables . 34

2.3.1 ICV Descriptions . 35

2.3.2 ICV Initialization . 36

2.3.3 Modifying and Retrieving ICV Values 37

2.3.4 How ICVs are Scoped . 39

2.3.5 ICV Override Relationships . 40

2.4 Array Sections . 42

2.5 parallel Construct . 44

2.5.1 Determining the Number of Threads
for a parallel Region . 47

2.5.2 Controlling OpenMP Thread Affinity 49

2.6 Canonical Loop Form . 51

2.7 Worksharing Constructs . 53

2.7.1 Loop Construct . 53

2.7.2 sections Construct . 60

2.7.3 single Construct . 63

2.7.4 workshare Construct . 65

2.8 SIMD Constructs . 68

2.8.1 simd construct . 68

2.8.2 declare simd construct . 72

2.8.3 Loop SIMD construct . 76

2.9 Device Constructs . 77

2.9.1 target data Construct . 77

2.9.2 target Construct . 79

2.9.3 target update Construct . 81

2.9.4 declare target Directive . 83

2.9.5 teams Construct . 86

2.9.6 distribute Construct . 88

2.9.7 distribute simd Construct . 91

 iii

2.9.8 Distribute Parallel Loop Construct . 92

2.9.9 Distribute Parallel Loop SIMD Construct 94

2.10 Combined Constructs . 95

2.10.1 Parallel Loop Construct . 95

2.10.2 parallel sections Construct . 97

2.10.3 parallel workshare Construct . 99

2.10.4 Parallel Loop SIMD Construct . 100

2.10.5 target teams construct . 101

2.10.6 teams distribute Construct . 102

2.10.7 teams distribute simd Construct 104

2.10.8 target teams distribute Construct 105

2.10.9 target teams distribute simd Construct 106

2.10.10 Teams Distribute Parallel Loop Construct 107

2.10.11 Target Teams Distribute Parallel Loop Construct 109

2.10.12 Teams Distribute Parallel Loop SIMD Construct 110

2.10.13 Target Teams Distribute Parallel Loop SIMD Construct 111

2.11 Tasking Constructs . 113

2.11.1 task Construct . 113

2.11.2 taskyield Construct . 117

2.11.3 Task Scheduling . 118

2.12 Master and Synchronization Constructs . 120

2.12.1 master Construct . 120

2.12.2 critical Construct . 122

2.12.3 barrier Construct . 123

2.12.4 taskwait Construct . 125

2.12.5 taskgroup Construct . 126

2.12.6 atomic Construct . 127

2.12.7 flush Construct . 134

2.12.8 ordered Construct . 138

2.13 Cancellation Constructs . 140

iv OpenMP API • Version 4.0 - July 2013

2.13.1 cancel Construct . 140

2.13.2 cancellation point Construct . 143

2.14 Data Environment . 146

2.14.1 Data-sharing Attribute Rules . 146

2.14.2 threadprivate Directive . 150

2.14.3 Data-Sharing Attribute Clauses . 155

2.14.4 Data Copying Clauses . 173

2.14.5 map Clause . 177

2.15 declare reduction Directive . 180

2.16 Nesting of Regions . 186

3. Runtime Library Routines . 187

3.1 Runtime Library Definitions . 188

3.2 Execution Environment Routines . 189

3.2.1 omp_set_num_threads . 189

3.2.2 omp_get_num_threads . 191

3.2.3 omp_get_max_threads . 192

3.2.4 omp_get_thread_num . 193

3.2.5 omp_get_num_procs . 195

3.2.6 omp_in_parallel . 196

3.2.7 omp_set_dynamic . 197

3.2.8 omp_get_dynamic . 198

3.2.9 omp_get_cancellation . 199

3.2.10 omp_set_nested . 200

3.2.11 omp_get_nested . 201

3.2.12 omp_set_schedule . 203

3.2.13 omp_get_schedule . 205

3.2.14 omp_get_thread_limit . 206

3.2.15 omp_set_max_active_levels . 207

3.2.16 omp_get_max_active_levels . 209

 v

3.2.17 omp_get_level . 210

3.2.18 omp_get_ancestor_thread_num 211

3.2.19 omp_get_team_size . 212

3.2.20 omp_get_active_level . 214

3.2.21 omp_in_final . 215

3.2.22 omp_get_proc_bind . 216

3.2.23 omp_set_default_device . 218

3.2.24 omp_get_default_device . 219

3.2.25 omp_get_num_devices . 220

3.2.26 omp_get_num_teams . 221

3.2.27 omp_get_team_num . 222

3.2.28 omp_is_initial_device . 223

3.3 Lock Routines . 224

3.3.1 omp_init_lock and omp_init_nest_lock 226

3.3.2 omp_destroy_lock and omp_destroy_nest_lock . . . 227

3.3.3 omp_set_lock and omp_set_nest_lock 228

3.3.4 omp_unset_lock and omp_unset_nest_lock 229

3.3.5 omp_test_lock and omp_test_nest_lock 231

3.4 Timing Routines . 233

3.4.1 omp_get_wtime . 233

3.4.2 omp_get_wtick . 234

4. Environment Variables . 237

4.1 OMP_SCHEDULE . 238

4.2 OMP_NUM_THREADS . 239

4.3 OMP_DYNAMIC . 240

4.4 OMP_PROC_BIND . 241

4.5 OMP_PLACES . 241

4.6 OMP_NESTED . 243

4.7 OMP_STACKSIZE . 244

vi OpenMP API • Version 4.0 - July 2013

4.8 OMP_WAIT_POLICY . 245

4.9 OMP_MAX_ACTIVE_LEVELS . 245

4.10 OMP_THREAD_LIMIT . 246

4.11 OMP_CANCELLATION . 246

4.12 OMP_DISPLAY_ENV . 247

4.13 OMP_DEFAULT_DEVICE . 248

A. Stubs for Runtime Library Routines . 249

A.1 C/C++ Stub Routines . 250

A.2 Fortran Stub Routines . 257

B. OpenMP C and C++ Grammar . 265

B.1 Notation . 265

B.2 Rules . 266

C. Interface Declarations . 287

C.1 Example of the omp.h Header File . 288

C.2 Example of an Interface Declaration include File 290

C.3 Example of a Fortran Interface Declaration module 293

C.4 Example of a Generic Interface for a Library Routine 298

D. OpenMP Implementation-Defined Behaviors . 299

E. Features History . 303

E.1 Version 3.1 to 4.0 Differences . 303

E.2 Version 3.0 to 3.1 Differences . 304

E.3 Version 2.5 to 3.0 Differences . 305

Index . 309

1

CHAPTER 1

Introduction

The collection of compiler directives, library routines, and environment variables
described in this document collectively define the specification of the OpenMP
Application Program Interface (OpenMP API) for shared-memory parallelism in C, C++
and Fortran programs.

This specification provides a model for parallel programming that is portable across
shared memory architectures from different vendors. Compilers from numerous vendors
support the OpenMP API. More information about the OpenMP API can be found at the
following web site

http://www.openmp.org

The directives, library routines, and environment variables defined in this document
allow users to create and manage parallel programs while permitting portability. The
directives extend the C, C++ and Fortran base languages with single program multiple
data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,
and synchronization constructs, and they provide support for sharing and privatizing
data. The functionality to control the runtime environment is provided by library
routines and environment variables. Compilers that support the OpenMP API often
include a command line option to the compiler that activates and allows interpretation of
all OpenMP directives.

1.1 Scope
The OpenMP API covers only user-directed parallelization, wherein the programmer
explicitly specifies the actions to be taken by the compiler and runtime system in order
to execute the program in parallel. OpenMP-compliant implementations are not required
to check for data dependencies, data conflicts, race conditions, or deadlocks, any of
which may occur in conforming programs. In addition, compliant implementations are
not required to check for code sequences that cause a program to be classified as non-

1

2

3
4
5
6

7
8
9

10

11

12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27

2 OpenMP API • Version 4.0 - July 2013

conforming. Application developers are responsible for correctly using the OpenMP API
to produce a conforming program. The OpenMP API does not cover compiler-generated
automatic parallelization and directives to the compiler to assist such parallelization.

1.2 Glossary

1.2.1 Threading Concepts

thread An execution entity with a stack and associated static memory, called
threadprivate memory.

OpenMP thread A thread that is managed by the OpenMP runtime system.

thread-safe routine A routine that performs the intended function even when executed concurrently
(by more than one thread).

processor Implementation defined hardware unit on which one or more OpenMP threads can
execute.

device An implementation defined logical execution engine.

COMMENT: A device could have one or more processors.

host device The device on which the OpenMP program begins execution

target device A device onto which code and data may be offloaded from the host device.

1.2.2 OpenMP Language Terminology

base language A programming language that serves as the foundation of the OpenMP
specification.

COMMENT: See Section 1.6 on page 22 for a listing of current base languages
for the OpenMP API.

base program A program written in a base language.

1
2
3

4

5

6
7
8

9

10
11

12
13

14

15

16

17

18

19
20
21

22
23

24

Chapter 1 Introduction 3

structured block For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.

For Fortran, a block of executable statements with a single entry at the top and a
single exit at the bottom, or an OpenMP construct.

COMMENTS:

For all base languages,

• Access to the structured block must not be the result of a branch.

• The point of exit cannot be a branch out of the structured block.

For C/C++:

• The point of entry must not be a call to setjmp().

• longjmp() and throw() must not violate the entry/exit criteria.

• Calls to exit() are allowed in a structured block.

• An expression statement, iteration statement, selection statement,
or try block is considered to be a structured block if the
corresponding compound statement obtained by enclosing it in {
and } would be a structured block.

For Fortran:

• STOP statements are allowed in a structured block.

enclosing context In C/C++, the innermost scope enclosing an OpenMP directive.

In Fortran, the innermost scoping unit enclosing an OpenMP directive.

directive In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP
program behavior.

COMMENT: See Section 2.1 on page 26 for a description of OpenMP directive
syntax.

white space A non-empty sequence of space and/or horizontal tab characters.

OpenMP program A program that consists of a base program, annotated with OpenMP directives and
runtime library routines.

conforming program An OpenMP program that follows all the rules and restrictions of the OpenMP
specification.

1
2

3
4

5

6

7

8
9

10

11

12

13

14
15
16
17
18

19

20
21
22

23

24
25

26
27

28

29
30

31
32

4 OpenMP API • Version 4.0 - July 2013

declarative directive An OpenMP directive that may only be placed in a declarative context. A
declarative directive results in one or more declarations only; it is not associated
with the immediate execution of any user code.

executable directive An OpenMP directive that is not declarative. That is, it may be placed in an
executable context.

stand-alone directive An OpenMP executable directive that has no associated executable user code.

loop directive An OpenMP executable directive whose associated user code must be a loop nest
that is a structured block.

associated loop(s) The loop(s) controlled by a loop directive.

COMMENT: If the loop directive contains a collapse clause then there may be
more than one associated loop.

construct An OpenMP executable directive (and for Fortran, the paired end directive, if
any) and the associated statement, loop or structured block, if any, not including
the code in any called routines. That is, in the lexical extent of an executable
directive.

region All code encountered during a specific instance of the execution of a given
construct or of an OpenMP library routine. A region includes any code in called
routines as well as any implicit code introduced by the OpenMP implementation.
The generation of a task at the point where a task directive is encountered is a
part of the region of the encountering thread, but the explicit task region
associated with the task directive is not. The point where a target or teams
directive is encountered is a part of the region of the encountering thread, but the
region associated with the target or teams directive is not.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.

During the execution of an OpenMP program, a construct may give
rise to many regions.

active parallel region A parallel region that is executed by a team consisting of more than one
thread.

inactive parallel
region A parallel region that is executed by a team of only one thread.

1
2
3

4
5

6

7
8

9

10
11

12
13
14
15

16
17
18
19
20
21
22
23

24

25
26

27
28

29

30
31

32

Chapter 1 Introduction 5

sequential part All code encountered during the execution of an initial task region that is not part
of a parallel region corresponding to a parallel construct or a task
region corresponding to a task construct.

COMMENTS:

A sequential part is enclosed by an implicit parallel region.

Executable statements in called routines may be in both a sequential
part and any number of explicit parallel regions at different points
in the program execution.

master thread The thread that encounters a parallel construct, creates a team, generates a set
of implicit tasks, then executes one of those tasks as thread number 0.

parent thread The thread that encountered the parallel construct and generated a
parallel region is the parent thread of each of the threads in the team of that
parallel region. The master thread of a parallel region is the same thread
as its parent thread with respect to any resources associated with an OpenMP
thread.

child thread When a thread encounters a parallel construct, each of the threads in the
generated parallel region's team are child threads of the encountering thread.
The target or teams region's initial thread is not a child thread of the thread
that encountered the target or teams construct.

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor threads.

descendent thread For a given thread, one of its child threads or one of its child threads’ descendent
threads.

team A set of one or more threads participating in the execution of a parallel
region.

COMMENTS:

For an active parallel region, the team comprises the master thread
and at least one additional thread.

For an inactive parallel region, the team comprises only the master
thread.

league The set of thread teams created by a target construct or a teams construct.

contention group An initial thread and its descendent threads.

implicit parallel
region An inactive parallel region that generates an initial task region. Implicit parallel

regions surround the whole OpenMP program, all target regions, and all
teams regions.

1
2
3

4

5

6
7
8

9
10

11
12
13
14
15

16
17
18
19

20

21
22

23
24

25

26
27

28
29

30

31

32
33
34

6 OpenMP API • Version 4.0 - July 2013

initial thread A thread that executes an implicit parallel region.

nested construct A construct (lexically) enclosed by another construct.

closely nested
construct A construct nested inside another construct with no other construct nested

between them.

nested region A region (dynamically) enclosed by another region. That is, a region encountered
during the execution of another region.

COMMENT: Some nestings are conforming and some are not. See Section 2.16 on
page 186 for the restrictions on nesting.

closely nested region A region nested inside another region with no parallel region nested between
them.

all threads All OpenMP threads participating in the OpenMP program.

current team All threads in the team executing the innermost enclosing parallel region.

encountering thread For a given region, the thread that encounters the corresponding construct.

all tasks All tasks participating in the OpenMP program.

current team tasks All tasks encountered by the corresponding team. Note that the implicit tasks
constituting the parallel region and any descendent tasks encountered during
the execution of these implicit tasks are included in this set of tasks.

generating task For a given region, the task whose execution by a thread generated the region.

binding thread set The set of threads that are affected by, or provide the context for, the execution of
a region.

The binding thread set for a given region can be all threads on a device, all
threads in a contention group, the current team, or the encountering thread.

COMMENT: The binding thread set for a particular region is described in its
corresponding subsection of this specification.

binding task set The set of tasks that are affected by, or provide the context for, the execution of a
region.

The binding task set for a given region can be all tasks, the current team tasks, or
the generating task.

COMMENT: The binding task set for a particular region (if applicable) is
described in its corresponding subsection of this specification.

1

2

3
4

5
6

7
8

9
10

11

12

13

14

15
16
17

18

19
20

21
22

23
24

25
26

27
28

29
30

Chapter 1 Introduction 7

binding region The enclosing region that determines the execution context and limits the scope of
the effects of the bound region is called the binding region.

Binding region is not defined for regions whose binding thread set is all threads
or the encountering thread, nor is it defined for regions whose binding task set is
all tasks.

COMMENTS:

The binding region for an ordered region is the innermost enclosing
loop region.

The binding region for a taskwait region is the innermost enclosing
task region.

For all other regions for which the binding thread set is the current
team or the binding task set is the current team tasks, the binding
region is the innermost enclosing parallel region.

For regions for which the binding task set is the generating task, the
binding region is the region of the generating task.

A parallel region need not be active nor explicit to be a binding
region.

A task region need not be explicit to be a binding region.

A region never binds to any region outside of the innermost enclosing
parallel region.

orphaned construct A construct that gives rise to a region whose binding thread set is the current
team, but is not nested within another construct giving rise to the binding region.

worksharing construct A construct that defines units of work, each of which is executed exactly once by
one of the threads in the team executing the construct.

For C/C++, worksharing constructs are for, sections, and single.

For Fortran, worksharing constructs are do, sections, single and
workshare.

sequential loop A loop that is not associated with any OpenMP loop directive.

place Unordered set of processors that is treated by the execution environment as a
location unit when dealing with OpenMP thread affinity.

place list The ordered list that describes all OpenMP places available to the execution
environment.

1
2

3
4
5

6

7
8

9
10

11
12
13

14
15

16
17

18

19
20

21
22

23
24

25

26
27

28

29
30

31
32

8 OpenMP API • Version 4.0 - July 2013

place partition An ordered list that corresponds to a contiguous interval in the OpenMP place list.
It describes the places currently available to the execution environment for a given
parallel region.

SIMD instruction A single machine instruction that can can operate on multiple data elements.

SIMD lane A software or hardware mechanism capable of processing one data element from a
SIMD instruction.

SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single thread
by means of SIMD instructions.

SIMD loop A loop that includes at least one SIMD chunk.

1.2.3 Synchronization Terminology
barrier A point in the execution of a program encountered by a team of threads, beyond

which no thread in the team may execute until all threads in the team have
reached the barrier and all explicit tasks generated by the team have executed to
completion. If cancellation has been requested, threads may proceed to the end of
the canceled region even if some threads in the team have not reached the barrier.

cancellation An action that cancels (that is, aborts) an OpenMP region and causes executing
implicit or explicit tasks to proceed to the end of the canceled region.

cancellation point A point at which implicit and explicit tasks check if cancellation has been
requested. If cancellation has been observed, they perform the cancellation.

COMMENT: For a list of cancellation points, see Section 2.13.1 on page 140.

1.2.4 Tasking Terminology
task A specific instance of executable code and its data environment, generated when a

thread encounters a task construct or a parallel construct.

task region A region consisting of all code encountered during the execution of a task.

COMMENT: A parallel region consists of one or more implicit task regions.

explicit task A task generated when a task construct is encountered during execution.

implicit task A task generated by an implicit parallel region or generated when a parallel
construct is encountered during execution.

initial task An implicit task associated with an implicit parallel region.

current task For a given thread, the task corresponding to the task region in which it is
executing.

1
2
3

4

5
6

7
8

9

10

11
12
13
14
15

16
17

18
19

20

21

22
23

24

25

26

27
28

29

30
31

Chapter 1 Introduction 9

child task A task is a child task of its generating task region. A child task region is not part
of its generating task region.

sibling tasks Tasks that are child tasks of the same task region.

descendent task A task that is the child task of a task region or of one of its descendent task
regions.

task completion Task completion occurs when the end of the structured block associated with the
construct that generated the task is reached.

COMMENT: Completion of the initial task occurs at program exit.

task scheduling point A point during the execution of the current task region at which it can be
suspended to be resumed later; or the point of task completion, after which the
executing thread may switch to a different task region.

COMMENT: For a list of task scheduling points, see Section 2.11.3 on page 118.

task switching The act of a thread switching from the execution of one task to another task.

tied task A task that, when its task region is suspended, can be resumed only by the same
thread that suspended it. That is, the task is tied to that thread.

untied task A task that, when its task region is suspended, can be resumed by any thread in
the team. That is, the task is not tied to any thread.

undeferred task A task for which execution is not deferred with respect to its generating task
region. That is, its generating task region is suspended until execution of the
undeferred task is completed.

included task A task for which execution is sequentially included in the generating task region.
That is, an included task is undeferred and executed immediately by the
encountering thread.

merged task A task whose data environment, inclusive of ICVs, is the same as that of its
generating task region.

final task A task that forces all of its child tasks to become final and included tasks.

task dependence An ordering relation between two sibling tasks: the dependent task and a
previously generated predecessor task. The task dependence is fulfilled when the
predecessor task has completed.

dependent task A task that because of a task dependence cannot be executed until its predecessor
tasks have completed.

predecessor task A task that must complete before its dependent tasks can be executed.

task synchronization
construct A taskwait, taskgroup, or a barrier construct.

1
2

3

4
5

6
7

8

9
10
11

12

13

14
15

16
17

18
19
20

21
22
23

24
25

26

27
28
29

30
31

32

33

10 OpenMP API • Version 4.0 - July 2013

1.2.5 Data Terminology

variable A named data storage block, whose value can be defined and redefined during the
execution of a program.

Note – An array or structure element is a variable that is part of another variable.

array section A designated subset of the elements of an array.

array item An array, an array section or an array element.

private variable With respect to a given set of task regions or SIMD lanes that bind to the same
parallel region, a variable whose name provides access to a different block of
storage for each task region or SIMD lane.

A variable that is part of another variable (as an array or structure element) cannot
be made private independently of other components.

shared variable With respect to a given set of task regions that bind to the same parallel
region, a variable whose name provides access to the same block of storage for
each task region.

A variable that is part of another variable (as an array or structure element) cannot
be shared independently of the other components, except for static data members
of C++ classes.

threadprivate variable A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of storage for
each thread.

A variable that is part of another variable (as an array or structure element) cannot
be made threadprivate independently of the other components, except for static
data members of C++ classes.

threadprivate memory The set of threadprivate variables associated with each thread.

data environment The variables associated with the execution of a given region.

device data
environment A data environment defined by a target data or target construct.

1

2
3

4

5

6

7
8
9

10
11

12
13
14

15
16
17

18
19
20

21
22
23

24

25

26

27

Chapter 1 Introduction 11

mapped variable An original variable in a data environment with a corresponding variable in a
device data environment.

COMMENT: The original and corresponding variables may share
storage.

mappable type A type that is valid for a mapped variable. If a type is composed from other types
(such as the type of an array or structure element) and any of the other types are
not mappable then the type is not mappable.

COMMENT: Pointer types are mappable but the memory block to
which the pointer refers is not mapped.

For C:
The type must be a complete type.

For C++:
The type must be a complete type.

In addition, for class types:

• All member functions accessed in any target region must appear in a
declare target directive.

• All data members must be non-static.

• A mappable type cannot contain virtual members.

For Fortran:
The type must be definable.

defined For variables, the property of having a valid value.

For C:
For the contents of variables, the property of having a valid value.

For C++:
For the contents of variables of POD (plain old data) type, the property of having
a valid value.

For variables of non-POD class type, the property of having been constructed but
not subsequently destructed.

For Fortran:
For the contents of variables, the property of having a valid value. For the
allocation or association status of variables, the property of having a valid status.

COMMENT: Programs that rely upon variables that are not defined are
non-conforming programs.

class type For C++: Variables declared with one of the class, struct, or union keywords.

1
2

3
4

5
6
7

8
9

10
11

12
13

14

15
16

17

18
19
20
21

22

23
24

25
26
27

28
29

30
31
32

33
34

35

12 OpenMP API • Version 4.0 - July 2013

sequentially consistent
atomic construct An atomic construct for which the seq_cst clause is specified.

non-sequentially
consistent atomic

construct An atomic construct for which the seq_cst clause is not specified.

1.2.6 Implementation Terminology

supporting n levels of
parallelism Implies allowing an active parallel region to be enclosed by n-1 active parallel

regions.

supporting the OpenMP
API Supporting at least one level of parallelism.

supporting nested
parallelism Supporting more than one level of parallelism.

internal control
variable A conceptual variable that specifies runtime behavior of a set of threads or tasks

in an OpenMP program.

COMMENT: The acronym ICV is used interchangeably with the term internal
control variable in the remainder of this specification.

compliant
implementation An implementation of the OpenMP specification that compiles and executes any

conforming program as defined by the specification.

COMMENT: A compliant implementation may exhibit unspecified behavior when
compiling or executing a non-conforming program.

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not
known prior to the compilation or execution of an OpenMP program.

Such unspecified behavior may result from:

• Issues documented by the OpenMP specification as having unspecified
behavior.

• A non-conforming program.

• A conforming program exhibiting an implementation defined behavior.

1

2

3

4
5

6

7

8
9

10
11

12
13

14
15

16
17

18

19
20

21

22

Chapter 1 Introduction 13

implementation
defined Behavior that must be documented by the implementation, and is allowed to vary

among different compliant implementations. An implementation is allowed to
define this behavior as unspecified.

COMMENT: All features that have implementation defined behavior
are documented in Appendix D.

1
2
3

4
5

14 OpenMP API • Version 4.0 - July 2013

1.3 Execution Model
The OpenMP API uses the fork-join model of parallel execution. Multiple threads of
execution perform tasks defined implicitly or explicitly by OpenMP directives. The
OpenMP API is intended to support programs that will execute correctly both as parallel
programs (multiple threads of execution and a full OpenMP support library) and as
sequential programs (directives ignored and a simple OpenMP stubs library). However,
it is possible and permitted to develop a program that executes correctly as a parallel
program but not as a sequential program, or that produces different results when
executed as a parallel program compared to when it is executed as a sequential program.
Furthermore, using different numbers of threads may result in different numeric results
because of changes in the association of numeric operations. For example, a serial
addition reduction may have a different pattern of addition associations than a parallel
reduction. These different associations may change the results of floating-point addition.

An OpenMP program begins as a single thread of execution, called an initial thread. An
initial thread executes sequentially, as if enclosed in an implicit task region, called an
initial task region, that is defined by the implicit parallel region surrounding the whole
program.

The thread that executes the implicit parallel region that surrounds the whole program
executes on the host device. An implementation may support other target devices. If
supported, one or more devices are available to the host device for offloading code and
data. Each device has its own threads that are distinct from threads that execute on
another device. Threads cannot migrate from one device to another device. The
execution model is host-centric such that the host device offloads target regions to
target devices.

The initial thread that executes the implicit parallel region that surrounds the target
region may execute on a target devce. An initial thread executes sequentially, as if
enclosed in an implicit task region, called an initial task region, that is defined by an
implicit inactive parallel region that surrounds the entire target region.

When a target construct is encountered, the target region is executed by the
implicit device task. The task that encounters the target construct waits at the end of
the construct until execution of the region completes. If a target device does not exist, or
the target device is not supported by the implementation, or the target device cannot
execute the target construct then the target region is executed by the host device.

The teams construct creates a league of thread teams where the master thread of each
team executes the region. Each of these master threads is an initial thread, and executes
sequentially, as if enclosed in an implicit task region that is defined by an implicit
parallel region that surrounds the entire teams region.

1

2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17

18
19
20
21
22
23
24

25
26
27
28

29
30
31
32
33

34
35
36
37

Chapter 1 Introduction 15

If a construct creates a data environment, the data environment is created at the time the
construct is encountered. Whether a construct creates a data environment is defined in
the description of the construct.

When any thread encounters a parallel construct, the thread creates a team of itself
and zero or more additional threads and becomes the master of the new team. A set of
implicit tasks, one per thread, is generated. The code for each task is defined by the code
inside the parallel construct. Each task is assigned to a different thread in the team
and becomes tied; that is, it is always executed by the thread to which it is initially
assigned. The task region of the task being executed by the encountering thread is
suspended, and each member of the new team executes its implicit task. There is an
implicit barrier at the end of the parallel construct. Only the master thread resumes
execution beyond the end of the parallel construct, resuming the task region that
was suspended upon encountering the parallel construct. Any number of
parallel constructs can be specified in a single program.

parallel regions may be arbitrarily nested inside each other. If nested parallelism is
disabled, or is not supported by the OpenMP implementation, then the new team that is
created by a thread encountering a parallel construct inside a parallel region
will consist only of the encountering thread. However, if nested parallelism is supported
and enabled, then the new team can consist of more than one thread. A parallel
construct may include a proc_bind clause to specify the places to use for the threads
in the team within the parallel region.

When any team encounters a worksharing construct, the work inside the construct is
divided among the members of the team, and executed cooperatively instead of being
executed by every thread. There is a default barrier at the end of each worksharing
construct unless the nowait clause is present. Redundant execution of code by every
thread in the team resumes after the end of the worksharing construct.

When any thread encounters a task construct, a new explicit task is generated.
Execution of explicitly generated tasks is assigned to one of the threads in the current
team, subject to the thread's availability to execute work. Thus, execution of the new
task could be immediate, or deferred until later according to task scheduling constraints
and thread availability. Threads are allowed to suspend the current task region at a task
scheduling point in order to execute a different task. If the suspended task region is for
a tied task, the initially assigned thread later resumes execution of the suspended task
region. If the suspended task region is for an untied task, then any thread may resume its
execution. Completion of all explicit tasks bound to a given parallel region is guaranteed
before the master thread leaves the implicit barrier at the end of the region. Completion
of a subset of all explicit tasks bound to a given parallel region may be specified through
the use of task synchronization constructs. Completion of all explicit tasks bound to the
implicit parallel region is guaranteed by the time the program exits.

When any thread encounters a simd construct, the iterations of the loop associated with
the construct may be executed concurrently using the SIMD lanes that are available to
the thread.

1
2
3

4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42

16 OpenMP API • Version 4.0 - July 2013

The cancel construct can alter the previously described flow of execution in an
OpenMP region. The effect of the cancel construct depends on its construct-type-
clause. If a task encounters a cancel construct with a taskgroup construct-type-
clause, then the task activates cancellation and continues execution at the end of its
task region, which implies completion of that task. Any other task in that taskgroup
that has begun executing completes execution unless it encounters a cancellation
point construct, in which case it continues execution at the end of its task region,
which implies its completion. Other tasks in that taskgroup region that have not
begun execution are aborted, which implies their completion.

For all other construct-type-clause values, if a thread encounters a cancel construct, it
activates cancellation of the innermost enclosing region of the type specified and the
thread continues execution at the end of that region. Threads check if cancellation has
been activated for their region at cancellation points and, if so, also resume execution at
the end of the canceled region.

If cancellation has been activated regardless of construct-type-clause, threads that are
waiting inside a barrier other than an implicit barrier at the end of the canceled region
exit the barrier and resume execution at the end of the canceled region. This action can
occur before the other threads reach that barrier.

Synchronization constructs and library routines are available in the OpenMP API to
coordinate tasks and data access in parallel regions. In addition, library routines and
environment variables are available to control or to query the runtime environment of
OpenMP programs.

The OpenMP specification makes no guarantee that input or output to the same file is
synchronous when executed in parallel. In this case, the programmer is responsible for
synchronizing input and output statements (or routines) using the provided
synchronization constructs or library routines. For the case where each thread accesses a
different file, no synchronization by the programmer is necessary.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27

28

Chapter 1 Introduction 17

1.4 Memory Model

1.4.1 Structure of the OpenMP Memory Model
The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP
threads have access to a place to store and to retrieve variables, called the memory. In
addition, each thread is allowed to have its own temporary view of the memory. The
temporary view of memory for each thread is not a required part of the OpenMP
memory model, but can represent any kind of intervening structure, such as machine
registers, cache, or other local storage, between the thread and the memory. The
temporary view of memory allows the thread to cache variables and thereby to avoid
going to memory for every reference to a variable. Each thread also has access to
another type of memory that must not be accessed by other threads, called threadprivate
memory.

A directive that accepts data-sharing attribute clauses determines two kinds of access to
variables used in the directive’s associated structured block: shared and private. Each
variable referenced in the structured block has an original variable, which is the variable
by the same name that exists in the program immediately outside the construct. Each
reference to a shared variable in the structured block becomes a reference to the original
variable. For each private variable referenced in the structured block, a new version of
the original variable (of the same type and size) is created in memory for each task or
SIMD lane that contains code associated with the directive. Creation of the new version
does not alter the value of the original variable. However, the impact of attempts to
access the original variable during the region associated with the directive is
unspecified; see Section 2.14.3.3 on page 159 for additional details. References to a
private variable in the structured block refer to the private version of the original
variable for the current task or SIMD lane. The relationship between the value of the
original variable and the initial or final value of the private version depends on the exact
clause that specifies it. Details of this issue, as well as other issues with privatization,
are provided in Section 2.14 on page 146.

The minimum size at which a memory update may also read and write back adjacent
variables that are part of another variable (as array or structure elements) is
implementation defined but is no larger than required by the base language.

A single access to a variable may be implemented with multiple load or store
instructions, and hence is not guaranteed to be atomic with respect to other accesses to
the same variable. Accesses to variables smaller than the implementation defined
minimum size or to C or C++ bit-fields may be implemented by reading, modifying, and
rewriting a larger unit of memory, and may thus interfere with updates of variables or
fields in the same unit of memory.

1

2

3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32
33
34
35
36
37

18 OpenMP API • Version 4.0 - July 2013

If multiple threads write without synchronization to the same memory unit, including
cases due to atomicity considerations as described above, then a data race occurs.
Similarly, if at least one thread reads from a memory unit and at least one thread writes
without synchronization to that same memory unit, including cases due to atomicity
considerations as described above, then a data race occurs. If a data race occurs then the
result of the program is unspecified.

A private variable in a task region that eventually generates an inner nested parallel
region is permitted to be made shared by implicit tasks in the inner parallel region.
A private variable in a task region can be shared by an explicit task region generated
during its execution. However, it is the programmer’s responsibility to ensure through
synchronization that the lifetime of the variable does not end before completion of the
explicit task region sharing it. Any other access by one task to the private variables of
another task results in unspecified behavior.

1.4.2 Device Data Environments
When an OpenMP program begins, each device has an initial device data environment.
The initial device data environment for the host device is the data environment
associated with the initial task region. Directives that accept data-mapping attribute
clauses determine how an original variable is mapped to a corresponding variable in a
device data environment. The original variable is the variable with the same name that
exists in the data environment of the task that encounters the directive.

If a corresponding variable is present in the enclosing device data environment, the new
device data environment inherits the corresponding variable from the enclosing device
data environment. If a corresponding variable is not present in the enclosing device data
environment, a new corresponding variable (of the same type and size) is created in the
new device data environment. In the latter case, the initial value of the new
corresponding variable is determined from the clauses and the data environment of the
encountering thread.

The corresponding variable in the device data environment may share storage with the
original variable. Writes to the corresponding variable may alter the value of the original
variable. The impact of this on memory consistency is discussed in Section 1.4.4 on
page 20. When a task executes in the context of a device data environment, references to
the original variable refer to the corresponding variable in the device data environment.

The relationship between the value of the original variable and the initial or final value
of the corresponding variable depends on the map-type. Details of this issue, as well as
other issues with mapping a variable, are provided in Section 2.14.5 on page 177.

The original variable in a data environment and the corresponding variable(s) in one or
more device data environments may share storage. Without intervening synchronization
data races can occur.

1
2
3
4
5
6

7
8
9

10
11
12
13

14

15
16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31
32

33
34
35

36
37
38

Chapter 1 Introduction 19

1.4.3 The Flush Operation
The memory model has relaxed-consistency because a thread’s temporary view of
memory is not required to be consistent with memory at all times. A value written to a
variable can remain in the thread’s temporary view until it is forced to memory at a later
time. Likewise, a read from a variable may retrieve the value from the thread’s
temporary view, unless it is forced to read from memory. The OpenMP flush operation
enforces consistency between the temporary view and memory.

The flush operation is applied to a set of variables called the flush-set. The flush
operation restricts reordering of memory operations that an implementation might
otherwise do. Implementations must not reorder the code for a memory operation for a
given variable, or the code for a flush operation for the variable, with respect to a flush
operation that refers to the same variable.

If a thread has performed a write to its temporary view of a shared variable since its last
flush of that variable, then when it executes another flush of the variable, the flush does
not complete until the value of the variable has been written to the variable in memory.
If a thread performs multiple writes to the same variable between two flushes of that
variable, the flush ensures that the value of the last write is written to the variable in
memory. A flush of a variable executed by a thread also causes its temporary view of the
variable to be discarded, so that if its next memory operation for that variable is a read,
then the thread will read from memory when it may again capture the value in the
temporary view. When a thread executes a flush, no later memory operation by that
thread for a variable involved in that flush is allowed to start until the flush completes.
The completion of a flush of a set of variables executed by a thread is defined as the
point at which all writes to those variables performed by the thread before the flush are
visible in memory to all other threads and that thread’s temporary view of all variables
involved is discarded.

The flush operation provides a guarantee of consistency between a thread’s temporary
view and memory. Therefore, the flush operation can be used to guarantee that a value
written to a variable by one thread may be read by a second thread. To accomplish this,
the programmer must ensure that the second thread has not written to the variable since
its last flush of the variable, and that the following sequence of events happens in the
specified order:

1. The value is written to the variable by the first thread.

2. The variable is flushed by the first thread.

3. The variable is flushed by the second thread.

4. The value is read from the variable by the second thread.

1

2
3
4
5
6
7

8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32

33

34

35

36

20 OpenMP API • Version 4.0 - July 2013

Note – OpenMP synchronization operations, described in Section 2.12 on page 120 and
in Section 3.3 on page 224, are recommended for enforcing this order. Synchronization
through variables is possible but is not recommended because the proper timing of
flushes is difficult.

1.4.4 OpenMP Memory Consistency
The restrictions in Section 1.4.3 on page 19 on reordering with respect to flush
operations guarantee the following:

• If the intersection of the flush-sets of two flushes performed by two different threads
is non-empty, then the two flushes must be completed as if in some sequential order,
seen by all threads.

• If two operations performed by the same thread either access, modify, or flush the
same variable, then they must be completed as if in that thread's program order, as
seen by all threads.

• If the intersection of the flush-sets of two flushes is empty, the threads can observe
these flushes in any order.

The flush operation can be specified using the flush directive, and is also implied at
various locations in an OpenMP program: see Section 2.12.7 on page 134 for details.

Note – Since flush operations by themselves cannot prevent data races, explicit flush
operations are only useful in combination with non-sequentially consistent atomic
directives.

OpenMP programs that:

• do not use non-sequentially consistent atomic directives,

• do not rely on the accuracy of a false result from omp_test_lock and
omp_test_nest_lock, and

• correctly avoid data races as required in Section 1.4.1 on page 17

behave as though operations on shared variables were simply interleaved in an order
consistent with the order in which they are performed by each thread. The relaxed
consistency model is invisible for such programs, and any explicit flush operations in
such programs are redundant.

1
2
3
4

5

6
7

8
9

10

11
12
13

14
15

16
17

18
19
20

21

22

23
24

25

26
27
28
29

Chapter 1 Introduction 21

Implementations are allowed to relax the ordering imposed by implicit flush operations
when the result is only visible to programs using non-sequentially consistent atomic
directives.

1.5 OpenMP Compliance
An implementation of the OpenMP API is compliant if and only if it compiles and
executes all conforming programs according to the syntax and semantics laid out in
Chapters 1, 2, 3 and 4. Appendices A, B, C, D, E and F and sections designated as Notes
(see Section 1.7 on page 23) are for information purposes only and are not part of the
specification.

The OpenMP API defines constructs that operate in the context of the base language that
is supported by an implementation. If the base language does not support a language
construct that appears in this document, a compliant OpenMP implementation is not
required to support it, with the exception that for Fortran, the implementation must
allow case insensitivity for directive and API routines names, and must allow identifiers
of more than six characters.

All library, intrinsic and built-in routines provided by the base language must be thread-
safe in a compliant implementation. In addition, the implementation of the base
language must also be thread-safe. For example, ALLOCATE and DEALLOCATE
statements must be thread-safe in Fortran. Unsynchronized concurrent use of such
routines by different threads must produce correct results (although not necessarily the
same as serial execution results, as in the case of random number generation routines).

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute
implicitly. This is not the case in Fortran 77. However, a compliant OpenMP Fortran
implementation must give such a variable the SAVE attribute, regardless of the
underlying base language version.

Appendix D lists certain aspects of the OpenMP API that are implementation defined. A
compliant implementation is required to define and document its behavior for each of
the items in Appendix D.

1
2
3

4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24
25

26
27
28

22 OpenMP API • Version 4.0 - July 2013

1.6 Normative References

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++.

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003. The
following features are not supported:

• IEEE Arithmetic issues covered in Fortran 2003 Section 14

• Allocatable enhancement

• Parameterized derived types

• Finalization

• Procedures bound by name to a type

• The PASS attribute

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

Chapter 1 Introduction 23

• Procedures bound to a type as operators

• Type extension

• Overriding a type-bound procedure

• Polymorphic entities

• SELECT TYPE construct

• Deferred bindings and abstract types

• Controlling IEEE underflow

• Another IEEE class value

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to
the base language supported by the implementation.

1.7 Organization of this document
The remainder of this document is structured as follows:

• Chapter 2 “Directives”

• Chapter 3 “Runtime Library Routines”

• Chapter 4 “Environment Variables”

• Appendix A “Stubs for Runtime Library Routines”

• Appendix B “OpenMP C and C++ Grammar”

• Appendix C “Interface Declarations”

• Appendix D “OpenMP Implementation-Defined Behaviors”

• Appendix E “Features History”

Some sections of this document only apply to programs written in a certain base
language. Text that applies only to programs whose base language is C or C++ is shown
as follows:

C/C++

C/C++
C/C++ specific text...

Text that applies only to programs whose base language is C only is shown as follows:

C

C
C specific text...

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21
22
23

24

25

26

24 OpenMP API • Version 4.0 - July 2013

Text that applies only to programs whose base language is C90 only is shown as
follows:

C90

C90

C90 specific text...

Text that applies only to programs whose base language is C99 only is shown as
follows:

C99

C99

C99 specific text...

Text that applies only to programs whose base language is C++ only is shown as
follows:

C++

C++

C++ specific text...

Text that applies only to programs whose base language is Fortran is shown as follows:

Fortran

Fortran

Fortran specific text......

Where an entire page consists of, for example, Fortran specific text, a marker is shown

Fortran (cont.)
at the top of the page like this:

Some text is for information only, and is not part of the normative specification. Such
text is designated as a note, like this:

Note – Non-normative text....

1
2

3

4
5

6

7
8

9

10

11

12
13

14
15

16

25

CHAPTER 2

Directives

This chapter describes the syntax and behavior of OpenMP directives, and is divided
into the following sections:

• The language-specific directive format (Section 2.1 on page 26)

• Mechanisms to control conditional compilation (Section 2.2 on page 32)

• How to specify and to use array sections for all base languages (Section 2.4 on page
42)

• Control of OpenMP API ICVs (Section 2.3 on page 34)

• Details of each OpenMP directive (Section 2.5 on page 44 to Section 2.16 on page
186)

C/C++
In C/C++, OpenMP directives are specified by using the #pragma mechanism provided

C/C++
by the C and C++ standards.

Fortran

In Fortran, OpenMP directives are specified by using special comments that are
identified by unique sentinels. Also, a special comment form is available for conditional

Fortran

compilation.

Compilers can therefore ignore OpenMP directives and conditionally compiled code if
support of the OpenMP API is not provided or enabled. A compliant implementation
must provide an option or interface that ensures that underlying support of all OpenMP
directives and OpenMP conditional compilation mechanisms is enabled. In the
remainder of this document, the phrase OpenMP compilation is used to mean a
compilation with these OpenMP features enabled.

1

2

3
4

5

6

7
8

9

10
11

12
13

14
15
16

17
18
19
20
21
22

26 OpenMP API • Version 4.0 - July 2013

Fortran

Restrictions

The following restriction applies to all OpenMP directives:

Fortran

• OpenMP directives may not appear in PURE or ELEMENTAL procedures.

2.1 Directive Format

C/C++
OpenMP directives for C/C++ are specified with the pragma preprocessing directive.
The syntax of an OpenMP directive is formally specified by the grammar in
Appendix B, and informally as follows:

Each directive starts with #pragma omp. The remainder of the directive follows the
conventions of the C and C++ standards for compiler directives. In particular, white
space can be used before and after the #, and sometimes white space must be used to
separate the words in a directive. Preprocessing tokens following the #pragma omp
are subject to macro replacement.

Some OpenMP directives may be composed of consecutive #pragma preprocessing
directives if specified in their syntax.

Directives are case-sensitive.

An OpenMP executable directive applies to at most one succeeding statement, which

C/C++
must be a structured block.

Fortran

OpenMP directives for Fortran are specified as follows:

All OpenMP compiler directives must begin with a directive sentinel. The format of a
sentinel differs between fixed and free-form source files, as described in Section 2.1.1
on page 27 and Section 2.1.2 on page 28.

#pragma omp directive-name [clause[[,] clause]...] new-line

sentinel directive-name [clause[[,] clause]...]

1

2

3

4

5
6
7

8
9

10
11
12

13
14

15

16
17

18

19
20
21

22

Chapter 2 Directives 27

Directives are case insensitive. Directives cannot be embedded within continued
statements, and statements cannot be embedded within directives.

In order to simplify the presentation, free form is used for the syntax of OpenMP

Fortran

directives for Fortran in the remainder of this document, except as noted.

Only one directive-name can be specified per directive (note that this includes combined
directives, see Section 2.10 on page 95). The order in which clauses appear on directives
is not significant. Clauses on directives may be repeated as needed, subject to the
restrictions listed in the description of each clause.

Some data-sharing attribute clauses (Section 2.14.3 on page 155), data copying clauses
(Section 2.14.4 on page 173), the threadprivate directive (Section 2.14.2 on page
150) and the flush directive (Section 2.12.7 on page 134) accept a list. A list consists
of a comma-separated collection of one or more list items.

C/C++
A list item is a variable or array section, subject to the restrictions specified in
Section 2.4 on page 42 and in each of the sections describing clauses and directives for

C/C++
which a list appears.

Fortran

A list item is a variable, array section or common block name (enclosed in slashes),
subject to the restrictions specified in Section 2.4 on page 42 and in each of the sections

Fortran

describing clauses and directives for which a list appears.

Fortran

2.1.1 Fixed Source Form Directives
The following sentinels are recognized in fixed form source files:

Sentinels must start in column 1 and appear as a single word with no intervening
characters. Fortran fixed form line length, white space, continuation, and column rules
apply to the directive line. Initial directive lines must have a space or zero in column 6,
and continuation directive lines must have a character other than a space or a zero in
column 6.

!$omp | c$omp | *$omp

1
2

3
4

5
6
7
8

9
10
11
12

13
14
15

16
17
18

19

20

21

22
23
24
25
26

28 OpenMP API • Version 4.0 - July 2013

Fortran (cont.)

Comments may appear on the same line as a directive. The exclamation point initiates a
comment when it appears after column 6. The comment extends to the end of the source
line and is ignored. If the first non-blank character after the directive sentinel of an
initial or continuation directive line is an exclamation point, the line is ignored.

Note – in the following example, the three formats for specifying the directive are
equivalent (the first line represents the position of the first 9 columns):

c23456789

!$omp parallel do shared(a,b,c)

c$omp parallel do

c$omp+shared(a,b,c)

c$omp paralleldoshared(a,b,c)

2.1.2 Free Source Form Directives

The following sentinel is recognized in free form source files:

The sentinel can appear in any column as long as it is preceded only by white space
(spaces and tab characters). It must appear as a single word with no intervening
character. Fortran free form line length, white space, and continuation rules apply to the
directive line. Initial directive lines must have a space after the sentinel. Continued
directive lines must have an ampersand (&) as the last non-blank character on the line,
prior to any comment placed inside the directive. Continuation directive lines can have
an ampersand after the directive sentinel with optional white space before and after the
ampersand.

Comments may appear on the same line as a directive. The exclamation point (!)
initiates a comment. The comment extends to the end of the source line and is ignored.
If the first non-blank character after the directive sentinel is an exclamation point, the
line is ignored.

!$omp

1
2
3
4

5

6
7

8

9

10

11

12

13

14

15

16

17
18
19
20
21
22
23
24

25
26
27
28

Chapter 2 Directives 29

Fortran (cont.)

One or more blanks or horizontal tabs must be used to separate adjacent keywords in
directives in free source form, except in the following cases, where white space is
optional between the given set of keywords:

declare reduction

declare simd

declare target

distribute parallel do

distribute parallel do simd

distribute simd

do simd

end atomic

end critical

end distribute

end distribute parallel do

end distribute parallel do simd

end distribute simd

end do

end do simd

end master

end ordered

end parallel

end parallel do

end parallel do simd

end parallel sections

end parallel workshare

end sections

end simd

1
2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

30 OpenMP API • Version 4.0 - July 2013

Fortran (cont.)

end single

end target

end target data

end target teams

end target teams distribute

end target teams distribute parallel do

end target teams distribute parallel do simd

end target teams distribute simd

end task

end task group

end teams

end teams distribute

end teams distribute parallel do

end teams distribute parallel do simd

end teams distribute simd

end workshare

parallel do

parallel do simd

parallel sections

parallel workshare

target data

target teams

target teams distribute

target teams distribute parallel do

target teams distribute parallel do simd

target teams distribute simd

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Chapter 2 Directives 31

target update

teams distribute

teams distribute parallel do

teams distribute parallel do simd

teams distribute simd

Note – in the following example the three formats for specifying the directive are
equivalent (the first line represents the position of the first 9 columns):

!23456789

 !$omp parallel do &

 !$omp shared(a,b,c)

 !$omp parallel &

 !$omp&do shared(a,b,c)

!$omp paralleldo shared(a,b,c)

Fortran

2.1.3 Stand-Alone Directives

Summary

Stand-alone directives are executable directives that have no associated user code.

Description

Stand-alone directives do not have any associated executable user code. Instead, they
represent executable statements that typically do not have succinct equivalent statements
in the base languages. There are some restrictions on the placement of a stand-alone
directive within a program. A stand-alone directive may be placed only at a point where
a base language executable statement is allowed.

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22
23
24
25

32 OpenMP API • Version 4.0 - July 2013

Restrictions

C/C++
For C/C++, a stand-alone directive may not be used in place of the statement following

C/C++
an if, while, do, switch, or label. See Appendix B for the formal grammar.

Fortran

For Fortran, a stand-alone directive may not be used as the action statement in an if
statement or as the executable statement following a label if the label is referenced in

Fortran

the program.

2.2 Conditional Compilation
In implementations that support a preprocessor, the _OPENMP macro name is defined to
have the decimal value yyyymm where yyyy and mm are the year and month designations
of the version of the OpenMP API that the implementation supports.

If this macro is the subject of a #define or a #undef preprocessing directive, the
behavior is unspecified.

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in
the following sections.

2.2.1 Fixed Source Form Conditional Compilation
Sentinels
The following conditional compilation sentinels are recognized in fixed form source
files:

To enable conditional compilation, a line with a conditional compilation sentinel must
satisfy the following criteria:

• The sentinel must start in column 1 and appear as a single word with no intervening
white space.

!$ | *$ | c$

1

2
3

4
5
6

7

8
9

10

11
12

13
14

15

16

17
18

19
20

21
22

Chapter 2 Directives 33

Fortran (cont.)

• After the sentinel is replaced with two spaces, initial lines must have a space or zero
in column 6 and only white space and numbers in columns 1 through 5.

• After the sentinel is replaced with two spaces, continuation lines must have a
character other than a space or zero in column 6 and only white space in columns 1
through 5.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not
met, the line is left unchanged.

Note – in the following example, the two forms for specifying conditional compilation
in fixed source form are equivalent (the first line represents the position of the first 9
columns):

c23456789

!$ 10 iam = omp_get_thread_num() +

!$ & index

#ifdef _OPENMP

 10 iam = omp_get_thread_num() +

 & index

#endif

2.2.2 Free Source Form Conditional Compilation
Sentinel
The following conditional compilation sentinel is recognized in free form source files:

To enable conditional compilation, a line with a conditional compilation sentinel must
satisfy the following criteria:

• The sentinel can appear in any column but must be preceded only by white space.

• The sentinel must appear as a single word with no intervening white space.

• Initial lines must have a space after the sentinel.

!$

1
2

3
4
5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

34 OpenMP API • Version 4.0 - July 2013

• Continued lines must have an ampersand as the last non-blank character on the line,
prior to any comment appearing on the conditionally compiled line. Continued lines
can have an ampersand after the sentinel, with optional white space before and after
the ampersand.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not
met, the line is left unchanged.

Note – in the following example, the two forms for specifying conditional compilation
in free source form are equivalent (the first line represents the position of the first 9
columns):

c23456789

 !$ iam = omp_get_thread_num() + &

 !$& index

#ifdef _OPENMP

 iam = omp_get_thread_num() + &

 index

#endif

Fortran

2.3 Internal Control Variables
An OpenMP implementation must act as if there are internal control variables (ICVs)
that control the behavior of an OpenMP program. These ICVs store information such as
the number of threads to use for future parallel regions, the schedule to use for
worksharing loops and whether nested parallelism is enabled or not. The ICVs are given
values at various times (described below) during the execution of the program. They are
initialized by the implementation itself and may be given values through OpenMP
environment variables and through calls to OpenMP API routines. The program can
retrieve the values of these ICVs only through OpenMP API routines.

For purposes of exposition, this document refers to the ICVs by certain names, but an
implementation is not required to use these names or to offer any way to access the
variables other than through the ways shown in Section 2.3.2 on page 36.

1
2
3
4

5
6

7
8
9

10

11

12

13

14

15

16

17

18

19

20
21
22
23
24
25
26
27

28
29
30

Chapter 2 Directives 35

2.3.1 ICV Descriptions
The following ICVs store values that affect the operation of parallel regions.

• dyn-var - controls whether dynamic adjustment of the number of threads is enabled
for encountered parallel regions. There is one copy of this ICV per data
environment.

• nest-var - controls whether nested parallelism is enabled for encountered parallel
regions. There is one copy of this ICV per data environment.

• nthreads-var - controls the number of threads requested for encountered parallel
regions. There is one copy of this ICV per data environment.

• thread-limit-var - controls the maximum number of threads participating in the
contention group. There is one copy of this ICV per data environment.

• max-active-levels-var - controls the maximum number of nested active parallel
regions. There is one copy of this ICV per device.

• place-partition-var – controls the place partition available to the execution
environment for encountered parallel regions. There is one copy of this ICV per
implicit task.

• active-levels-var - the number of nested, active parallel regions enclosing the current
task such that all of the parallel regions are enclosed by the outermost initial task
region on the current device. There is one copy of this ICV per data environment.

• levels-var - the number of nested parallel regions enclosing the current task such that
all of the parallel regions are enclosed by the outermost initial task region on the
current device. There is one copy of this ICV per data environment.

• bind-var - controls the binding of OpenMP threads to places. When binding is
requested, the variable indicates that the execution environment is advised not to
move threads between places. The variable can also provide default thread affinity
policies. There is one copy of this ICV per data environment.

The following ICVs store values that affect the operation of loop regions.

• run-sched-var - controls the schedule that the runtime schedule clause uses for
loop regions. There is one copy of this ICV per data environment.

• def-sched-var - controls the implementation defined default scheduling of loop
regions. There is one copy of this ICV per device.

The following ICVs store values that affect the program execution.

• stacksize-var - controls the stack size for threads that the OpenMP implementation
creates. There is one copy of this ICV per device.

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy
of this ICV per device.

• cancel-var - controls the desired behavior of the cancel construct and cancellation
points. There is one copy of the ICV for the whole program (the scope is global).

1

2

3
4
5

6
7

8
9

10
11

12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27

28
29

30
31

32

33
34

35
36

37
38

36 OpenMP API • Version 4.0 - July 2013

• default-device-var - controls the default target device. There is one copy of this ICV
per data environment.

2.3.2 ICV Initialization
The following table shows the ICVs, associated environment variables, and initial
values:

Comments:
• Each device has its own ICVs.

• The value of the nthreads-var ICV is a list.

• The value of the bind-var ICV is a list.

• The initial value of dyn-var is implementation defined if the implementation supports
dynamic adjustment of the number of threads; otherwise, the initial value is false.

• The initial value of max-active-levels-var is the number of levels of parallelism that
the implementation supports. See the definition of supporting n levels of parallelism
in Section 1.2.6 on page 12 for further details.

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See comments below

nest-var OMP_NESTED false

nthreads-var OMP_NUM_THREADS Implementation defined

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS See comments below

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

cancel-var OMP_CANCELLATION false

default-device-var OMP_DEFAULT_DEVICE Implementation defined

1
2

3

4
5

6

7

8

9

10
11

12
13
14

Chapter 2 Directives 37

The host and target device ICVs are initialized before any OpenMP API construct or
OpenMP API routine executes. After the initial values are assigned, the values of any
OpenMP environment variables that were set by the user are read and the associated
ICVs for the host device are modified accordingly. The method for initializing a target
device's ICVs is implementation defined.

Cross References:
• OMP_SCHEDULE environment variable, see Section 4.1 on page 238.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 239.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 240.

• OMP_PROC_BIND environment variable, see Section 4.4 on page 241.

• OMP_PLACES environment variable, see Section 4.5 on page 241.

• OMP_NESTED environment variable, see Section 4.6 on page 243.

• OMP_STACKSIZE environment variable, see Section 4.7 on page 244.

• OMP_WAIT_POLICY environment variable, see Section 4.8 on page 245.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 245.

• OMP_THREAD_LIMIT environment variable, see Section 4.10 on page 246.

• OMP_CANCELLATION environment variable, see Section 4.11 on page 246.

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 248.

2.3.3 Modifying and Retrieving ICV Values
The following table shows the method for modifying and retrieving the values of ICVs
through OpenMP API routines:

ICV Ways to modify value Way to retrieve value

dyn-var omp_set_dynamic() omp_get_dynamic()

nest-var omp_set_nested() omp_get_nested()

nthreads-var omp_set_num_threads() omp_get_max_threads()

run-sched-var omp_set_schedule() omp_get_schedule()

def-sched-var (none) (none)

bind-var (none) omp_get_proc_bind()

stacksize-var (none) (none)

wait-policy-var (none) (none)

thread-limit-var thread_limit clause omp_get_thread_limit()

1
2
3
4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

38 OpenMP API • Version 4.0 - July 2013

Comments:
• The value of the nthreads-var ICV is a list. The runtime call

omp_set_num_threads() sets the value of the first element of this list, and
omp_get_max_threads() retrieves the value of the first element of this list.

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind()
retrieves the value of the first element of this list.

Cross References:
• thread_limit clause of the teams construct, see Section 2.9.5 on page 86.

• omp_set_num_threads routine, see Section 3.2.1 on page 189.

• omp_get_max_threads routine, see Section 3.2.3 on page 192.

• omp_set_dynamic routine, see Section 3.2.7 on page 197.

• omp_get_dynamic routine, see Section 3.2.8 on page 198.

• omp_get_cancellation routine, see Section 3.2.9 on page 199.

• omp_set_nested routine, see Section 3.2.10 on page 200.

• omp_get_nested routine, see Section 3.2.11 on page 201.

• omp_set_schedule routine, see Section 3.2.12 on page 203.

• omp_get_schedule routine, see Section 3.2.13 on page 205.

• omp_get_thread_limit routine, see Section 3.2.14 on page 206.

• omp_set_max_active_levels routine, see Section 3.2.15 on page 207.

• omp_get_max_active_levels routine, see Section 3.2.16 on page 209.

• omp_get_level routine, see Section 3.2.17 on page 210.

• omp_get_active_level routine, see Section 3.2.20 on page 214.

• omp_get_proc_bind routine, see Section 3.2.22 on page 216

• omp_set_default_device routine, see Section 3.2.23 on page 218.

• omp_get_default_device routine, see Section 3.2.24 on page 219.

max-active-levels-var omp_set_max_active_levels() omp_get_max_active_levels()

active-levels-var (none) omp_get_active_levels()

levels-var (none) omp_get_level()

place-partition-var (none) (none)

cancel-var (none) omp_get_cancellation()

default-device-var omp_set_default_device() omp_get_default_device()

ICV Ways to modify value Way to retrieve value

1

2
3
4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Chapter 2 Directives 39

2.3.4 How ICVs are Scoped
The following table shows the ICVs and their scope::

Comments:
• There is one copy per device of each ICV with device scope

• Each data environment has its own copies of ICVs with data environment scope

• Each implicit task has its own copy of ICVs with implicit task scope

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the
data environment of their binding tasks.

2.3.4.1 How the Per-Data Environment ICVs Work

When a task construct or parallel construct is encountered, the generated task(s)
inherit the values of the data environment scoped ICVs from the generating task's ICV
values.

When a task construct is encountered, the generated task inherits the value of
nthreads-var from the generating task's nthreads-var value. When a parallel
construct is encountered, and the generating task's nthreads-var list contains a single

ICV Scope

dyn-var data environment

nest-var data environment

nthreads-var data environment

run-sched-var data environment

def-sched-var device

bind-var data environment

stacksize-var device

wait-policy-var device

thread-limit-var data environment

max-active-levels-var device

active-levels-var data environment

levels-var data environment

place-partition-var implicit task

cancel-var device

default-device-var data environment

1

2

3

4

5

6

7
8

9

10
11
12

13
14
15

40 OpenMP API • Version 4.0 - July 2013

element, the generated task(s) inherit that list as the value of nthreads-var. When a
parallel construct is encountered, and the generating task's nthreads-var list contains
multiple elements, the generated task(s) inherit the value of nthreads-var as the list
obtained by deletion of the first element from the generating task's nthreads-var value.
The bind-var ICV is handled in the same way as the nthreads-var ICV.

When a device construct is encountered, the new device data environment inherits the
values of the data environment scoped ICVs from the enclosing device data environment
of the device that will execute the region. If a teams construct with a thread_limit
clause is encountered, the thread-limit-var ICV of the new device data environment is
not inherited but instead is set to a value that is less than or equal to the value specified
in the clause.

When encountering a loop worksharing region with schedule(runtime), all
implicit task regions that constitute the binding parallel region must have the same value
for run-sched-var in their data environments. Otherwise, the behavior is unspecified.

2.3.5 ICV Override Relationships
The override relationships among construct clauses and ICVs are shown in the following
table:

ICV construct clause, if used

dyn-var (none)

nest-var (none)

nthreads-var num_threads

run-sched-var schedule

def-sched-var schedule

bind-var proc_bind

stacksize-var (none)

wait-policy-var (none)

thread-limit-var (none)

max-active-levels-var (none)

active-levels-var (none)

levels-var (none)

place-partition-var (none)

cancel-var (none)

default-device-var (none)

1
2
3
4
5

6
7
8
9

10
11

12
13
14

15

16
17

Chapter 2 Directives 41

Comments:
• The num_threads clause overrides the value of the first element of the

nthreads-var ICV.

• If bind-var is not set to false then the proc_bind clause overrides the value of the
first elements of the bind-var ICV; otherwise, the proc_bind clause has no effect.

Cross References:
• parallel construct, see Section 2.5 on page 44.

• proc_bind clause, Section 2.5 on page 44.

• num_threads clause, see Section 2.5.1 on page 47.

• Loop construct, see Section 2.7.1 on page 53.

• schedule clause, see Section 2.7.1.1 on page 59.

1

2
3

4
5

6

7

8

9

10

11

42 OpenMP API • Version 4.0 - July 2013

2.4 Array Sections
An array section designates a subset of the elements in an array. An array section can
appear only in clauses where it is explicitly allowed.

C/C++
To specify an array section in an OpenMP construct, array subscript expressions are
extended with the following syntax:

[lower-bound : length] or

[lower-bound :] or

[: length] or

[:]

The array section must be a subset of the original array.

Array sections are allowed on multidimensional arrays. Base language array subscript
expressions can be used to specify length-one dimensions of multidimensional array
sections.

The lower-bound and length are integral type expressions. When evaluated they
represent a set of integer values as follows:

{ lower-bound, lower-bound + 1, lower-bound + 2,... , lower-bound + length - 1 }

The lower-bound and length must evaluate to non-negative integers.

When the size of the array dimension is not known, the length must be specified
explicitly.

When the length is absent, it defaults to the size of the array dimension minus the
lower-bound.

When the lower-bound is absent it defaults to 0.

1

2
3

4
5

6

7

8

9

10

11
12
13

14
15

16

17

18
19

20
21

22

Chapter 2 Directives 43

Note – The following are examples of array sections:
a[0:6]

a[:6]

a[1:10]

a[1:]

b[10][:][:0]

c[1:10][42][0:6]

The first two examples are equivalent. If a is declared to be an eleven element array, the
third and fourth examples are equivalent. The fifth example is a zero-length array
section. The last example is not contiguous.

C/C++

Fortran

Fortran has built-in support for array sections but the following restrictions apply for
OpenMP constructs:

• A stride expression may not be specified.

• The upper bound for the last dimension of an assumed-size dummy array must be

Fortran

specified.

Restrictions

Restrictions to array sections are as follows:

• An array section can appear only in clauses where it is explicitly allowed.

C/C++
• An array section can only be specified for a base language identifier.

• The type of the variable appearing in an array section must be array, pointer,

C/C++
reference to array, or reference to pointer.

C++

C++

• An array section cannot be used in a C++ user-defined []-operator.

1
2
3
4
5
6
7
8
9

10
11

12

13
14

15

16
17

18

19

20

21

22
23

24

44 OpenMP API • Version 4.0 - July 2013

2.5 parallel Construct

Summary

This fundamental construct starts parallel execution. See Section 1.3 on page 14 for a
general description of the OpenMP execution model.

Syntax

C/C++
The syntax of the parallel construct is as follows:

where clause is one of the following:

C/C++

#pragma omp parallel [clause[[,]clause] ...] new-line
structured-block

if(scalar-expression)

num_threads(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(redution-identifier :list)

proc_bind(master | close | spread)

1

2

3
4

5

6

7

8

Chapter 2 Directives 45

Fortran

The syntax of the parallel construct is as follows:

where clause is one of the following:

Fortran

The end parallel directive denotes the end of the parallel construct.

Binding

The binding thread set for a parallel region is the encountering thread. The
encountering thread becomes the master thread of the new team.

Description

When a thread encounters a parallel construct, a team of threads is created to
execute the parallel region (see Section 2.5.1 on page 47 for more information about
how the number of threads in the team is determined, including the evaluation of the if
and num_threads clauses). The thread that encountered the parallel construct
becomes the master thread of the new team, with a thread number of zero for the
duration of the new parallel region. All threads in the new team, including the
master thread, execute the region. Once the team is created, the number of threads in the
team remains constant for the duration of that parallel region.

!$omp parallel [clause[[,] clause]...]
structured-block

!$omp end parallel

if(scalar-logical-expression)

num_threads(scalar-integer-expression)

default(private | firstprivate | shared | none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

1

2

3

4

5
6

7

8
9

10
11
12
13
14
15

46 OpenMP API • Version 4.0 - July 2013

The optional proc_bind clause, described in Section 2.5.2 on page 49, specifies the
mapping of OpenMP threads to places within the current place partition, that is, within
the places listed in the place-partition-var ICV for the implicit task of the encountering
thread.

Within a parallel region, thread numbers uniquely identify each thread. Thread
numbers are consecutive whole numbers ranging from zero for the master thread up to
one less than the number of threads in the team. A thread may obtain its own thread
number by a call to the omp_get_thread_num library routine.

A set of implicit tasks, equal in number to the number of threads in the team, is
generated by the encountering thread. The structured block of the parallel construct
determines the code that will be executed in each implicit task. Each task is assigned to
a different thread in the team and becomes tied. The task region of the task being
executed by the encountering thread is suspended and each thread in the team executes
its implicit task. Each thread can execute a path of statements that is different from that
of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a
task scheduling point, and switch to execute any explicit task generated by any of the
threads in the team, before eventually resuming execution of the implicit task (for more
details see Section 2.11 on page 113).

There is an implied barrier at the end of a parallel region. After the end of a
parallel region, only the master thread of the team resumes execution of the
enclosing task region.

If a thread in a team executing a parallel region encounters another parallel
directive, it creates a new team, according to the rules in Section 2.5.1 on page 47, and
it becomes the master of that new team.

If execution of a thread terminates while inside a parallel region, execution of all
threads in all teams terminates. The order of termination of threads is unspecified. All
work done by a team prior to any barrier that the team has passed in the program is
guaranteed to be complete. The amount of work done by each thread after the last
barrier that it passed and before it terminates is unspecified.

Restrictions

Restrictions to the parallel construct are as follows:

• A program that branches into or out of a parallel region is non-conforming.

• A program must not depend on any ordering of the evaluations of the clauses of the
parallel directive, or on any side effects of the evaluations of the clauses.

• At most one if clause can appear on the directive.

• At most one proc_bind clause can appear on the directive.

1
2
3
4

5
6
7
8

9
10
11
12
13
14
15

16
17
18
19

20
21
22

23
24
25

26
27
28
29
30

31

32

33

34
35

36

37

Chapter 2 Directives 47

• At most one num_threads clause can appear on the directive. The num_threads
expression must evaluate to a positive integer value.

C/C++
• A throw executed inside a parallel region must cause execution to resume

within the same parallel region, and the same thread that threw the exception

C/C++
must catch it.

Fortran

• Unsynchronized use of Fortran I/O statements by multiple threads on the same unit

Fortran

has unspecified behavior.

Cross References

• default, shared, private, firstprivate, and reduction clauses, see
Section 2.14.3 on page 155.

• copyin clause, see Section 2.14.4 on page 173.

• omp_get_thread_num routine, see Section 3.2.4 on page 193.

2.5.1 Determining the Number of Threads for a
parallel Region
When execution encounters a parallel directive, the value of the if clause or
num_threads clause (if any) on the directive, the current parallel context, and the
values of the nthreads-var, dyn-var, thread-limit-var, max-active-levels-var, and nest-var
ICVs are used to determine the number of threads to use in the region.

Note that using a variable in an if or num_threads clause expression of a
parallel construct causes an implicit reference to the variable in all enclosing
constructs. The if clause expression and the num_threads clause expression are
evaluated in the context outside of the parallel construct, and no ordering of those
evaluations is specified. It is also unspecified whether, in what order, or how many times
any side effects of the evaluation of the num_threads or if clause expressions occur.

1
2

3
4
5

6
7

8

9
10

11

12

13

14

15
16
17
18

19
20
21
22
23
24

48 OpenMP API • Version 4.0 - July 2013

When a thread encounters a parallel construct, the number of threads is determined
according to Algorithm 2.1.

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing in
this contention group;

let ActiveParRegions be the number of enclosing active parallel regions;

if an if clause exists

then let IfClauseValue be the value of the if clause expression;

else let IfClauseValue = true;

if a num_threads clause exists

then let ThreadsRequested be the value of the num_threads clause
expression;

else let ThreadsRequested = value of the first element of nthreads-var;

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false)

then number of threads = 1;

else if (ActiveParRegions >= 1) and (nest-var = false)

then number of threads = 1;

else if (ActiveParRegions = max-active-levels-var)

then number of threads = 1;

else if (dyn-var = true) and (ThreadsRequested <= ThreadsAvailable)

then number of threads = [1 : ThreadsRequested];

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)

then number of threads = [1 : ThreadsAvailable];

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)

then number of threads = ThreadsRequested;

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined;

1
2

Chapter 2 Directives 49

Note – Since the initial value of the dyn-var ICV is implementation defined, programs
that depend on a specific number of threads for correct execution should explicitly
disable dynamic adjustment of the number of threads.

Cross References
• nthreads-var, dyn-var, thread-limit-var, max-active-levels-var, and nest-var ICVs, see

Section 2.3 on page 34.

2.5.2 Controlling OpenMP Thread Affinity
When creating a team for a parallel region, the proc_bind clause specifies a policy
for assigning OpenMP threads to places within the current place partition, that is, the
places listed in the place-partition-var ICV for the implicit task of the encountering
thread. Once a thread is assigned to a place, the OpenMP implementation should not
move it to another place.

The master thread affinity policy instructs the execution environment to assign every
thread in the team to the same place as the master thread. The place partition is not
changed by this policy, and each implicit task inherits the place-partition-var ICV of the
parent implicit task.

The close thread affinity policy instructs the execution environment to assign the
threads to places close to the place of the parent thread. The master thread executes on
the parent’s place and the remaining threads in the team execute on places from the
place list consecutive from the parent’s position in the list, with wrap around with
respect to the place partition of the parent thread’s implicit task. The place partition is
not changed by this policy, and each implicit task inherits the place-partition-var ICV of
the parent implicit task.

The purpose of the spread thread affinity policy is to create a sparse distribution for a
team of T threads among the P places of the parent's place partition. It accomplishes this
by first subdividing the parent partition into T subpartitions if T is less than or equal to
P, or P subpartitions if T is greater than P. Then it assigns one thread (T<=P) or a set of
threads (T>P) to each subpartition. The place-partition-var ICV of each implicit task is
set to its subpartition. The subpartitioning is not only a mechanism for achieving a
sparse distribution, it also defines a subset of places for a thread to use when creating a
nested parallel region.

1
2
3

4

5
6

7

8
9

10
11
12

13
14
15
16

17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

50 OpenMP API • Version 4.0 - July 2013

• T<=P. The parent's partition is split into T subpartitions, where each subpartition
contains at least S=floor(P/T) consecutive places. A single thread is assigned to each
subpartition. The master thread executes on the place of the parent thread and is
assigned to the subpartition that includes that place. For the other threads, assignment
is to the first place in the corresponding subpartition. When T does not divide P
evenly, the assignment of the remaining P-T*S places into subpartitions is
implementation defined.

• T>P. The parent's partition is split into P unit-sized subpartitions. Each place is
assigned S=floor(T/P) threads. When P does not divide T evenly, the assignment of
the remaining T-P*S threads into places is implementation defined.

For the close and spread thread affinity policies, the threads with the smallest thread
numbers execute on the place of the master thread, then the threads with the next
smaller thread numbers execute on the next place in the partition; and so on, with wrap
around with respect to the encountering thread's place partition.

The determination of whether the affinity request can be fulfilled is implementation
defined. If the affinity request cannot be fulfilled, then the number of threads in the team
and their mapping to places are implementation defined.

1
2
3
4
5
6
7

8
9

10

11
12
13
14

15
16
17

Chapter 2 Directives 51

2.6 Canonical Loop Form

C/C++
A loop has canonical loop form if it conforms to the following:

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = lb
integer-type var = lb
random-access-iterator-type var = lb
pointer-type var = lb

test-expr One of the following:
var relational-op b
b relational-op var

incr-expr One of the following:
++var
var++
--var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

var One of the following:
 A variable of a signed or unsigned integer type.

For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.

If this variable would otherwise be shared, it is implicitly made private in the loop
construct. This variable must not be modified during the execution of the for-loop other
than in incr-expr. Unless the variable is specified lastprivate on the loop
construct, its value after the loop is unspecified.

relational-op One of the following:
<
<=
>
>=

lb and b Loop invariant expressions of a type compatible with the type of var.

incr A loop invariant integer expression.

1

2

52 OpenMP API • Version 4.0 - July 2013

The canonical form allows the iteration count of all associated loops to be computed
before executing the outermost loop. The computation is performed for each loop in an
integer type. This type is derived from the type of var as follows:

• If var is of an integer type, then the type is the type of var.

• For C++, if var is of a random access iterator type, then the type is the type that
would be used by std::distance applied to variables of the type of var.

• For C, if var is of a pointer type, then the type is ptrdiff_t.

The behavior is unspecified if any intermediate result required to compute the iteration
count cannot be represented in the type determined above.

There is no implied synchronization during the evaluation of the lb, b, or incr
expressions. It is unspecified whether, in what order, or how many times any side effects
within the lb, b, or incr expressions occur.

Note – Random access iterators are required to support random access to elements in
constant time. Other iterators are precluded by the restrictions since they can take linear
time or offer limited functionality. It is therefore advisable to use tasks to parallelize
those cases.
Restrictions

The following restrictions also apply:

• If test-expr is of the form var relational-op b and relational-op is < or <= then
incr-expr must cause var to increase on each iteration of the loop. If test-expr is of
the form var relational-op b and relational-op is > or >= then incr-expr must cause
var to decrease on each iteration of the loop.

• If test-expr is of the form b relational-op var and relational-op is < or <= then
incr-expr must cause var to decrease on each iteration of the loop. If test-expr is of
the form b relational-op var and relational-op is > or >= then incr-expr must cause
var to increase on each iteration of the loop.

• For C++, in the simd construct the only random access iterator types that are
allowed for var are pointer types.

C/C++

1
2
3

4

5
6

7

8
9

10
11
12

13
14
15
16
17

18

19
20
21
22

23
24
25
26

27
28

29

Chapter 2 Directives 53

2.7 Worksharing Constructs
A worksharing construct distributes the execution of the associated region among the
members of the team that encounters it. Threads execute portions of the region in the
context of the implicit tasks each one is executing. If the team consists of only one
thread then the worksharing region is not executed in parallel.

A worksharing region has no barrier on entry; however, an implied barrier exists at the
end of the worksharing region, unless a nowait clause is specified. If a nowait
clause is present, an implementation may omit the barrier at the end of the worksharing
region. In this case, threads that finish early may proceed straight to the instructions
following the worksharing region without waiting for the other members of the team to
finish the worksharing region, and without performing a flush operation.

The OpenMP API defines the following worksharing constructs, and these are described
in the sections that follow:

• loop construct

• sections construct

• single construct

• workshare construct

Restrictions

The following restrictions apply to worksharing constructs:

• Each worksharing region must be encountered by all threads in a team or by none at
all, unless cancellation has been requested for the innermost enclosing parallel
region.

• The sequence of worksharing regions and barrier regions encountered must be the
same for every thread in a team.

2.7.1 Loop Construct

Summary

The loop construct specifies that the iterations of one or more associated loops will be
executed in parallel by threads in the team in the context of their implicit tasks. The
iterations are distributed across threads that already exist in the team executing the
parallel region to which the loop region binds.

1

2
3
4
5

6
7
8
9

10
11

12
13

14

15

16

17

18

19

20
21
22

23
24

25

26

27
28
29
30

54 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the loop construct is as follows:

where clause is one of the following:

The for directive places restrictions on the structure of all associated for-loops.
Specifically, all associated for-loops must have canonical loop form (see Section 2.6 on

C/C++
page 51).

Fortran

The syntax of the loop construct is as follows:

where clause is one of the following:

#pragma omp for [clause[[,] clause] ...] new-line
for-loops

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier: list)

schedule(kind[, chunk_size])

collapse(n)

ordered

nowait

!$omp do [clause[[,] clause] ...]
 do-loops
[!$omp end do [nowait]]

private(list)

firstprivate(list)

lastprivate(list)

reduction({reduction-identifier:list)

1

2

3

4
5
6

7

8

Chapter 2 Directives 55

If an end do directive is not specified, an end do directive is assumed at the end of the
do-loop.

All associated do-loops must be do-constructs as defined by the Fortran standard. If an
end do directive follows a do-construct in which several loop statements share a DO
termination statement, then the directive can only be specified for the outermost of these
DO statements.

If any of the loop iteration variables would otherwise be shared, they are implicitly
made private on the loop construct. Unless the loop iteration variables are specified

Fortran

lastprivate on the loop construct, their values after the loop are unspecified.

Binding

The binding thread set for a loop region is the current team. A loop region binds to the
innermost enclosing parallel region. Only the threads of the team executing the
binding parallel region participate in the execution of the loop iterations and the
implied barrier of the loop region if the barrier is not eliminated by a nowait clause.

Description

The loop construct is associated with a loop nest consisting of one or more loops that
follow the directive.

There is an implicit barrier at the end of a loop construct unless a nowait clause is
specified.

The collapse clause may be used to specify how many loops are associated with the
loop construct. The parameter of the collapse clause must be a constant positive
integer expression. If no collapse clause is present, the only loop that is associated
with the loop construct is the one that immediately follows the loop directive.

If more than one loop is associated with the loop construct, then the iterations of all
associated loops are collapsed into one larger iteration space that is then divided
according to the schedule clause. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the collapsed iteration space.

schedule(kind[, chunk_size])

collapse(n)

ordered

1
2

3
4
5
6

7
8
9

10

11
12
13
14

15

16
17

18
19

20
21
22
23

24
25
26
27

56 OpenMP API • Version 4.0 - July 2013

The iteration count for each associated loop is computed before entry to the outermost
loop. If execution of any associated loop changes any of the values used to compute any
of the iteration counts, then the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the
collapsed loop is implementation defined.

A worksharing loop has logical iterations numbered 0,1,...,N-1 where N is the number of
loop iterations, and the logical numbering denotes the sequence in which the iterations
would be executed if the associated loop(s) were executed by a single thread. The
schedule clause specifies how iterations of the associated loops are divided into
contiguous non-empty subsets, called chunks, and how these chunks are distributed
among threads of the team. Each thread executes its assigned chunk(s) in the context of
its implicit task. The chunk_size expression is evaluated using the original list items of
any variables that are made private in the loop construct. It is unspecified whether, in
what order, or how many times, any side effects of the evaluation of this expression
occur. The use of a variable in a schedule clause expression of a loop construct
causes an implicit reference to the variable in all enclosing constructs.

Different loop regions with the same schedule and iteration count, even if they occur in
the same parallel region, can distribute iterations among threads differently. The only
exception is for the static schedule as specified in Table 2-1. Programs that depend
on which thread executes a particular iteration under any other circumstances are
non-conforming.

See Section 2.7.1.1 on page 59 for details of how the schedule for a worksharing loop is
determined.

The schedule kind can be one of those specified in Table 2-1.

1
2
3

4
5

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21

22
23

24

25

Chapter 2 Directives 57

TABLE 2-1 schedule clause kind values

static When schedule(static, chunk_size) is specified, iterations are divided
into chunks of size chunk_size, and the chunks are assigned to the threads in
the team in a round-robin fashion in the order of the thread number.

When no chunk_size is specified, the iteration space is divided into chunks that
are approximately equal in size, and at most one chunk is distributed to each
thread. Note that the size of the chunks is unspecified in this case.

A compliant implementation of the static schedule must ensure that the
same assignment of logical iteration numbers to threads will be used in two
loop regions if the following conditions are satisfied: 1) both loop regions have
the same number of loop iterations, 2) both loop regions have the same value
of chunk_size specified, or both loop regions have no chunk_size specified, 3)
both loop regions bind to the same parallel region, and 4) neither loop is
associated with a SIMD construct. A data dependence between the same
logical iterations in two such loops is guaranteed to be satisfied allowing safe
use of the nowait clause.

dynamic When schedule(dynamic, chunk_size) is specified, the iterations are
distributed to threads in the team in chunks as the threads request them. Each
thread executes a chunk of iterations, then requests another chunk, until no
chunks remain to be distributed.

Each chunk contains chunk_size iterations, except for the last chunk to be
distributed, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided When schedule(guided, chunk_size) is specified, the iterations are
assigned to threads in the team in chunks as the executing threads request
them. Each thread executes a chunk of iterations, then requests another chunk,
until no chunks remain to be assigned.

For a chunk_size of 1, the size of each chunk is proportional to the
number of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the
size of each chunk is determined in the same way, with the restriction
that the chunks do not contain fewer than k iterations (except for the last chunk
to be assigned, which may have fewer than k iterations).

When no chunk_size is specified, it defaults to 1.

auto When schedule(auto) is specified, the decision regarding scheduling is
delegated to the compiler and/or runtime system. The programmer gives the
implementation the freedom to choose any possible mapping of iterations to
threads in the team.

1

58 OpenMP API • Version 4.0 - July 2013

Note – For a team of p threads and a loop of n iterations, let be the integer q
that satisfies n = p*q - r, with . One compliant implementation of the static
schedule (with no specified chunk_size) would behave as though chunk_size had been
specified with value q. Another compliant implementation would assign q iterations to
the first p-r threads, and q-1 iterations to the remaining r threads. This illustrates why a
conforming program must not rely on the details of a particular implementation.

A compliant implementation of the guided schedule with a chunk_size value of k
would assign q = iterations to the first available thread and set n to the larger of
n-q and p*k. It would then repeat this process until q is greater than or equal to the
number of remaining iterations, at which time the remaining iterations form the final
chunk. Another compliant implementation could use the same method, except with
q = , and set n to the larger of n-q and 2*p*k.

Restrictions

Restrictions to the loop construct are as follows:

• All loops associated with the loop construct must be perfectly nested; that is, there
must be no intervening code nor any OpenMP directive between any two loops.

• The values of the loop control expressions of the loops associated with the loop
construct must be the same for all the threads in the team.

• Only one schedule clause can appear on a loop directive.

• Only one collapse clause can appear on a loop directive.

• chunk_size must be a loop invariant integer expression with a positive value.

• The value of the chunk_size expression must be the same for all threads in the team.

• The value of the run-sched-var ICV must be the same for all threads in the team.

• When schedule(runtime) or schedule(auto) is specified, chunk_size must
not be specified.

• Only one ordered clause can appear on a loop directive.

• The ordered clause must be present on the loop construct if any ordered region
ever binds to a loop region arising from the loop construct.

• The loop iteration variable may not appear in a threadprivate directive.

runtime When schedule(runtime) is specified, the decision regarding scheduling
is deferred until run time, and the schedule and chunk size are taken from the
run-sched-var ICV. If the ICV is set to auto, the schedule is implementation
defined.

n p⁄
0 r p<≤

n p⁄

n 2p()⁄

1
2
3
4
5
6

7
8
9

10
11
12

13

14

15
16

17
18

19

20

21

22

23

24
25

26

27
28

29

Chapter 2 Directives 59

C/C++
• The associated for-loops must be structured blocks.

• Only an iteration of the innermost associated loop may be curtailed by a continue
statement.

• No statement can branch to any associated for statement.

• Only one nowait clause can appear on a for directive.

• A throw executed inside a loop region must cause execution to resume within the
same iteration of the loop region, and the same thread that threw the exception must

C/C++
catch it.

Fortran

• The associated do-loops must be structured blocks.

• Only an iteration of the innermost associated loop may be curtailed by a CYCLE
statement.

• No statement in the associated loops other than the DO statements can cause a branch
out of the loops.

• The do-loop iteration variable must be of type integer.

Fortran

• The do-loop cannot be a DO WHILE or a DO loop without loop control.

Cross References
• private, firstprivate, lastprivate, and reduction clauses, see

Section 2.14.3 on page 155.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 238.

• ordered construct, see Section 2.12.8 on page 138.

2.7.1.1 Determining the Schedule of a Worksharing Loop

When execution encounters a loop directive, the schedule clause (if any) on the
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop
iterations are assigned to threads. See Section 2.3 on page 34 for details of how the
values of the ICVs are determined. If the loop directive does not have a schedule
clause then the current value of the def-sched-var ICV determines the schedule. If the
loop directive has a schedule clause that specifies the runtime schedule kind then
the current value of the run-sched-var ICV determines the schedule. Otherwise, the
value of the schedule clause determines the schedule. Figure 2-1 describes how the
schedule for a worksharing loop is determined.

1

2
3

4

5

6
7
8

9

10
11

12
13

14

15

16

17
18

19

20

21

22
23
24
25
26
27
28
29
30

60 OpenMP API • Version 4.0 - July 2013

Cross References
• ICVs, see Section 2.3 on page 34.

FIGURE 2-1 Determining the schedule for a worksharing loop.

2.7.2 sections Construct

Summary

The sections construct is a non-iterative worksharing construct that contains a set of
structured blocks that are to be distributed among and executed by the threads in a team.
Each structured block is executed once by one of the threads in the team in the context
of its implicit task.

START

schedule
clause present?

No
Use def-sched-var schedule kind

schedule kind
value is runtime?

No Use schedule kind specified in
schedule clause

Yes

Use run-sched-var schedule kind

Yes

1

2

3

4

5

6

7
8
9

10

Chapter 2 Directives 61

Syntax

C/C++
The syntax of the sections construct is as follows:

where clause is one of the following:

C/C++

Fortran

The syntax of the sections construct is as follows:

where clause is one of the following:

#pragma omp sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

 structured-block
[#pragma omp section new-line

 structured-block]
 ...

}

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

nowait

!$omp sections [clause[[,] clause] ...]
[!$omp section]

 structured-block
[!$omp section

 structured-block]
...

!$omp end sections [nowait]

private(list)

1

2

3

4

5

6

62 OpenMP API • Version 4.0 - July 2013

Fortran

Binding

The binding thread set for a sections region is the current team. A sections
region binds to the innermost enclosing parallel region. Only the threads of the team
executing the binding parallel region participate in the execution of the structured
blocks and the implied barrier of the sections region if the barrier is not eliminated
by a nowait clause.

Description

Each structured block in the sections construct is preceded by a section directive
except possibly the first block, for which a preceding section directive is optional.

The method of scheduling the structured blocks among the threads in the team is
implementation defined.

There is an implicit barrier at the end of a sections construct unless a nowait
clause is specified.

Restrictions

Restrictions to the sections construct are as follows:

• Orphaned section directives are prohibited. That is, the section directives must
appear within the sections construct and must not be encountered elsewhere in the
sections region.

• The code enclosed in a sections construct must be a structured block.

• Only a single nowait clause can appear on a sections directive.

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

1

2

3
4
5
6
7

8

9
10

11
12

13
14

15

16

17
18
19

20

21

Chapter 2 Directives 63

C++
• A throw executed inside a sections region must cause execution to resume within

the same section of the sections region, and the same thread that threw the

C++

exception must catch it.

Cross References
• private, firstprivate, lastprivate, and reduction clauses, see

Section 2.14.3 on page 155.

2.7.3 single Construct

Summary

The single construct specifies that the associated structured block is executed by only
one of the threads in the team (not necessarily the master thread), in the context of its
implicit task. The other threads in the team, which do not execute the block, wait at an
implicit barrier at the end of the single construct unless a nowait clause is specified.

Syntax

C/C++
The syntax of the single construct is as follows:

where clause is one of the following:

C/C++

#pragma omp single [clause[[,] clause] ...] new-line
 structured-block

private(list)

firstprivate(list)

copyprivate(list)

nowait

1
2
3

4

5
6

7

8

9
10
11
12

13

14

15

16

64 OpenMP API • Version 4.0 - July 2013

Fortran

The syntax of the single construct is as follows:

where clause is one of the following:

and end_clause is one of the following:

Fortran

Binding

The binding thread set for a single region is the current team. A single region
binds to the innermost enclosing parallel region. Only the threads of the team
executing the binding parallel region participate in the execution of the structured
block and the implied barrier of the single region if the barrier is not eliminated by a
nowait clause.

Description

The method of choosing a thread to execute the structured block is implementation
defined. There is an implicit barrier at the end of the single construct unless a
nowait clause is specified.

Restrictions

Restrictions to the single construct are as follows:

• The copyprivate clause must not be used with the nowait clause.

• At most one nowait clause can appear on a single construct.

!$omp single [clause[[,] clause] ...]
 structured-block
!$omp end single [end_clause[[,] end_clause] ...]

private(list)

firstprivate(list)

copyprivate(list)

nowait

1

2

3

4

5

6
7
8
9

10

11

12
13
14

15

16

17

18

Chapter 2 Directives 65

C++
• A throw executed inside a single region must cause execution to resume within the

C++

same single region, and the same thread that threw the exception must catch it.

Cross References
• private and firstprivate clauses, see Section 2.14.3 on page 155.

• copyprivate clause, see Section 2.14.4.2 on page 175.

Fortran

2.7.4 workshare Construct

Summary

The workshare construct divides the execution of the enclosed structured block into
separate units of work, and causes the threads of the team to share the work such that
each unit is executed only once by one thread, in the context of its implicit task.

Syntax

The syntax of the workshare construct is as follows:

The enclosed structured block must consist of only the following:

• array assignments

• scalar assignments

• FORALL statements

• FORALL constructs

• WHERE statements

• WHERE constructs

• atomic constructs

!$omp workshare
 structured-block
!$omp end workshare [nowait]

1
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

66 OpenMP API • Version 4.0 - July 2013

Fortran (cont.)

• critical constructs

• parallel constructs

Statements contained in any enclosed critical construct are also subject to these
restrictions. Statements in any enclosed parallel construct are not restricted.

Binding

The binding thread set for a workshare region is the current team. A workshare
region binds to the innermost enclosing parallel region. Only the threads of the team
executing the binding parallel region participate in the execution of the units of
work and the implied barrier of the workshare region if the barrier is not eliminated
by a nowait clause.

Description

There is an implicit barrier at the end of a workshare construct unless a nowait
clause is specified.

An implementation of the workshare construct must insert any synchronization that is
required to maintain standard Fortran semantics. For example, the effects of one
statement within the structured block must appear to occur before the execution of
succeeding statements, and the evaluation of the right hand side of an assignment must
appear to complete prior to the effects of assigning to the left hand side.

The statements in the workshare construct are divided into units of work as follows:

• For array expressions within each statement, including transformational array
intrinsic functions that compute scalar values from arrays:

• Evaluation of each element of the array expression, including any references to
ELEMENTAL functions, is a unit of work.

• Evaluation of transformational array intrinsic functions may be freely subdivided
into any number of units of work.

• For an array assignment statement, the assignment of each element is a unit of work.

• For a scalar assignment statement, the assignment operation is a unit of work.

• For a WHERE statement or construct, the evaluation of the mask expression and the
masked assignments are each a unit of work.

• For a FORALL statement or construct, the evaluation of the mask expression,
expressions occurring in the specification of the iteration space, and the masked
assignments are each a unit of work.

1

2

3
4

5

6
7
8
9

10

11

12
13

14
15
16
17
18

19

20
21

22
23

24
25

26

27

28
29

30
31
32

Chapter 2 Directives 67

• For an atomic construct, the atomic operation on the storage location designated as
x is a unit of work.

• For a critical construct, the construct is a single unit of work.

• For a parallel construct, the construct is a unit of work with respect to the
workshare construct. The statements contained in the parallel construct are
executed by a new thread team.

• If none of the rules above apply to a portion of a statement in the structured block,
then that portion is a unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM,
PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK,
RESHAPE, TRANSPOSE, EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

It is unspecified how the units of work are assigned to the threads executing a
workshare region.

If an array expression in the block references the value, association status, or allocation
status of private variables, the value of the expression is undefined, unless the same
value would be computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL
assignment assigns to a private variable in the block, the result is unspecified.

The workshare directive causes the sharing of work to occur only in the workshare
construct, and not in the remainder of the workshare region.

Restrictions

The following restrictions apply to the workshare construct:

• All array assignments, scalar assignments, and masked array assignments must be
intrinsic assignments.

• The construct must not contain any user defined function calls unless the function is

Fortran

ELEMENTAL.

1
2

3

4
5
6

7
8

9
10
11

12
13

14
15
16

17
18

19
20

21

22

23
24

25
26

68 OpenMP API • Version 4.0 - July 2013

2.8 SIMD Constructs

2.8.1 simd construct

Summary

The simd construct can be applied to a loop to indicate that the loop can be transformed
into a SIMD loop (that is, multiple iterations of the loop can be executed concurrently
using SIMD instructions).

Syntax

The syntax of the simd construct is as follows:

C/C++

where clause is one of the following:

The simd directive places restrictions on the structure of the associated for-loops.
Specifically, all associated for-loops must have canonical loop form (Section 2.6 on

C/C++
page 51).

#pragma omp simd [clause[[,] clause] ...] new-line
 for-loops

safelen(length)

linear(list[:linear-step])

aligned(list[:alignment])

private(list)

lastprivate(list)

reduction(reduction-identifier:list)

collapse(n)

1

2

3

4
5
6

7

8

9

10

11
12
13

Chapter 2 Directives 69

Fortran

where clause is one of the following:

If an end simd directive is not specified, an end simd directive is assumed at the end
of the do-loops.

All associated do-loops must be do-constructs as defined by the Fortran standard. If an
end simd directive follows a do-construct in which several loop statements share a DO
termination statement, then the directive can only be specified for the outermost of these

Fortran

DO statements.

Binding

A simd region binds to the current task region. The binding thread set of the simd
region is the current team.

Description

The simd construct enables the execution of multiple iterations of the associated loops
concurrently by means of SIMD instructions.

!$omp simd [clause[[,] clause ...]
 do-loops
[!$omp end simd]

safelen(length)

linear(list[:linear-step])

aligned(list[:alignment])

private(list)

lastprivate(list)

reduction(reduction-identifier:list)

collapse(n)

1

2

3
4

5
6
7
8

9

10
11

12

13
14

70 OpenMP API • Version 4.0 - July 2013

The collapse clause may be used to specify how many loops are associated with the
construct. The parameter of the collapse clause must be a constant positive integer
expression. If no collapse clause is present, the only loop that is associated with the
loop construct is the one that immediately follows the directive.

If more than one loop is associated with the simd construct, then the iterations of all
associated loops are collapsed into one larger iteration space that is then executed with
SIMD instructions. The sequential execution of the iterations in all associated loops
determines the order of the iterations in the collapsed iteration space.

The iteration count for each associated loop is computed before entry to the outermost
loop. If execution of any associated loop changes any of the values used to compute any
of the iteration counts, then the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the
collapsed loop is implementation defined.

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would
be executed if the associated loop(s) were executed with no SIMD instructions. If the
safelen clause is used then no two iterations executed concurrently with SIMD
instructions can have a greater distance in the logical iteration space than its value. The
parameter of the safelen clause must be a constant positive integer expression. The
number of iterations that are executed concurrently at any given time is implementation
defined. Each concurrent iteration will be executed by a different SIMD lane. Each set
of concurrent iterations is a SIMD chunk.

C/C++
The aligned clause declares that the object to which each list item points is aligned to

C/C++
the number of bytes expressed in the optional parameter of the aligned clause.

Fortran

The aligned clause declares that the target of each list item is aligned to the number

Fortran

of bytes expressed in the optional parameter of the aligned clause.

The optional parameter of the aligned clause, alignment, must be a constant positive
integer expression. If no optional parameter is specified, implementation-defined default
alignments for SIMD instructions on the target platforms are assumed.

Restrictions
• All loops associated with the construct must be perfectly nested; that is, there must be

no intervening code nor any OpenMP directive between any two loops.

1
2
3
4

5
6
7
8

9
10
11

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26

27
28
29

30

31
32

Chapter 2 Directives 71

• The associated loops must be structured blocks.

• A program that branches into or out of a simd region is non-conforming.

• Only one collapse clause can appear on a simd directive.

• A list-item cannot appear in more than one aligned clause.

• Only one safelen clause can appear on a simd directive.

• No OpenMP construct can appear in the simd region.

C/C++

C/C++
• The simd region cannot contain calls to the longjmp or setjmp functions.

C

C
• The type of list items appearing in the aligned clause must be array or pointer.

C++
• The type of list items appearing in the aligned clause must be array, pointer,

reference to array, or reference to pointer.

C++

• No exception can be raised in the simd region.

Fortran

• The do-loop iteration variable must be of type integer.

• The do-loop cannot be a DO WHILE or a DO loop without loop control.

• The type of list items appearing in the aligned clause must be C_PTR or Cray

Fortran

pointer, or the list item must have the POINTER or ALLOCATABLE attribute.

Cross References
• private, lastprivate, linear and reduction clauses, see Section 2.14.3

on page 155.

1

2

3

4

5

6

7

8

9
10

11

12

13

14
15

16

17
18

72 OpenMP API • Version 4.0 - July 2013

2.8.2 declare simd construct

Summary

The declare simd construct can be applied to a function (C, C++ and Fortran) or a
subroutine (Fortran) to enable the creation of one or more versions that can process
multiple arguments using SIMD instructions from a single invocation from a SIMD
loop. The declare simd directive is a declarative directive. There may be multiple
declare simd directives for a function (C, C++, Fortran) or subroutine (Fortran).

Syntax

C/C++
The syntax of the declare simd construct is as follows:

where clause is one of the following:

C/C++

Fortran

#pragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[...]
 function definition or declaration

simdlen(length)

linear(argument-list[:constant-linear-step])

aligned(argument-list[:alignment])

uniform(argument-list)

inbranch

notinbranch

!$omp declare simd(proc-name) [clause[[,] clause] ...]

1

2

3
4
5
6
7

8

9

10

11

12

Chapter 2 Directives 73

where clause is one of the following::

Fortran

Description

C/C++
The use of a declare simd construct on a function enables the creation of SIMD
versions of the associated function that can be used to process multiple arguments from
a single invocation from a SIMD loop concurrently.

The expressions appearing in the clauses of this directive are evaluated in the scope of

C/C++
the arguments of the function declaration or definition.

Fortran

The use of a declare simd construct enables the creation of SIMD versions of the
specified subroutine or function that can be used to process multiple arguments from a

Fortran

single invocation from a SIMD loop concurrently.

If a declare simd directive contains multiple SIMD declarations, then one or more
SIMD versions will be created for each declaration.

If a SIMD version is created, the number of concurrent arguments for the function is
determined by the simdlen clause. If the simdlen clause is used its value
corresponds to the number of concurrent arguments of the function. The parameter of
the simdlen clause must be a constant positive integer expression. Otherwise, the
number of concurrent arguments for the function is implementation defined.

The uniform clause declares one or more arguments to have an invariant value for all
concurrent invocations of the function in the execution of a single SIMD loop.

simdlen(length)

linear(argument-list[:constant-linear-step])

aligned(argument-list[:alignment])

uniform(argument-list)

inbranch

notinbranch

1

2

3

4
5
6

7
8

9
10
11

12
13

14
15
16
17
18

19
20

74 OpenMP API • Version 4.0 - July 2013

C/C++
The aligned clause declares that the object to which each list item points is aligned to

C/C++
the number of bytes expressed in the optional parameter of the aligned clause.

Fortran

The aligned clause declares that the target of each list item is aligned to the number

Fortran

of bytes expressed in the optional parameter of the aligned clause.

The optional parameter of the aligned clause, alignment, must be a constant positive
integer expression. If no optional parameter is specified, implementation-defined default
alignments for SIMD instructions on the target platforms are assumed.

The inbranch clause specifies that the function will always be called from inside a
conditional statement of a SIMD loop. The notinbranch clause specifies that the
function will never be called from inside a conditional statement of a SIMD loop. If
neither clause is specified, then the function may or may not be called from inside a
conditional statement of a SIMD loop.

Restrictions
• Each argument can appear in at most one uniform or linear clause.

• At most one simdlen clause can appear in a declare simd directive.

• Either inbranch or notinbranch may be specified, but not both.

• When a constant-linear-step expression is specified in a linear clause it must be a
constant positive integer expression.

• The function or subroutine body must be a structured block.

• The execution of the function or subroutine, when called from a SIMD loop, cannot
result in the execution of an OpenMP construct.

• The execution of the function or subroutine cannot have any side effects that would
alter its execution for concurrent iterations of a SIMD chunk.

• A program that branches into or out of the function is non-conforming.

C/C++
• If the function has any declarations, then the declare simd construct for any

declaration that has one must be equivalent to the one specified for the definition.
Otherwise, the result is unspecified.

C/C++
• The function cannot contain calls to the longjmp or setjmp functions.

1
2

3
4

5
6
7

8
9

10
11
12

13

14

15

16

17
18

19

20
21

22
23

24

25
26
27

28

Chapter 2 Directives 75

C

C
• The type of list items appearing in the aligned clause must be array or pointer.

C++
• The function cannot contain any calls to throw.

• The type of list items appearing in the aligned clause must be array, pointer,

C++

reference to array, or reference to pointer.

Fortran

• proc-name must not be a generic name, procedure pointer or entry name.

• Any declare simd directive must appear in the specification part of a subroutine
subprogram, function subprogram or interface body to which it applies.

• If a declare simd directive is specified in an interface block for a procedure, it
must match a declare simd directive in the definition of the procedure.

• If a procedure is declared via a procedure declaration statement, the procedure
proc-name should appear in the same specification.

• If a declare simd directive is specified for a procedure name with explicit
interface and a declare simd directive is also specified for the definition of the
procedure then the two declare simd directives must match. Otherwise the result
is unspecified.

• Procedure pointers may not be used to access versions created by the declare
simd directive.

• The type of list items appearing in the aligned clause must be C_PTR or Cray

Fortran

pointer, or the list item must have the POINTER or ALLOCATABLE attribute.

Cross References
• reduction clause, see Section 2.14.3.6 on page 167.

• linear clause, see Section 2.14.3.7 on page 172.

1

2

3
4

5

6
7

8
9

10
11

12
13
14
15

16
17

18
19

20

21

22

76 OpenMP API • Version 4.0 - July 2013

2.8.3 Loop SIMD construct

Summary

The loop SIMD construct specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel by threads in the
team.

C/C++
Syntax

where clause can be any of the clauses accepted by the for or simd directives with

C/C++
identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the simd or do directives, with
identical meanings and restrictions.

If an end do simd directive is not specified, an end do simd directive is

Fortran

assumed at the end of the do-loop.

Description

The loop SIMD construct will first distribute the iterations of the associated loop(s)
across the implicit tasks of the parallel region in a manner consistent with any clauses
that apply to the loop construct. The resulting chunks of iterations will then be converted
to a SIMD loop in a manner consistent with any clauses that apply to the simd
construct. The effect of any clause that applies to both constructs is as if it were applied
to both constructs separately.

#pragma omp for simd [clause[[,] clause] ...] new-line
 for-loops

!$omp do simd [clause[[,] clause] ...]
 do-loops
[!$omp end do simd [nowait]]

1

2

3
4
5

6

7
8

9

10
11

12
13

14

15
16
17
18
19
20

Chapter 2 Directives 77

Restrictions

All restrictions to the loop construct and the simd construct apply to the loop SIMD
construct. In addition, the following restriction applies:

• No ordered clause can be specified.

Cross References
• loop construct, see Section 2.7.1 on page 53.

• simd construct, see Section 2.8.1 on page 68.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.9 Device Constructs

2.9.1 target data Construct

Summary

Create a device data environment for the extent of the region.

Syntax

C/C++
The syntax of the target data construct is as follows:

where clause is one of the following:

device(integer-expression)

map([map-type :] list)

C/C++
if(scalar-expression)

#pragma omp target data [clause[[,] clause],...] new-line
structured-block

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

78 OpenMP API • Version 4.0 - July 2013

Fortran

The syntax of the target data construct is as follows:

where clause is one of the following:

device(scalar-integer-expression)

map([map-type :] list)

if(scalar-logical-expression)

Fortran

The end target data directive denotes the end of the target data construct.

Binding

The binding task region for a target data construct is the encountering task. The
target region binds to the enclosing parallel or task region.

Description

When a target data construct is encountered, a new device data environment is
created, and the encountering task executes the target data region. If there is no
device clause, the default device is determined by the default-device-var ICV. The
new device data environment is constructed from the enclosing device data environment,
the data environment of the encountering task and any data-mapping clauses on the
construct. When an if clause is present and the if clause expression evaluates to false,
the device is the host.

Restrictions
• A program must not depend on any ordering of the evaluations of the clauses of the

target data directive, or on any side effects of the evaluations of the clauses.

• At most one device clause can appear on the directive. The device expression
must evaluate to a non-negative integer value.

• At most one if clause can appear on the directive.

!$omp target data [clause[[,] clause],...]
structured-block
!$omp end target data

1

2

3

4

5

6

7

8
9

10

11
12
13
14
15
16
17

18

19
20

21
22

23

Chapter 2 Directives 79

Cross References
• map clause, see Section 2.14.5 on page 177.

• default-device-var, see Section 2.3 on page 34.

2.9.2 target Construct

Summary

Create a device data environment and execute the construct on the same device.

Syntax

C/C++
The syntax of the target construct is as follows:

where clause is one of the following:

device(integer-expression)

map([map-type :] list)

C/C++
if(scalar-expression)

Fortran

The syntax of the target construct is as follows:

where clause is one of the following:

device(scalar-integer-expression)

map([map-type :] list)

if(scalar-logical-expression)

#pragma omp target [clause[[,] clause],...] new-line
structured-block

!$omp target [clause[[,] clause],...]
structured-block
!$omp end target

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

80 OpenMP API • Version 4.0 - July 2013

Fortran

The end target directive denotes the end of the target construct.

Binding

The binding task for a target construct is the encountering task. The target region
binds to the enclosing parallel or task region.

Description

The target construct provides a superset of the functionality and restrictions provided
by the target data directive. The functionality added to the target directive is the
inclusion of an executable region to be executed by a device. That is, the target
directive is an executable directive. The encountering task waits for the device to
complete the target region. When an if clause is present and the if clause expression
evaluates to false, the target region is executed by the host device.

Restrictions
• If a target, target update, or target data construct appears within a target

region then the behavior is unspecified.

• The result of an omp_set_default_device, omp_get_default_device,
or omp_get_num_devices routine called within a target region is unspecified.

• The effect of an access to a threadprivate variable in a target region is
unspecified.

• A variable referenced in a target construct that is not declared in the construct
is implicitly treated as if it had appeared in a map clause with a map-type of
tofrom.

• A variable referenced in a target region but not the target construct that is not
declared in the target region must appear in a declare target directive.

C++
• A throw executed inside a target region must cause execution to resume within the

C++

same target region, and the same thread that threw the exception must catch it.

Cross References
• target data construct, see Section 2.9.1 on page 77.

1

2

3
4

5

6
7
8
9

10
11

12

13
14

15
16

17
18

19
20
21

22
23

24
25

26

27

Chapter 2 Directives 81

• default-device-var, see Section 2.3 on page 34.

• map clause, see Section 2.14.5 on page 177.

2.9.3 target update Construct

Summary

The target update directive makes the corresponding list items in the device data
environment consistent with their original list items, according to the specified motion
clauses. The target update construct is a stand-alone directive.

Syntax

C/C++
The syntax of the target update construct is as follows:

where motion-clause is one of the following:

to(list)

from(list)

and where clause is motion-clause or one of the following:

device(integer-expression)

C/C++
if(scalar-expression)

Fortran

The syntax of the target update construct is as follows:

where motion-clause is one of the following:

to(list)

from(list)

#pragma omp target update clause[[,] clause],...] new-line

!$omp target update clause[[,] clause],...]

1

2

3

4

5
6
7

8

9

10

11

12

13

14

15

16

17

18

19

82 OpenMP API • Version 4.0 - July 2013

and where clause is motion-clause or one of the following:

device(scalar-integer-expression)

Fortran

if(scalar-logical-expression)

Binding

The binding task for a target update construct is the encountering task.The
target update directive is a stand-alone directive.

Description

For each list item in a to or from clause there is a corresponding list item and an
original list item. If the corresponding list item is not present in the device data
environment, the behavior is unspecified. Otherwise, each corresponding list item in the
device data environment has an original list item in the current task's data environment.

For each list item in a from clause the value of the corresponding list item is assigned
to the original list item.

For each list item in a to clause the value of the original list item is assigned to the
corresponding list item.

The list items that appear in the to or from clauses may include array sections.

The device is specified in the device clause. If there is no device clause, the device
is determined by the default-device-var ICV. When an if clause is present and the if
clause expression evaluates to false then no assignments occur.

Restrictions
• A program must not depend on any ordering of the evaluations of the clauses of the

target update directive, or on any side effects of the evaluations of the clauses.

• At least one motion-clause must be specified.

• If a list item is an array section it must specify contiguous storage.

• A variable that is part of another variable (such as a field of a structure) but is not an
array element or an array section cannot appear as a list item in a clause of a
target update construct.

• A list item can only appear in a to or from clause, but not both.

• A list item in a to or from clause must have a mappable type.

1

2

3

4

5
6

7

8
9

10
11

12
13

14
15

16

17
18
19

20

21
22

23

24

25
26
27

28

29

Chapter 2 Directives 83

• At most one device clause can appear on the directive. The device expression
must evaluate to a non-negative integer value.

• At most one if clause can appear on the directive.

Cross References
• default-device-var, see Section 2.3 on page 34.

• target data, see Section 2.9.1 on page 77.

• Array sections, Section 2.4 on page 42

2.9.4 declare target Directive

Summary

The declare target directive specifies that variables, functions (C, C++ and
Fortran), and subroutines (Fortran) are mapped to a device. The declare target
directive is a declarative directive.

Syntax

C/C++
The syntax of the declare target directive is as follows:

C/C++

Fortran

The syntax of the declare target directive is as follows:

For variables, functions and subroutines:

#pragma omp declare target new-line
declarations-definition-seq
#pragma omp end declare target new-line

!$omp declare target(list)

1
2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

84 OpenMP API • Version 4.0 - July 2013

where list is a comma-separated list of named variables, procedure names and named
common blocks. Common block names must appear between slashes.

For functions and subroutines:

Fortran

Description

C/C++
Variable and routine declarations that appear between the declare target and end
declare target directives form an implicit list where each list item is the variable

C/C++
or function name.

Fortran

If a declare target does not have an explicit list, then an implicit list of one item is
formed from the name of the enclosing subroutine subprogram, function subprogram or

Fortran

interface body to which it applies.

If a list item is a function (C, C++, Fortran) or subroutine (Fortran) then a
device-specific version of the routine is created that can be called from a target region.

If a list item is a variable then the original variable is mapped to a corresponding
variable in the initial device data environment for all devices. If the original variable is
initialized, the corresponding variable in the device data environment is initialized with
the same value.

Restrictions
• A threadprivate variable cannot appear in a declare target directive.

• A variable declared in a declare target directive must have a mappable type.

C/C++
• A variable declared in a declare target directive must be at file or namespace

scope.

• A function declared in a declare target directive must be at file, namespace, or
class scope.

!$omp declare target

1
2

3

4

5

6
7
8

9
10
11

12
13

14
15
16
17

18

19

20

21
22

23
24

Chapter 2 Directives 85

• All declarations and definitions for a function must have a declare target

C/C++
directive if one is specified for any of them. Otherwise, the result is unspecified.

Fortran

• If a list item is a procedure name, it must not be a generic name, procedure pointer or
entry name.

• Any declare target directive with a list can only appear in a specification part
of a subroutine subprogram, function subprogram, program or module.

• Any declare target directive without a list can only appear in a specification
part of a subroutine subprogram, function subprogram or interface body to which it
applies.

• If a declare target directive is specified in an interface block for a procedure, it
must match a declare target directive in the definition of the procedure.

• If any procedure is declared via a procedure declaration statement, any declare
target directive with the procedure name must appear in the same specification
part.

• A variable that is part of another variable (as an array or structure element) cannot
appear in a declare target directive.

• The declare target directive must appear in the declaration section of a scoping
unit in which the common block or variable is declared. Although variables in
common blocks can be accessed by use association or host association, common
block names cannot. This means that a common block name specified in a declare
target directive must be declared to be a common block in the same scoping unit
in which the declare target directive appears.

• If a declare target directive specifying a common block name appears in one
program unit, then such a directive must also appear in every other program unit that
contains a COMMON statement specifying the same name. It must appear after the last
such COMMON statement in the program unit.

• If a declare target variable or a declare target common block is declared
with the BIND attribute, the corresponding C entities must also be specified in a
declare target directive in the C program.

• A blank common block cannot appear in a declare target directive.

• A variable can only appear in a declare target directive in the scope in which it
is declared. It must not be an element of a common block or appear in an
EQUIVALENCE statement.

• A variable that appears in a declare target directive must be declared in the

Fortran

Fortran scope of a module or have the SAVE attribute, either explicitly or implicitly.

1
2

3
4

5
6

7
8
9

10
11

12
13
14

15
16

17
18
19
20
21
22

23
24
25
26

27
28
29

30

31
32
33

34
35

86 OpenMP API • Version 4.0 - July 2013

2.9.5 teams Construct

Summary

The teams construct creates a league of thread teams and the master thread of each
team executes the region.

Syntax

C/C++
The syntax of the teams construct is as follows:

where clause is one of the following:

num_teams(integer-expression)

thread_limit(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

C/C++
reduction(reduction-identifier : list)

Fortran

The syntax of the teams construct is as follows:

where clause is one of the following:

num_teams(scalar-integer-expression)

thread_limit(scalar-integer-expression)

#pragma omp teams [clause[[,] clause],...] new-line
structured-block

!$omp teams [clause[[,] clause],...]
structured-block
!$omp end teams

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Chapter 2 Directives 87

default(shared | firstprivate | private | none)

private(list)

firstprivate(list)

shared(list)

reduction(reduction-identifier : list)

Fortran

The end teams directive denotes the end of the teams construct.

Binding

The binding thread set for a teams region is the encountering thread.

Description

When a thread encounters a teams construct, a league of thread teams is created and
the master thread of each thread team executes the teams region.

The number of teams created is implementation defined, but is less than or equal to the
value specified in the num_teams clause.

The maximum number of threads participating in the contention group that each team
initiates is implementation defined, but is less than or equal to the value specified in the
thread_limit clause.

Once the teams are created, the number of teams remains constant for the duration of the
teams region.

Within a teams region, team numbers uniquely identify each team. Team numbers are
consecutive whole numbers ranging from zero to one less than the number of teams. A
thread may obtain its own team number by a call to the omp_get_team_num library
routine.

The threads other than the master thread do not begin execution until the master thread
encounters a parallel region.

After the teams have completed execution of the teams region, the encountering thread
resumes execution of the enclosing target region.

There is no implicit barrier at the end of a teams construct.

1

2

3

4

5

6

7

8

9

10
11

12
13

14
15
16

17
18

19
20
21
22

23
24

25
26

27

88 OpenMP API • Version 4.0 - July 2013

Restrictions

Restrictions to the teams construct are as follows:

• A program that branches into or out of a teams region is non-conforming.

• A program must not depend on any ordering of the evaluations of the clauses of the
teams directive, or on any side effects of the evaluation of the clauses.

• At most one thread_limit clause can appear on the directive. The
thread_limit expression must evaluate to a positive integer value.

• At most one num_teams clause can appear on the directive. The num_teams
expression must evaluate to a positive integer value.

• If specified, a teams construct must be contained within a target construct. That
target construct must contain no statements or directives outside of the teams
construct.

• distribute, parallel, parallel sections, parallel workshare,
and the parallel loop and parallel loop SIMD constructs are the only OpenMP
constructs that can be closely nested in the teams region.

Cross References:
• num_teams_var, see Section 2.3.5 on page 40.

• default, shared, private, firstprivate, and reduction clauses, see
Section 2.14.3 on page 155.

• omp_get_num_teams routine, see Section 3.2.26 on page 221.

• omp_get_team_num routine, see Section 3.2.27 on page 222.

2.9.6 distribute Construct

Summary

The distribute construct specifies that the iterations of one or more loops will be
executed by the thread teams in the context of their implicit tasks. The iterations are
distributed across the master threads of all teams that execute the teams region to
which the distribute region binds.

1

2

3

4
5

6
7

8
9

10
11
12

13
14
15

16

17

18
19

20

21

22

23

24
25
26
27

Chapter 2 Directives 89

Syntax

C/C++
The syntax of the distribute construct is as follows:

Where clause is one of the following:

private(list)

firstprivate(list)

collapse(n)

dist_schedule(kind[, chunk_size])

All associated for-loops must have the canonical form described in Section 2.6 on page

C/C++
51

Fortran

The syntax of the distribute construct is as follows:

Where clause is one of the following:

private(list)

firstprivate(list)

collapse(n)

dist_schedule(kind[, chunk_size])

If an end distribute directive is not specified, an end distribute directive
is assumed at the end of the do-loop.

#pragma omp distribute [clause[[,] clause],...] new-line
for-loops

!$omp distribute [clause[[,] clause],...]
do-loops
[!$omp end distribute]

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17
18

90 OpenMP API • Version 4.0 - July 2013

All associated do-loops must be do-constructs as defined by the Fortran standard. If an
end do directive follows a do-construct in which several loop statements share a DO
termination statement, then the directive can only be specified for the outermost of these

Fortran

DO statements.

Binding

The binding thread set for a distribute region is the set of master threads created by
a teams construct. A distribute region binds to the innermost enclosing teams
region. Only the threads executing the binding teams region participate in the
execution of the loop iterations.

Description

The distribute construct is associated with a loop nest consisting of one or more
loops that follow the directive.

There is no implicit barrier at the end of a distribute construct.

The collapse clause may be used to specify how many loops are associated with the
distribute construct. The parameter of the collapse clause must be a constant
positive integer expression. If no collapse clause is present, the only loop that is
associated with the distribute construct is the one that immediately follows the
distribute construct.

If more than one loop is associated with the distribute construct, then the iteration
of all associated loops are collapsed into one larger iteration space. The sequential
execution of the iterations in all associated loops determines the order of the iterations in
the collapsed iteration space.

If dist_schedule is specified, kind must be static. If specified, iterations are
divided into chunks of size chunk_size, chunks are assigned to the teams of the league in
a round-robin fashion in the order of the team number. When no chunk_size is specified,
the iteration space is divided into chunks that are approximately equal in size, and at
most one chunk is distributed to each team of the league. Note that the size of the
chunks is unspecified in this case.

When no dist_schedule clause is specified, the schedule is implementation defined.

Restrictions

Restrictions to the distribute construct are as follows:

1
2
3
4

5

6
7
8
9

10

11
12

13

14
15
16
17
18

19
20
21
22

23
24
25
26
27
28

29

30

31

Chapter 2 Directives 91

• The distribute construct inherits the restrictions of the loop construct.

• A distribute construct must be closely nested in a teams region.

Cross References:
• loop construct, see Section 2.7.1 on page 53.

• teams construct, see Section 2.9.5 on page 86.

2.9.7 distribute simd Construct

Summary

The distribute simd construct specifies a loop that will be distributed across the
master threads of the teams region and executed concurrently using SIMD instructions.

Syntax

C/C++
The syntax of the distribute simd construct is as follows:

where clause can be any of the clauses accepted by the distribute or simd

C/C++
directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the distribute or simd
directives with identical meanings and restrictions.

#pragma omp distribute simd [clause[[,] clause]...]
for-loops

!$omp distribute simd [clause[[,] clause]...]
do-loops

[!$omp end distribute simd]

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15
16

92 OpenMP API • Version 4.0 - July 2013

If an end distribute simd directive is not specified, an end distribute simd

Fortran

directive is assumed at the end of the do-loops.

Description

The distribute simd construct will first distribute the iterations of the associated
loop(s) according to the semantics of the distribute construct and any clauses that
apply to the distribute construct. The resulting chunks of iterations will then be
converted to a SIMD loop in a manner consistent with any clauses that apply to the
simd construct. The effect of any clause that applies to both constructs is as if it were
applied to both constructs separately.

Restrictions

The restrictions for the distribute and simd constructs apply.

Cross References
• simd construct, see Section 2.8.1 on page 68.

• distribute construct, see Section 2.9.6 on page 88.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.9.8 Distribute Parallel Loop Construct

Summary

The distribute parallel loop construct specifies a loop that can be executed in parallel by
multiple threads that are members of multiple teams.

Syntax

C/C++
The syntax of the distribute parallel loop construct is as follows:

#pragma omp distribute parallel for [clause[[,] clause]...]
for-loops

1
2

3

4
5
6
7
8
9

10

11

12

13

14

15

16

17

18
19

20

21

Chapter 2 Directives 93

where clause can be any of the clauses accepted by the distribute or parallel loop

C/C++
directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the distribute or parallel loop
directives with identical meanings and restrictions.

If an end distribute parallel do directive is not specified, an end

Fortran

distribute parallel do directive is assumed at the end of the do-loops.

Description

The distribute parallel loop construct will first distribute the iterations of the associated
loop(s) according to the semantics of the distribute construct and any clauses that
apply to the distribute construct. The resulting loops will then be distributed across
the threads contained within the teams region to which the distribute construct
binds in a manner consistent with any clauses that apply to the parallel loop construct.
The effect of any clause that applies to both the distribute and parallel loop
constructs is as if it were applied to both constructs separately.

Restrictions

The restrictions for the distribute and parallel loop constructs apply.

Cross References
• distribute construct, see Section 2.9.6 on page 88.

• Parallel loop construct, see Section 2.10.1 on page 95.

• Data attribute clauses, see Section Section 2.14.3 on page 155.

!$omp distribute parallel do [clause[[,] clause]...]
do-loops

[!$omp end distribute parallel do]

1
2

3

4
5

6
7

8

9
10
11
12
13
14
15

16

17

18

19

20

21

94 OpenMP API • Version 4.0 - July 2013

2.9.9 Distribute Parallel Loop SIMD Construct

Summary

The distribute parallel loop SIMD construct specifies a loop that can be executed
concurrently using SIMD instructions in parallel by multiple threads that are members
of multiple teams.

Syntax

C/C++
The syntax of the distribute parallel loop SIMD construct is as follows:

where clause can be any of the clauses accepted by the distribute or parallel loop

C/C++
SIMD directives with identical meanings and restrictions.

Fortran

The syntax of the distribute parallel loop SIMD construct is as follows:

where clause can be any of the clauses accepted by the distribute or parallel loop
SIMD directives with identical meanings and restrictions.

If an end distribute parallel do simd directive is not specified, an end

Fortran

distribute parallel do simd directive is assumed at the end of the do-loops.

Description

The distribute parallel loop SIMD construct will first distribute the iterations of the
associated loop(s) according to the semantics of the distribute construct and any
clauses that apply to the distribute construct. The resulting loops will then be
distributed across the threads contained within the teams region to which the

#pragma omp distribute parallel for simd [clause[[,] clause]...]
for-loops

!$omp distribute parallel do simd [clause[[,] clause]...]
do-loops

[!$omp end distribute parallel do simd]

1

2

3
4
5

6

7

8
9

10

11
12

13
14

15

16
17
18
19

Chapter 2 Directives 95

distribute construct binds in a manner consistent with any clauses that apply to the
parallel loop construct. The resulting chunks of iterations will then be converted to a
SIMD loop in a manner consistent with any clauses that apply to the simd construct.
The effect of any clause that applies to both the distribute and parallel loop SIMD
constructs is as if it were applied to both constructs separately.

Restrictions

The restrictions for the distribute and parallel loop SIMD constructs apply.

Cross References
• distribute construct, see Section 2.9.6 on page 88.

• Parallel loop SIMD construct, see Section 2.10.4 on page 100.

• Data attribute clauses, see Section Section 2.14.3 on page 155.

2.10 Combined Constructs
Combined constructs are shortcuts for specifying one construct immediately nested
inside another construct. The semantics of the combined constructs are identical to that
of explicitly specifying the first construct containing one instance of the second
construct and no other statements.

Some combined constructs have clauses that are permitted on both constructs that were
combined. Where specified, the effect is as if applying the clauses to one or both
constructs. If not specified and applying the clause to one construct would result in
different program behavior than applying the clause to the other construct then the
program’s behavior is unspecified.

2.10.1 Parallel Loop Construct

Summary

The parallel loop construct is a shortcut for specifying a parallel construct
containing one or more associated loops and no other statements.

1
2
3
4
5

6

7

8

9

10

11

12

13
14
15
16

17
18
19
20
21

22

23

24
25

96 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the parallel loop construct is as follows:

where clause can be any of the clauses accepted by the parallel or for directives,

C/C++
except the nowait clause, with identical meanings and restrictions.

Fortran

The syntax of the parallel loop construct is as follows:

where clause can be any of the clauses accepted by the parallel or do directives,
with identical meanings and restrictions.

If an end parallel do directive is not specified, an end parallel do directive is
assumed at the end of the do-loop. nowait may not be specified on an end

Fortran

parallel do directive.

Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately

C/C++
followed by a for directive.

Fortran

The semantics are identical to explicitly specifying a parallel directive immediately
followed by a do directive, and an end do directive immediately followed by an end

Fortran

parallel directive.

#pragma omp parallel for [clause[[,] clause] ...] new-line
 for-loop

!$omp parallel do [clause[[,] clause] ...]
 do-loop
[!$omp end parallel do]

1

2

3
4

5

6
7

8
9

10

11

12
13

14
15
16

Chapter 2 Directives 97

Restrictions

The restrictions for the parallel construct and the loop construct apply.

Cross References
• parallel construct, see Section 2.5 on page 44.

• loop construct, see Section 2.7.1 on page 53.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.2 parallel sections Construct

Summary

The parallel sections construct is a shortcut for specifying a parallel
construct containing one sections construct and no other statements.

Syntax

C/C++
The syntax of the parallel sections construct is as follows:

where clause can be any of the clauses accepted by the parallel or sections

C/C++
directives, except the nowait clause, with identical meanings and restrictions.

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{

 [#pragma omp section new-line]
 structured-block

[#pragma omp section new-line
 structured-block]

...
}

1

2

3

4

5

6

7

8

9
10

11

12

13
14

98 OpenMP API • Version 4.0 - July 2013

Fortran

The syntax of the parallel sections construct is as follows:

where clause can be any of the clauses accepted by the parallel or sections
directives, with identical meanings and restrictions.

The last section ends at the end parallel sections directive. nowait cannot be

Fortran

specified on an end parallel sections directive.

Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately

C/C++
followed by a sections directive.

Fortran

The semantics are identical to explicitly specifying a parallel directive immediately
followed by a sections directive, and an end sections directive immediately

Fortran

followed by an end parallel directive.

Restrictions

The restrictions for the parallel construct and the sections construct apply.

Cross References:
• parallel construct, see Section 2.5 on page 44.

• sections construct, see Section 2.7.2 on page 60.

• Data attribute clauses, see Section 2.14.3 on page 155.

!$omp parallel sections [clause[[,] clause] ...]
[!$omp section]

 structured-block
[!$omp section

 structured-block]
...

!$omp end parallel sections

1

2
3

4
5

6

7
8

9
10
11

12

13

14

15

16

17

Chapter 2 Directives 99

Fortran

2.10.3 parallel workshare Construct

Summary

The parallel workshare construct is a shortcut for specifying a parallel
construct containing one workshare construct and no other statements.

Syntax

The syntax of the parallel workshare construct is as follows:

where clause can be any of the clauses accepted by the parallel directive, with
identical meanings and restrictions. nowait may not be specified on an end
parallel workshare directive.

Description

The semantics are identical to explicitly specifying a parallel directive immediately
followed by a workshare directive, and an end workshare directive immediately
followed by an end parallel directive.

Restrictions

The restrictions for the parallel construct and the workshare construct apply.

Cross References
• parallel construct, see Section 2.5 on page 44.

• workshare construct, see Section 2.7.4 on page 65.

Fortran

• Data attribute clauses, see Section 2.14.3 on page 155.

!$omp parallel workshare [clause[[,] clause] ...]
 structured-block
!$omp end parallel workshare

1

2

3
4

5

6

7
8
9

10

11
12
13

14

15

16

17

18

19

100 OpenMP API • Version 4.0 - July 2013

2.10.4 Parallel Loop SIMD Construct

Summary

The parallel loop SIMD construct is a shortcut for specifying a parallel construct
containing one loop SIMD construct and no other statement.

C/C++
Syntax

where clause can be any of the clauses accepted by the parallel, for or simd

C/C++
directives, except the nowait clause, with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the parallel, do or simd
directives, with identical meanings and restrictions.

If an end parallel do simd directive is not specified, an end parallel do
simd directive is assumed at the end of the do-loop. nowait may not be specified on

Fortran

an end parallel do simd directive.

Description

The semantics of the parallel loop SIMD construct are identical to explicitly specifying
a parallel directive immediately followed by a loop SIMD directive. The effect of
any clause that applies to both constructs is as if it were applied to the loop SIMD
construct and not to the parallel construct.

#pragma omp parallel for simd [clause[[,] clause] ...] new-line
for-loops

!$omp parallel do simd [clause[[,] clause] ...]
do-loops

!$omp end parallel do simd

1

2

3
4

5

6
7

8

9
10

11
12
13

14

15
16
17
18

Chapter 2 Directives 101

Restrictions

The restrictions for the parallel construct and the loop SIMD construct apply.

Cross References
• parallel construct, see Section 2.5 on page 44.

• loop SIMD construct, see Section 2.8.3 on page 76.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.5 target teams construct

Summary

The target teams construct is a shortcut for specifying a target construct
containing a teams construct.

Syntax

C/C++
The syntax of the target teams construct is as follows:

where clause can be any of the clauses accepted by the target or teams directives

C/C++
with identical meanings and restrictions.

Fortran

#pragma omp target teams [clause[[,] clause]...]
structured-block

!$omp target teams [clause[[,] clause]...]
structured-block

!$omp end target teams

1

2

3

4

5

6

7

8

9
10

11

12

13
14

15

102 OpenMP API • Version 4.0 - July 2013

where clause can be any of the clauses accepted by the target or teams directives

Fortran

with identical meanings and restrictions.

Description

C/C++
The semantics are identical to explicitly specifying a target directive immediately

C/C++
followed by a teams directive.

Fortran

The semantics are identical to explicitly specifying a target directive immediately
followed by a teams directive, and an end teams directive immediately followed by

Fortran

an end target directive.

Restrictions

The restrictions for the target and teams constructs apply.

Cross References
• target construct, see Section 2.9.2 on page 79.

• teams construct, see Section 2.9.5 on page 86.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.6 teams distribute Construct

Summary

The teams distribute construct is a shortcut for specifying a teams construct
containing a distribute construct.

1
2

3

4
5

6
7
8

9

10

11

12

13

14

15

16

17
18

Chapter 2 Directives 103

Syntax

C/C++
The syntax of the teams distribute construct is as follows:

where clause can be any of the clauses accepted by the teams or distribute

C/C++
directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the teams or distribute
directives with identical meanings and restrictions.

If an end teams distribute directive is not specified, an end teams

Fortran

distribute directive is assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a teams directive immediately
followed by a distribute directive. Some clauses are permitted on both constructs.

Restrictions

The restrictions for the teams and distribute constructs apply.

Cross References
• teams construct, see Section 2.9.5 on page 86.

• distribute construct, see Section 2.9.6 on page 88.

• Data attribute clauses, see Section 2.14.3 on page 155.

#pragma omp teams distribute [clause[[,] clause]...]
for-loops

!$omp teams distribute [clause[[,] clause]...]
do-loops

[!$omp end teams distribute]

1

2

3
4

5

6
7

8
9

10

11
12

13

14

15

16

17

18

104 OpenMP API • Version 4.0 - July 2013

2.10.7 teams distribute simd Construct

Summary

The teams distribute simd construct is a shortcut for specifying a teams
construct containing a distribute simd construct.

Syntax

C/C++
The syntax of the teams distribute simd construct is as follows:

where clause can be any of the clauses accepted by the teams or distribute simd

C/C++
directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the teams or distribute simd
directive with identical meanings and restrictions.

If an end teams distribute directive is not specified, an end teams

Fortran

distribute directive is assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a teams directive immediately
followed by a distribute simd directive. Some clauses are permitted on both
constructs.

#pragma omp teams distribute simd [clause[[,] clause]...]
for-loops

!$omp teams distribute simd [clause[[,] clause]...]
do-loops

[!$omp end teams distribute simd]

1

2

3
4

5

6

7
8

9

10
11

12
13

14

15
16
17

Chapter 2 Directives 105

Restrictions

The restrictions for the teams and distribute simd constructs apply.

Cross References
• teams construct, see Section 2.9.5 on page 86.

• distribute simd construct, see Section 2.9.7 on page 91.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.8 target teams distribute Construct

Summary

The target teams distribute construct is a shortcut for specifying a target
construct containing a teams distribute construct.

Syntax

C/C++
The syntax of the target teams distribute construct is as follows:

where clause can be any of the clauses accepted by the target or teams

C/C++
distribute directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the target or teams
distribute directives with identical meanings and restrictions.

#pragma omp target teams distribute [clause[[,] clause]...]
for-loops

!$omp target teams distribute [clause[[,] clause]...]
do-loops

[!$omp end target teams distribute]

1

2

3

4

5

6

7

8

9
10

11

12

13
14

15

16
17

106 OpenMP API • Version 4.0 - July 2013

If an end target teams distribute directive is not specified, an end target

Fortran

teams distribute directive is assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a target directive immediately
followed by a teams distribute directive.

Restrictions

The restrictions for the target and teams distribute constructs apply.

Cross References
• target construct, see Section 2.9.1 on page 77.

• teams distribute construct, see Section 2.10.6 on page 102.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.9 target teams distribute simd Construct

Summary

The target teams distribute simd construct is a shortcut for specifying a
target construct containing a teams distribute simd construct.

Syntax

C/C++
The syntax of the target teams distribute simd construct is as follows:

where clause can be any of the clauses accepted by the target or teams

C/C++
distribute simd directives with identical meanings and restrictions.

#pragma omp target teams distribute simd [clause[[,] clause]...]
for-loops

1
2

3

4
5

6

7

8

9

10

11

12

13

14
15

16

17

18
19

Chapter 2 Directives 107

Fortran

where clause can be any of the clauses accepted by the target or teams
distribute simd directives with identical meanings and restrictions.

If an end target teams distribute simd directive is not specified, an end

Fortran

target teams distribute simd directive is assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a target directive immediately
followed by a teams distribute simd directive.

Restrictions

The restrictions for the target and teams distribute simd constructs apply.

Cross References
• target construct, see Section 2.9.1 on page 77

• teams distribute simd construct, see Section 2.10.7 on page 104.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.10 Teams Distribute Parallel Loop Construct

Summary

The teams distribute parallel loop construct is a shortcut for specifying a teams
construct containing a distribute parallel loop construct.

!$omp target teams distribute simd [clause[[,] clause]...]
do-loops

[!$omp end target teams distribute simd]

1

2
3

4
5

6

7
8

9

10

11

12

13

14

15

16

17
18

108 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the teams distribute parallel loop construct is as follows:

where clause can be any of the clauses accepted by the teams or distribute

C/C++
parallel for directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the teams or distribute
parallel do directives with identical meanings and restrictions.

If an end teams distribute parallel do directive is not specified, an end

Fortran

teams distribute parallel do directive is assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a teams directive immediately
followed by a distribute parallel loop directive. The effect of any clause that applies to
both constructs is as if it were applied to both constructs separately.

Restrictions

The restrictions for the teams and distribute parallel loop constructs apply.

Cross References
• teams construct, see Section 2.9.5 on page 86.

• Distribute parallel loop construct, see Section 2.9.8 on page 92.

• Data attribute clauses, see Section 2.14.3 on page 155.

#pragma omp teams distribute parallel for [clause[[,] clause]...]
for-loops

!$omp teams distribute parallel do [clause[[,] clause]...]
do-loops

[!$omp end teams distribute parallel do]

1

2

3
4

5

6
7

8
9

10

11
12
13

14

15

16

17

18

19

Chapter 2 Directives 109

2.10.11 Target Teams Distribute Parallel Loop
Construct

Summary

The target teams distribute parallel loop construct is a shortcut for specifying a target
construct containing a teams distribute parallel loop construct.

Syntax

C/C++
The syntax of the target teams distribute parallel loop construct is as follows:

where clause can be any of the clauses accepted by the target or teams

C/C++
distribute parallel for directives with identical meanings and restrictions.

Fortran

where clause can be any of the clauses accepted by the target or teams
distribute parallel do directives with identical meanings and restrictions.

If an end target teams distribute parallel do directive is not specified, an
end target teams distribute parallel do directive is assumed at the end of

Fortran

the do-loops.

Description

The semantics are identical to explicitly specifying a target directive immediately
followed by a teams distribute parallel loop directive.

#pragma omp target teams distribute parallel for [clause[[,] clause]...]
for-loops

!$omp target teams distribute parallel do [clause[[,] clause]...]
do-loops

[!$omp end target teams distribute parallel do]

1

2

3

4
5

6

7

8
9

10

11
12

13
14
15

16

17
18

110 OpenMP API • Version 4.0 - July 2013

Restrictions

The restrictions for the target and teams distribute parallel loop constructs apply.

Cross References
• target construct, see Section 2.9.2 on page 79.

• Distribute parallel loop construct, see Section 2.10.10 on page 107.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.12 Teams Distribute Parallel Loop SIMD
Construct

Summary

The teams distribute parallel loop SIMD construct is a shortcut for specifying a teams
construct containing a distribute parallel loop SIMD construct.

Syntax

C/C++
The syntax of the teams distribute parallel loop SIMD construct is as follows:

where clause can be any of the clauses accepted by the teams or distribute

C/C++
parallel for simd directives with identical meanings and restrictions.

Fortran

#pragma omp teams distribute parallel for simd [clause[[,] clause]...]
for-loops

!$omp teams distribute parallel do simd [clause[[,] clause]...]
do-loops

[!$omp end teams distribute parallel do simd]

1

2

3

4

5

6

7

8

9

10
11

12

13

14
15

16

Chapter 2 Directives 111

where clause can be any of the clauses accepted by the teams or distribute
parallel do simd directives with identical meanings and restrictions.

If an end teams distribute parallel do simd directive is not specified, an
end teams distribute parallel do simd directive is assumed at the end of the

Fortran

do-loops.

Description

The semantics are identical to explicitly specifying a teams directive immediately
followed by a distribute parallel loop SIMD directive. The effect of any clause that
applies to both constructs is as if it were applied to both constructs separately.

Restrictions

The restrictions for the teams and distribute parallel loop SIMD constructs apply.

Cross References
• teams construct, see Section 2.9.5 on page 86.

• Distribute parallel loop SIMD construct, see Section 2.9.9 on page 94.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.10.13 Target Teams Distribute Parallel Loop SIMD
Construct

Summary

The target teams distribute parallel loop SIMD construct is a shortcut for specifying a
target construct containing a teams distribute parallel loop SIMD construct.

1
2

3
4
5

6

7
8
9

10

11

12

13

14

15

16

17

18

19
20

112 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the target teams distribute parallel loop SIMD construct is as follows:

where clause can be any of the clauses accepted by the target or teams
distribute parallel for simd directives with identical meanings and

C/C++
restrictions.

Fortran

where clause can be any of the clauses accepted by the target or teams
distribute parallel do simd directives with identical meanings and
restrictions.

If an end target teams distribute parallel do simd directive is not
specified, an end target teams distribute parallel do simd directive is

Fortran

assumed at the end of the do-loops.

Description

The semantics are identical to explicitly specifying a target directive immediately
followed by a teams distribute parallel loop SIMD directive.

Restrictions

The restrictions for the target and teams distribute parallel loop SIMD constructs
apply.

#pragma omp target teams distribute parallel for simd [clause[[,] clause]...]
for-loops

!$omp target teams distribute parallel do simd [clause[[,] clause]...]
do-loops

[!$omp end target teams distribute parallel do simd]

1

2

3
4
5

6

7
8
9

10
11
12

13

14
15

16

17
18

Chapter 2 Directives 113

Cross References
• target construct, see Section 2.9.2 on page 79.

• Teams distribute parallel loop SIMD construct, see Section 2.10.12 on page 110.

• Data attribute clauses, see Section 2.14.3 on page 155.

2.11 Tasking Constructs

2.11.1 task Construct

Summary

The task construct defines an explicit task.

Syntax

C/C++
The syntax of the task construct is as follows:

where clause is one of the following:

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

if(scalar-expression)

final(scalar-expression)

untied

default(shared | none)

mergeable

private(list)

firstprivate(list)

shared(list)

depend(dependence-type : list)

1

2

3

4

5

6

7

8

9

10

11

114 OpenMP API • Version 4.0 - July 2013

C/C++

Fortran

The syntax of the task construct is as follows:

where clause is one of the following:

Fortran

Binding

The binding thread set of the task region is the current team. A task region binds to
the innermost enclosing parallel region.

Description

When a thread encounters a task construct, a task is generated from the code for the
associated structured block. The data environment of the task is created according to the
data-sharing attribute clauses on the task construct, per-data environment ICVs, and
any defaults that apply.

!$omp task [clause[[,] clause] ...]
structured-block

!$omp end task

if(scalar-logical-expression)

final(scalar-logical-expression)

untied

default(private | firstprivate | shared | none)

mergeable

private(list)

firstprivate(list)

shared(list)

depend(dependence-type : list)

1

2

3

4

5

6
7

8

9
10
11
12

Chapter 2 Directives 115

The encountering thread may immediately execute the task, or defer its execution. In the
latter case, any thread in the team may be assigned the task. Completion of the task can
be guaranteed using task synchronization constructs. A task construct may be nested
inside an outer task, but the task region of the inner task is not a part of the task
region of the outer task.

When an if clause is present on a task construct, and the if clause expression
evaluates to false, an undeferred task is generated, and the encountering thread must
suspend the current task region, for which execution cannot be resumed until the
generated task is completed. Note that the use of a variable in an if clause expression
of a task construct causes an implicit reference to the variable in all enclosing
constructs.

When a final clause is present on a task construct and the final clause expression
evaluates to true, the generated task will be a final task. All task constructs
encountered during execution of a final task will generate final and included tasks. Note
that the use of a variable in a final clause expression of a task construct causes an
implicit reference to the variable in all enclosing constructs.

The if clause expression and the final clause expression are evaluated in the context
outside of the task construct, and no ordering of those evaluations is specified.

A thread that encounters a task scheduling point within the task region may
temporarily suspend the task region. By default, a task is tied and its suspended task
region can only be resumed by the thread that started its execution. If the untied
clause is present on a task construct, any thread in the team can resume the task
region after a suspension. The untied clause is ignored if a final clause is present
on the same task construct and the final clause expression evaluates to true, or if a
task is an included task.

The task construct includes a task scheduling point in the task region of its generating
task, immediately following the generation of the explicit task. Each explicit task
region includes a task scheduling point at its point of completion.

When a mergeable clause is present on a task construct, and the generated task is
an undeferred task or an included task, the implementation may generate a merged task
instead.

Note – When storage is shared by an explicit task region, it is the programmer's
responsibility to ensure, by adding proper synchronization, that the storage does not
reach the end of its lifetime before the explicit task region completes its execution.

1
2
3
4
5

6
7
8
9

10
11

12
13
14
15
16

17
18

19
20
21
22
23
24
25

26
27
28

29
30
31

32
33
34

116 OpenMP API • Version 4.0 - July 2013

Restrictions

Restrictions to the task construct are as follows:

• A program that branches into or out of a task region is non-conforming.

• A program must not depend on any ordering of the evaluations of the clauses of the
task directive, or on any side effects of the evaluations of the clauses.

• At most one if clause can appear on the directive.

• At most one final clause can appear on the directive.

C++
• A throw executed inside a task region must cause execution to resume within the

C++

same task region, and the same thread that threw the exception must catch it.

Fortran

• Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has

Fortran

unspecified behavior.

2.11.1.1 depend Clause

Summary

The depend clause enforces additional constraints on the scheduling of tasks. These
constraints establish dependences only between sibling tasks. The clause consists of a
dependence-type with one or more list items.

Syntax

The syntax of the depend clause is as follows:

Description

Task dependences are derived from the dependence-type of a depend clause and its list
items, where dependence-type is one of the following:

depend(dependence-type : list)

1

2

3

4
5

6

7

8
9

10
11

12

13

14
15
16

17

18

19

20
21

Chapter 2 Directives 117

The in dependence-type. The generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in an out or inout
dependence-type list.

The out and inout dependence-types. The generated task will be a dependent task of
all previously generated sibling tasks that reference at least one of the list items in an
in, out, or inout dependence-type list.

The list items that appear in the depend clause may include array sections.

Note – The enforced task dependence establishes a synchronization of memory
accesses performed by a dependent task with respect to accesses performed by the
predecessor tasks. However, it is the responsibility of the programmer to synchronize
properly with respect to other concurrent accesses that occur outside of those tasks.

Restrictions

Restrictions to the depend clause are as follows:

• List items used in depend clauses of the same task or sibling tasks must indicate
identical storage or disjoint storage.

• List items used in depend clauses cannot be zero-length array sections.

• A variable that is part of another variable (such as a field of a structure) but is not an
array element or an array section cannot appear in a depend clause.

Cross References
• Array sections, Section 2.4 on page 42.

• Task scheduling constraints, Section 2.11.3 on page 118.

2.11.2 taskyield Construct

Summary

The taskyield construct specifies that the current task can be suspended in favor of
execution of a different task. The taskyield construct is a stand-alone directive.

1
2
3

4
5
6

7

8
9

10
11

12

13

14
15

16

17
18

19

20

21

22

23

24
25

118 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the taskyield construct is as follows:

C/C++

Fortran

The syntax of the taskyield construct is as follows:

Fortran

Binding

A taskyield region binds to the current task region. The binding thread set of the
taskyield region is the current team.

Description

The taskyield region includes an explicit task scheduling point in the current task
region.

Cross References
• Task scheduling, see Section 2.11.3 on page 118.

2.11.3 Task Scheduling
Whenever a thread reaches a task scheduling point, the implementation may cause it to
perform a task switch, beginning or resuming execution of a different task bound to the
current team. Task scheduling points are implied at the following locations:

• the point immediately following the generation of an explicit task

#pragma omp taskyield new-line

!$omp taskyield

1

2

3

4

5

6

7
8

9

10
11

12

13

14

15
16
17

18

Chapter 2 Directives 119

• after the point of completion of a task region

• in a taskyield region

• in a taskwait region

• at the end of a taskgroup region

• in an implicit and explicit barrier region

• the point immediately following the generation of a target region

• at the beginning and end of a target data region

• in a target update region

When a thread encounters a task scheduling point it may do one of the following,
subject to the Task Scheduling Constraints (below):

• begin execution of a tied task bound to the current team

• resume any suspended task region, bound to the current team, to which it is tied

• begin execution of an untied task bound to the current team

• resume any suspended untied task region bound to the current team.

If more than one of the above choices is available, it is unspecified as to which will be
chosen.

Task Scheduling Constraints are as follows:

1. An included task is executed immediately after generation of the task.

2. Scheduling of new tied tasks is constrained by the set of task regions that are currently
tied to the thread, and that are not suspended in a barrier region. If this set is empty,
any new tied task may be scheduled. Otherwise, a new tied task may be scheduled only
if it is a descendent task of every task in the set.

3. A dependent task shall not be scheduled until its task dependences are fulfilled.

4. When an explicit task is generated by a construct containing an if clause for which the
expression evaluated to false, and the previous constraints are already met, the task is
executed immediately after generation of the task.

A program relying on any other assumption about task scheduling is non-conforming.

Note – Task scheduling points dynamically divide task regions into parts. Each part is
executed uninterrupted from start to end. Different parts of the same task region are
executed in the order in which they are encountered. In the absence of task
synchronization constructs, the order in which a thread executes parts of different
schedulable tasks is unspecified.

A correct program must behave correctly and consistently with all conceivable
scheduling sequences that are compatible with the rules above.

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19
20
21
22

23

24
25
26

27

28
29
30
31
32

33
34

120 OpenMP API • Version 4.0 - July 2013

For example, if threadprivate storage is accessed (explicitly in the source code or
implicitly in calls to library routines) in one part of a task region, its value cannot be
assumed to be preserved into the next part of the same task region if another schedulable
task exists that modifies it.

As another example, if a lock acquire and release happen in different parts of a task
region, no attempt should be made to acquire the same lock in any part of another task
that the executing thread may schedule. Otherwise, a deadlock is possible. A similar
situation can occur when a critical region spans multiple parts of a task and another
schedulable task contains a critical region with the same name.

The use of threadprivate variables and the use of locks or critical sections in an explicit
task with an if clause must take into account that when the if clause evaluates to
false, the task is executed immediately, without regard to Task Scheduling Constraint 2.

2.12 Master and Synchronization Constructs
OpenMP provides the following synchronization constructs:

• the master construct.

• the critical construct.

• the barrier construct.

• the taskwait construct.

• the taskgroup construct.

• the atomic construct.

• the flush construct.

• the ordered construct.

2.12.1 master Construct

Summary

The master construct specifies a structured block that is executed by the master thread
of the team.

1
2
3
4

5
6
7
8
9

10
11
12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

Chapter 2 Directives 121

Syntax

C/C++
The syntax of the master construct is as follows:

C/C++

Fortran

The syntax of the master construct is as follows:

Fortran

Binding

The binding thread set for a master region is the current team. A master region
binds to the innermost enclosing parallel region. Only the master thread of the team
executing the binding parallel region participates in the execution of the structured
block of the master region.

Description

Other threads in the team do not execute the associated structured block. There is no
implied barrier either on entry to, or exit from, the master construct.

Restrictions

C++
• A throw executed inside a master region must cause execution to resume within the

C++

same master region, and the same thread that threw the exception must catch it.

#pragma omp master new-line
 structured-block

!$omp master
 structured-block
!$omp end master

1

2

3

4

5

6

7
8
9

10

11

12
13

14

15
16

122 OpenMP API • Version 4.0 - July 2013

2.12.2 critical Construct

Summary

The critical construct restricts execution of the associated structured block to a
single thread at a time.

Syntax

C/C++
The syntax of the critical construct is as follows:

C/C++

Fortran

The syntax of the critical construct is as follows:

Fortran

Binding

The binding thread set for a critical region is all threads in the contention group.
Region execution is restricted to a single thread at a time among all threads in the
contention group, without regard to the team(s) to which the threads belong.

Description

An optional name may be used to identify the critical construct. All critical
constructs without a name are considered to have the same unspecified name. A thread
waits at the beginning of a critical region until no thread in the contention group is

#pragma omp critical [(name)] new-line
 structured-block

!$omp critical [(name)]
 structured-block
!$omp end critical [(name)]

1

2

3
4

5

6

7

8

9

10

11
12
13

14

15
16
17

Chapter 2 Directives 123

executing a critical region with the same name. The critical construct enforces
exclusive access with respect to all critical constructs with the same name in all
threads in the contention group, not just those threads in the current team.

C/C++
Identifiers used to identify a critical construct have external linkage and are in a
name space that is separate from the name spaces used by labels, tags, members, and

C/C++
ordinary identifiers.

Fortran

The names of critical constructs are global entities of the program. If a name

Fortran

conflicts with any other entity, the behavior of the program is unspecified.

Restrictions

C++
• A throw executed inside a critical region must cause execution to resume within

the same critical region, and the same thread that threw the exception must catch

C++

it.

Fortran

The following restrictions apply to the critical construct:

• If a name is specified on a critical directive, the same name must also be
specified on the end critical directive.

• If no name appears on the critical directive, no name can appear on the end

Fortran

critical directive.

2.12.3 barrier Construct

Summary

The barrier construct specifies an explicit barrier at the point at which the construct
appears. The barrier construct is a stand-alone directive.

1
2
3

4
5
6

7
8

9

10
11
12

13

14
15

16
17

18

19

20
21

124 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the barrier construct is as follows:

C/C++

Fortran

The syntax of the barrier construct is as follows:

Fortran

Binding

The binding thread set for a barrier region is the current team. A barrier region
binds to the innermost enclosing parallel region.

Description

All threads of the team executing the binding parallel region must execute the
barrier region and complete execution of all explicit tasks bound to this parallel
region before any are allowed to continue execution beyond the barrier.

The barrier region includes an implicit task scheduling point in the current task
region.

Restrictions

The following restrictions apply to the barrier construct:

• Each barrier region must be encountered by all threads in a team or by none at all,
unless cancellation has been requested for the innermost enclosing parallel region.

• The sequence of worksharing regions and barrier regions encountered must be the
same for every thread in a team.

#pragma omp barrier new-line

!$omp barrier

1

2

3

4

5
6

7

8
9

10

11
12
13

14
15

16

17

18
19

20
21

Chapter 2 Directives 125

2.12.4 taskwait Construct

Summary

The taskwait construct specifies a wait on the completion of child tasks of the
current task. The taskwait construct is a stand-alone directive.

Syntax

C/C++
The syntax of the taskwait construct is as follows:

C/C++

Fortran

The syntax of the taskwait construct is as follows:

Fortran

Binding

A taskwait region binds to the current task region. The binding thread set of the
taskwait region is the current team.

Description

The taskwait region includes an implicit task scheduling point in the current task
region. The current task region is suspended at the task scheduling point until all child
tasks that it generated before the taskwait region complete execution.

#pragma omp taskwait newline

!$omp taskwait

1

2

3
4

5

6

7

8

9

10

11
12

13

14
15
16

126 OpenMP API • Version 4.0 - July 2013

2.12.5 taskgroup Construct

Summary

The taskgroup construct specifies a wait on completion of child tasks of the current
task and their descendent tasks.

Syntax

C/C++
The syntax of the taskgroup construct is as follows:

C/C++

Fortran

The syntax of the taskgroup construct is as follows:

Fortran

Binding

A taskgroup region binds to the current task region. The binding thread set of the
taskgroup region is the current team.

Description

When a thread encounters a taskgroup construct, it starts executing the region. There
is an implicit task scheduling point at the end of the taskgroup region. The current
task is suspended at the task scheduling point until all child tasks that it generated in the
taskgroup region and all of their descendent tasks complete execution.

#pragma omp taskgroup new-line
 structured-block

!$omp taskgroup
structured-block

!$omp end taskgroup

1

2

3
4

5

6

7

8

9

10

11
12

13

14
15
16
17

Chapter 2 Directives 127

Cross References
• Task scheduling, see Section 2.11.3 on page 118

2.12.6 atomic Construct

Summary

The atomic construct ensures that a specific storage location is accessed atomically,
rather than exposing it to the possibility of multiple, simultaneous reading and writing
threads that may result in indeterminate values.

Syntax

C/C++
The syntax of the atomic construct takes either of the following forms:

or:

where expression-stmt is an expression statement with one of the following forms:

• If clause is read:
v = x;

• If clause is write:
x = expr;

• If clause is update or not present:
x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;
x = expr binop x;

#pragma omp atomic [read | write | update |
capture] [seq_cst] new-line

 expression-stmt

#pragma omp atomic capture [seq_cst] new-line
 structured-block

1

2

3

4

5
6
7

8

9

10

11

12
13

14
15

16
17
18
19
20
21
22
23

128 OpenMP API • Version 4.0 - July 2013

C/C++ (cont.)
• If clause is capture:

v = x++;
v = x--;
v = ++x;
v = --x;
v = x binop= expr;
v = x = x binop expr;
v = x = expr binop x;

and where structured-block is a structured block with one of the following forms:

{v = x; x binop= expr;}
{x binop= expr; v = x;}
{v = x; x = x binop expr;}
{v = x; x = expr binop x;}
{x = x binop expr; v = x;}
{x = expr binop x; v = x;}
{v = x; x = expr;}
{v = x; x++;}
{v = x; ++x;}
{++x; v = x;}
{x++; v = x;}
{v = x; x--;}
{v = x; --x;}
{--x; v = x;}
{x--; v = x;}

In the preceding expressions:

• x and v (as applicable) are both l-value expressions with scalar type.

• During the execution of an atomic region, multiple syntactic occurrences of x must
designate the same storage location.

• Neither of v and expr (as applicable) may access the storage location designated by x.

• Neither of x and expr (as applicable) may access the storage location designated by v.

• expr is an expression with scalar type.

• binop is one of +, *, -, /, &, ^, |, <<, or >>.

• binop, binop=, ++, and -- are not overloaded operators.

• The expression x binop expr must be numerically equivalent to x binop (expr). This
requirement is satisfied if the operators in expr have precedence greater than binop,
or by using parentheses around expr or subexpressions of expr.

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27
28

29

30

31

32

33

34
35
36

Chapter 2 Directives 129

• The expression expr binop x must be numerically equivalent to (expr) binop x. This
requirement is satisfied if the operators in expr have precedence equal to or greater
than binop, or by using parentheses around expr or subexpressions of expr.

• For forms that allow multiple occurrences of x, the number of times that x is

C/C++
evaluated is unspecified.

Fortran

The syntax of the atomic construct takes any of the following forms:

or

or

or

or

!$omp atomic read [seq_cst]
capture-statement

[!$omp end atomic]

!$omp atomic write [seq_cst]
write-statement

[!$omp end atomic]

!$omp atomic [update] [seq_cst]
update-statement

[!$omp end atomic]

!$omp atomic capture [seq_cst]
update-statement
capture-statement

!$omp end atomic

!$omp atomic capture [seq_cst]
capture-statement
update-statement

!$omp end atomic

1
2
3

4
5

6

7

8

9

10

130 OpenMP API • Version 4.0 - July 2013

Fortran (cont.)

or

where write-statement has the following form (if clause is write):

 x = expr

where capture-statement has the following form (if clause is capture or read):

 v = x

and where update-statement has one of the following forms (if clause is update,
capture, or not present):

 x = x operator expr

 x = expr operator x

 x = intrinsic_procedure_name (x, expr_list)

 x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:

• x and v (as applicable) are both scalar variables of intrinsic type.

• x must not be an allocatable variable.

• During the execution of an atomic region, multiple syntactic occurrences of x must
designate the same storage location.

• None of v, expr and expr_list (as applicable) may access the same storage location as
x.

• None of x, expr and expr_list (as applicable) may access the same storage location as
v.

• expr is a scalar expression.

• expr_list is a comma-separated, non-empty list of scalar expressions. If
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression
must appear in expr_list.

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV. .

!$omp atomic capture [seq_cst]
capture-statement
write-statement

!$omp end atomic

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15
16

17
18

19
20

21

22
23
24

25

26

Chapter 2 Directives 131

• The expression x operator expr must be numerically equivalent to x operator (expr).
This requirement is satisfied if the operators in expr have precedence greater than
operator, or by using parentheses around expr or subexpressions of expr.

• The expression expr operator x must be mathematically equivalent to (expr) operator
x. This requirement is satisfied if the operators in expr have precedence equal to or
greater than operator, or by using parentheses around expr or subexpressions of expr.

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other
program entities.

• operator must refer to the intrinsic operator and not to a user-defined operator.

• All assignments must be intrinsic assignments.

• For forms that allow multiple occurrences of x, the number of times that x is

Fortran

evaluated is unspecified.

• In all atomic construct forms, the seq_cst clause and the clause that denotes the
type of the atomic construct can appear in any order. In addition, an optional comma
may be used to separate the clauses.

Binding

The binding thread set for an atomic region is all threads in the contention group.
atomic regions enforce exclusive access with respect to other atomic regions that
access the same storage location x among all threads in the contention group without
regard to the teams to which the threads belong.

Description

The atomic construct with the read clause forces an atomic read of the location
designated by x regardless of the native machine word size.

The atomic construct with the write clause forces an atomic write of the location
designated by x regardless of the native machine word size.

The atomic construct with the update clause forces an atomic update of the location
designated by x using the designated operator or intrinsic. Note that when no clause is
present, the semantics are equivalent to atomic update. Only the read and write of the
location designated by x are performed mutually atomically. The evaluation of expr or
expr_list need not be atomic with respect to the read or write of the location designated
by x. No task scheduling points are allowed between the read and the write of the
location designated by x.

1
2
3

4
5
6

7
8

9

10

11
12

13
14
15

16

17
18
19
20

21

22
23

24
25

26
27
28
29
30
31
32

132 OpenMP API • Version 4.0 - July 2013

The atomic construct with the capture clause forces an atomic update of the
location designated by x using the designated operator or intrinsic while also capturing
the original or final value of the location designated by x with respect to the atomic
update. The original or final value of the location designated by x is written in the
location designated by v depending on the form of the atomic construct structured
block or statements following the usual language semantics. Only the read and write of
the location designated by x are performed mutually atomically. Neither the evaluation
of expr or expr_list, nor the write to the location designated by v need be atomic with
respect to the read or write of the location designated by x. No task scheduling points
are allowed between the read and the write of the location designated by x.

Any atomic construct with a seq_cst clause forces the atomically performed
operation to include an implicit flush operation without a list.

Note – As with other implicit flush regions, Section 1.4.4 on page 20 reduces the
ordering that must be enforced. The intent is that, when the analogous operation exists
in C++11 or C11, a sequentially consistent atomic construct has the same semantics as
a memory_order_seq_cst atomic operation in C++11/C11. Similarly, a
non-sequentially consistent atomic construct has the same semantics as a
memory_order_relaxed atomic operation in C++11/C11.

Unlike non-sequentially consistent atomic constructs, sequentially consistent atomic
constructs preserve the interleaving (sequentially consistent) behavior of correct,
data-race-free programs. However, they are not designed to replace the flush directive
as a mechanism to enforce ordering for non-sequentially consistent atomic constructs,
and attempts to do so require extreme caution. For example, a sequentially consistent
atomic write construct may appear to be reordered with a subsequent
non-sequentially consistent atomic write construct, since such reordering would not
be observable by a correct program if the second write were outside an atomic
directive.

For all forms of the atomic construct, any combination of two or more of these
atomic constructs enforces mutually exclusive access to the locations designated by x.
To avoid race conditions, all accesses of the locations designated by x that could
potentially occur in parallel must be protected with an atomic construct.

atomic regions do not guarantee exclusive access with respect to any accesses outside
of atomic regions to the same storage location x even if those accesses occur during a
critical or ordered region, while an OpenMP lock is owned by the executing
task, or during the execution of a reduction clause.

However, other OpenMP synchronization can ensure the desired exclusive access. For
example, a barrier following a series of atomic updates to x guarantees that subsequent
accesses do not form a race with the atomic accesses.

1
2
3
4
5
6
7
8
9

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32

33
34
35
36

37
38
39

Chapter 2 Directives 133

A compliant implementation may enforce exclusive access between atomic regions
that update different storage locations. The circumstances under which this occurs are
implementation defined.

If the storage location designated by x is not size-aligned (that is, if the byte alignment
of x is not a multiple of the size of x), then the behavior of the atomic region is
implementation defined.

Restrictions

C/C++
The following restriction applies to the atomic construct:

• All atomic accesses to the storage locations designated by x throughout the program

C/C++
are required to have a compatible type.

Fortran

The following restriction applies to the atomic construct:

• All atomic accesses to the storage locations designated by x throughout the program

Fortran

are required to have the same type and type parameters.

Cross References
• critical construct, see Section 2.12.2 on page 122.

• barrier construct, see Section 2.12.3 on page 123.

• flush construct, see Section 2.12.7 on page 134.

• ordered construct, see Section 2.12.8 on page 138.

• reduction clause, see Section 2.14.3.6 on page 167.

• lock routines, see Section 3.3 on page 224.

1
2
3

4
5
6

7

8

9
10

11

12
13

14

15

16

17

18

19

20

134 OpenMP API • Version 4.0 - July 2013

2.12.7 flush Construct

Summary

The flush construct executes the OpenMP flush operation. This operation makes a
thread’s temporary view of memory consistent with memory, and enforces an order on
the memory operations of the variables explicitly specified or implied. See the memory
model description in Section 1.4 on page 17 for more details. The flush construct is a
stand-alone directive.

Syntax

C/C++
The syntax of the flush construct is as follows:

C/C++

Fortran

The syntax of the flush construct is as follows:

Fortran

Binding

The binding thread set for a flush region is the encountering thread. Execution of a
flush region affects the memory and the temporary view of memory of only the thread
that executes the region. It does not affect the temporary view of other threads. Other
threads must themselves execute a flush operation in order to be guaranteed to observe
the effects of the encountering thread’s flush operation.

#pragma omp flush [(list)] new-line

!$omp flush [(list)]

1

2

3
4
5
6
7

8

9

10

11

12

13

14
15
16
17
18

Chapter 2 Directives 135

Description

A flush construct without a list, executed on a given thread, operates as if the whole
thread-visible data state of the program, as defined by the base language, is flushed. A
flush construct with a list applies the flush operation to the items in the list, and does
not return until the operation is complete for all specified list items. An implementation
may implement a flush with a list by ignoring the list, and treating it the same as a
flush without a list.

C/C++
If a pointer is present in the list, the pointer itself is flushed, not the memory block to

C/C++
which the pointer refers.

Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation
or association status of the POINTER item is flushed, but the pointer target is not. If the
list item is a Cray pointer, the pointer is flushed, but the object to which it points is not.
If the list item is of type C_PTR, the variable is flushed, but the storage that corresponds
to that address is not flushed. If the list item or the subobject of the list item has the
ALLOCATABLE attribute and has an allocation status of currently allocated, the

Fortran

allocated variable is flushed; otherwise the allocation status is flushed.

1

2
3
4
5
6
7

8
9

10
11
12
13
14
15
16

136 OpenMP API • Version 4.0 - July 2013

Note – Use of a flush construct with a list is extremely error prone and users are
strongly discouraged from attempting it. The following examples illustrate the ordering
properties of the flush operation. In the following incorrect pseudocode example, the
programmer intends to prevent simultaneous execution of the protected section by the
two threads, but the program does not work properly because it does not enforce the
proper ordering of the operations on variables a and b. Any shared data accessed in the
protected section is not guaranteed to be current or consistent during or after the
protected section. The atomic notation in the pseudocode in the following two examples
indicates that the accesses to a and b are ATOMIC writes and captures. Otherwise both
examples would contain data races and automatically result in unspecified behavior.

The problem with this example is that operations on variables a and b are not ordered
with respect to each other. For instance, nothing prevents the compiler from moving the
flush of b on thread 1 or the flush of a on thread 2 to a position completely after the
protected section (assuming that the protected section on thread 1 does not reference b and
the protected section on thread 2 does not reference a). If either re-ordering happens, both
threads can simultaneously execute the protected section.

Incorrect example:

 a = b = 0

 thread 1 thread 2

 atomic(b = 1) atomic(a = 1)
 flush(b) flush(a)
 flush(a) flush(b)

 atomic(tmp = a) atomic(tmp = b)
 if (tmp == 0) then if (tmp == 0) then

 protected section protected section
 end if end if

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16

Chapter 2 Directives 137

The following pseudocode example correctly ensures that the protected section is executed
by not more than one of the two threads at any one time. Notice that execution of the
protected section by neither thread is considered correct in this example. This occurs if
both flushes complete prior to either thread executing its if statement.

The compiler is prohibited from moving the flush at all for either thread, ensuring that the
respective assignment is complete and the data is flushed before the if statement is
executed.

A flush region without a list is implied at the following locations:

• During a barrier region.

• At entry to and exit from parallel, critical, and ordered regions.

• At exit from worksharing regions unless a nowait is present.

• At entry to and exit from the atomic operation (read, write, update, or capture)
performed in a sequentially consistent atomic region.

• During omp_set_lock and omp_unset_lock regions.

• During omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock
and omp_test_nest_lock regions, if the region causes the lock to be set or
unset.

• Immediately before and immediately after every task scheduling point.

A flush region with a list is implied at the following locations:

• At entry to and exit from the atomic operation (read, write, update, or capture)
performed in a non-sequentially consistent atomic region, where the list contains
only the storage location designated as x according to the description of the syntax of
the atomic construct in Section 2.12.6 on page 127.

Correct example:

 a = b = 0

 thread 1 thread 2

 atomic(b = 1) atomic(a = 1)
 flush(a,b) flush(a,b)

 atomic(tmp = a) atomic(tmp = b)
 if (tmp == 0) then if (tmp == 0) then
 protected section protected section
 end if end if

1
2
3
4

5
6
7

8

9

10

11

12
13

14

15
16
17

18

19

20
21
22
23
24

138 OpenMP API • Version 4.0 - July 2013

Note – A flush region is not implied at the following locations:

• At entry to worksharing regions.

• At entry to or exit from a master region.

2.12.8 ordered Construct

Summary

The ordered construct specifies a structured block in a loop region that will be
executed in the order of the loop iterations. This sequentializes and orders the code
within an ordered region while allowing code outside the region to run in parallel.

Syntax

C/C++
The syntax of the ordered construct is as follows:

C/C++

Fortran

The syntax of the ordered construct is as follows:

Fortran

#pragma omp ordered new-line
 structured-block

!$omp ordered
 structured-block
!$omp end ordered

1

2

3

4

5

6
7
8

9

10

11

12

13

Chapter 2 Directives 139

Binding

The binding thread set for an ordered region is the current team. An ordered region
binds to the innermost enclosing loop region. ordered regions that bind to different
loop regions execute independently of each other.

Description

The threads in the team executing the loop region execute ordered regions
sequentially in the order of the loop iterations. When the thread executing the first
iteration of the loop encounters an ordered construct, it can enter the ordered
region without waiting. When a thread executing any subsequent iteration encounters an
ordered region, it waits at the beginning of that ordered region until execution of
all the ordered regions belonging to all previous iterations have completed.

Restrictions

Restrictions to the ordered construct are as follows:

• The loop region to which an ordered region binds must have an ordered clause
specified on the corresponding loop (or parallel loop) construct.

• During execution of an iteration of a loop or a loop nest within a loop region, a
thread must not execute more than one ordered region that binds to the same loop
region.

C++
• A throw executed inside a ordered region must cause execution to resume within

the same ordered region, and the same thread that threw the exception must catch

C++

it.

Cross References
• loop construct, see Section 2.7.1 on page 53.

• parallel loop construct, see Section 2.10.1 on page 95.

1

2
3
4

5

6
7
8
9

10
11

12

13

14
15

16
17
18

19
20
21

22

23

24

140 OpenMP API • Version 4.0 - July 2013

2.13 Cancellation Constructs

2.13.1 cancel Construct

Summary

The cancel construct activates cancellation of the innermost enclosing region of the
type specified. The cancel construct is a stand-alone directive.

Syntax

C/C++
The syntax of the cancel construct is as follows:

where construct-type-clause is one of the following

parallel

sections

for

taskgroup

and if-clause is

C/C++
if (scalar-expression)

Fortran

The syntax of the cancel construct is as follows:

where construct-type-clause is one of the following

parallel

#pragma omp cancel construct-type-clause[[,] if-clause] new-line

!$omp cancel construct-type-clause[[,] if-clause] new-line

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

Chapter 2 Directives 141

sections

do

taskgroup

and if-clause is

Fortran

if (scalar-logical-expression)

Binding

The binding thread set of the cancel region is the current team. The cancel region
binds to the innermost enclosing construct of the type corresponding to the type-clause
specified in the directive (that is, the innermost parallel, sections, do, or
taskgroup construct).

Description

The cancel construct activates cancellation of the binding construct only if cancel-var
is true, in which case the construct causes the encountering task to continue execution
at the end of the canceled construct. If cancel-var is false, the cancel construct is
ignored.

Threads check for active cancellation only at cancellation points. Cancellation points are
implied at the following locations:

• implicit barriers

• barrier regions

• cancel regions

• cancellation point regions

When a thread reaches one of the above cancellation points and if cancel-var is true,
the thread immediately checks for active cancellation (that is, if cancellation has been
activated by a cancel construct). If cancellation is active, the encountering thread
continues execution at the end of the canceled construct.

Note – If one thread activates cancellation and another thread encounters a cancellation
point, the absolute order of execution between the two threads is non-deterministic.
Whether the thread that encounters a cancellation point detects the activated cancellation
depends on the underlying hardware and operating system.

1

2

3

4

5

6

7
8
9

10

11

12
13
14
15

16
17

18

19

20

21

22
23
24
25

26
27
28
29

142 OpenMP API • Version 4.0 - July 2013

When cancellation of tasks is activated through the cancel taskgroup construct, the
innermost enclosing taskgroup will be canceled. The task that encountered the
cancel taskgroup construct continues execution at the end of its task region,
which implies completion of that task. Any task that belongs to the innermost enclosing
taskgroup and has already begun execution must run to completion or until a
cancellation point is reached. Upon reaching a cancellation point and if cancellation is
active, the task continues execution at the end of its taskgroup region, which implies
its completion. Any task that belongs to the innermost enclosing taskgroup and that
has not begun execution may be discarded, which implies its completion.

When cancellation is active for a parallel, sections, for, or do region, each
thread of the binding thread set resumes execution at the end of the canceled region if a
cancellation point is encountered. If the canceled region is a parallel region, any
tasks that have been created by a task construct and their descendent tasks are
canceled according to the above taskgroup cancellation semantics. If the canceled
region is a sections, for, or do region, no task cancellation occurs.

C++

C++

The usual C++ rules for object destruction are followed when cancellation is performed.

Fortran

All private objects or subobjects with ALLOCATABLE attribute that are allocated inside

Fortran

the canceled construct are deallocated.

Note – The user is responsible for releasing locks and similar data structures that might
cause a deadlock when a cancel construct is encountered and blocked threads cannot
be canceled.

If the canceled construct contains a reduction or lastprivate clause, the final
value of the reduction or lastprivate variable is undefined.

When an if clause is present on a cancel construct and the if expression evaluates
to false, the cancel construct does not activate cancellation. The cancellation point
associated with the cancel construct is always encountered regardless of the value of
the if expression.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18

19
20
21

22
23

24
25
26
27

Chapter 2 Directives 143

Restrictions

The restrictions to the cancel construct are as follows:

• The behavior for concurrent cancellation of a region and a region nested within it is
unspecified.

• If construct-type-clause is taskgroup, the cancel construct must be closely
nested inside a task construct. Otherwise, the cancel construct must be closely
nested inside an OpenMP construct that matches the type specified in
construct-type-clause of the cancel construct.

• If construct-type-clause is taskgroup and the cancel construct is not nested
inside a taskgroup region, then the behavior is unspecified.

• A worksharing construct that is canceled must not have a nowait clause.

• A loop construct that is canceled must not have an ordered clause.

• A construct that may be subject to cancellation must not encounter an orphaned
cancellation point. That is, a cancellation point must only be encountered within that
construct and must not be encountered elsewhere in its region.

Cross References:
• cancel-var, see Section 2.3.1 on page 35

• cancellation point construct, see Section 2.13.2 on page 143

• omp_get_cancellation routine, see Section 3.2.9 on page 199

2.13.2 cancellation point Construct

Summary

The cancellation point construct introduces a user-defined cancellation point at
which implicit or explicit tasks check if cancellation of the innermost enclosing region
of the type specified has been activated. The cancellation point construct is a
stand-alone directive.

1

2

3
4

5
6
7
8

9
10

11

12

13
14
15

16

17

18

19

20

21

22
23
24
25

144 OpenMP API • Version 4.0 - July 2013

Syntax

C/C++
The syntax of the cancellation point construct is as follows:

where construct-type-clause is one of the following

parallel

sections

for

taskgroup

C/C++

Fortran

The syntax of the cancellation point construct is as follows:

where construct-type-clause is one of the following

parallel

sections

do

taskgroup

Fortran

Binding

A cancellation point region binds to the current task region.

#pragma omp cancellation point construct-type-clause new-line

!$omp cancellation point construct-type-clause

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Chapter 2 Directives 145

Description

This directive introduces a user-defined cancellation point at which an implicit or
explicit task must check if cancellation of the innermost enclosing region of the type
specified in the clause has been requested. This construct does not implement a
synchronization between threads or tasks.

When an implicit or explicit task reaches a user-defined cancellation point and if
cancel-var is true the task immediately checks whether cancellation of the region
specified in the clause has been activated. If so, the encountering task continues
execution at the end of the canceled construct.

Restrictions
• A cancellation point construct for which construct-type-clause is

taskgroup must be closely nested inside a task construct. A cancellation
point construct for which construct-type-clause is not taskgroup must be closely
nested inside an OpenMP construct that matches the type specified in
construct-type-clause.

• An OpenMP program with orphaned cancellation point constructs is
non-conforming.

Cross References:
• cancel-var, see Section 2.3.1 on page 35.

• cancel construct, see Section 2.13.1 on page 140.

• omp_get_cancellation routine, see Section 3.2.9 on page 199.

1

2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17

18

19

20

21

146 OpenMP API • Version 4.0 - July 2013

2.14 Data Environment
This section presents a directive and several clauses for controlling the data environment
during the execution of parallel, task, simd, and worksharing regions.

• Section 2.14.1 on page 146 describes how the data-sharing attributes of variables
referenced in parallel, task, simd, and worksharing regions are determined.

• The threadprivate directive, which is provided to create threadprivate memory,
is described in Section 2.14.2 on page 150.

• Clauses that may be specified on directives to control the data-sharing attributes of
variables referenced in parallel, task, simd or worksharing constructs are
described in Section 2.14.3 on page 155.

• Clauses that may be specified on directives to copy data values from private or
threadprivate variables on one thread to the corresponding variables on other threads
in the team are described in Section 2.14.4 on page 173.

• Clauses that may be specified on directives to map variables to devices are described
in Section 2.14.5 on page 177.

2.14.1 Data-sharing Attribute Rules
This section describes how the data-sharing attributes of variables referenced in
parallel, task, simd, and worksharing regions are determined. The following two
cases are described separately:

• Section 2.14.1.1 on page 146 describes the data-sharing attribute rules for variables
referenced in a construct.

• Section 2.14.1.2 on page 149 describes the data-sharing attribute rules for variables
referenced in a region, but outside any construct.

2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in a
Construct

The data-sharing attributes of variables that are referenced in a construct can be
predetermined, explicitly determined, or implicitly determined, according to the rules
outlined in this section.

Specifying a variable on a firstprivate, lastprivate, linear, reduction,
or copyprivate clause of an enclosed construct causes an implicit reference to the
variable in the enclosing construct. Specifying a variable on a map clause of an enclosed

1

2
3

4
5

6
7

8
9

10

11
12
13

14
15

16

17
18
19

20
21

22
23

24

25

26
27
28

29
30
31

Chapter 2 Directives 147

construct may cause an implicit reference to the variable in the enclosing construct.
Such implicit references are also subject to the data-sharing attribute rules outlined in
this section.

Certain variables and objects have predetermined data-sharing attributes as follows:

C/C++
• Variables appearing in threadprivate directives are threadprivate.

• Variables with automatic storage duration that are declared in a scope inside the
construct are private.

• Objects with dynamic storage duration are shared.

• Static data members are shared.

• The loop iteration variable(s) in the associated for-loop(s) of a for or parallel
for construct is (are) private.

• The loop iteration variable in the associated for-loop of a simd construct with just
one associated for-loop is linear with a constant-linear-step that is the increment of
the associated for-loop.

• The loop iteration variables in the associated for-loops of a simd construct with
multiple associated for-loops are lastprivate.

• Variables with static storage duration that are declared in a scope inside the construct

C/C++
are shared.

Fortran

• Variables and common blocks appearing in threadprivate directives are
threadprivate.

• The loop iteration variable(s) in the associated do-loop(s) of a do or parallel do
construct is (are) private.

• The loop iteration variable in the associated do-loop of a simd construct with just
one associated do-loop is linear with a constant-linear-step that is the increment of
the associated do-loop.

• The loop iteration variables in the associated do-loops of a simd construct with
multiple associated do-loops are lastprivate.

• A loop iteration variable for a sequential loop in a parallel or task construct is
private in the innermost such construct that encloses the loop.

• Implied-do indices and forall indices are private.

• Cray pointees inherit the data-sharing attribute of the storage with which their Cray
pointers are associated.

• Assumed-size arrays are shared.

1
2
3

4

5

6
7

8

9

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24
25

26
27

28
29

30

31
32

33

148 OpenMP API • Version 4.0 - July 2013

• An associate name preserves the association with the selector established at the

Fortran

ASSOCIATE statement.

Variables with predetermined data-sharing attributes may not be listed in data-sharing
attribute clauses, except for the cases listed below. For these exceptions only, listing a
predetermined variable in a data-sharing attribute clause is allowed and overrides the
variable’s predetermined data-sharing attributes.

C/C++
• The loop iteration variable(s) in the associated for-loop(s) of a for or parallel

for construct may be listed in a private or lastprivate clause.

• The loop iteration variable in the associated for-loop of a simd construct with just
one associated for-loop may be listed in a linear clause with a constant-linear-step
that is the increment of the associated for-loop.

• The loop iteration variables in the associated for-loops of a simd construct with
multiple associated for-loops may be listed in a lastprivate clause.

• Variables with const-qualified type having no mutable member may be listed in a

C/C++
firstprivate clause, even if they are static data members.

Fortran

• The loop iteration variable(s) in the associated do-loop(s) of a do or parallel do
construct may be listed in a private or lastprivate clause.

• The loop iteration variable in the associated do-loop of a simd construct with just
one associated do-loop may be listed in a linear clause with a constant-linear-step
that is the increment of the associated loop.

• The loop iteration variables in the associated do-loops of a simd construct with
multiple associated do-loops may be listed in a lastprivate clause.

• Variables used as loop iteration variables in sequential loops in a parallel or
task construct may be listed in data-sharing clauses on the construct itself, and on
enclosed constructs, subject to other restrictions.

Fortran

• Assumed-size arrays may be listed in a shared clause.

Additional restrictions on the variables that may appear in individual clauses are
described with each clause in Section 2.14.3 on page 155.

Variables with explicitly determined data-sharing attributes are those that are referenced
in a given construct and are listed in a data-sharing attribute clause on the construct.

1
2

3
4
5
6

7
8

9
10
11

12
13

14
15

16
17

18
19
20

21
22

23
24
25

26

27
28

29
30

Chapter 2 Directives 149

Variables with implicitly determined data-sharing attributes are those that are referenced
in a given construct, do not have predetermined data-sharing attributes, and are not
listed in a data-sharing attribute clause on the construct.

Rules for variables with implicitly determined data-sharing attributes are as follows:

• In a parallel or task construct, the data-sharing attributes of these variables are
determined by the default clause, if present (see Section 2.14.3.1 on page 156).

• In a parallel construct, if no default clause is present, these variables are
shared.

• For constructs other than task, if no default clause is present, these variables
inherit their data-sharing attributes from the enclosing context.

• In a task construct, if no default clause is present, a variable that in the
enclosing context is determined to be shared by all implicit tasks bound to the current
team is shared.

Fortran

• In an orphaned task construct, if no default clause is present, dummy arguments

Fortran

are firstprivate.

• In a task construct, if no default clause is present, a variable whose data-sharing
attribute is not determined by the rules above is firstprivate.

Additional restrictions on the variables for which data-sharing attributes cannot be
implicitly determined in a task construct are described in Section 2.14.3.4 on page
162.

2.14.1.2 Data-sharing Attribute Rules for Variables Referenced in a
Region but not in a Construct

The data-sharing attributes of variables that are referenced in a region, but not in a
construct, are determined as follows:

C/C++
• Variables with static storage duration that are declared in called routines in the region

are shared.

• Variables with const-qualified type having no mutable member, and that are
declared in called routines, are shared.

• File-scope or namespace-scope variables referenced in called routines in the region
are shared unless they appear in a threadprivate directive.

• Objects with dynamic storage duration are shared.

• Static data members are shared unless they appear in a threadprivate directive.

1
2
3

4

5
6

7
8

9
10

11
12
13

14
15

16
17

18
19
20

21

22

23
24

25
26

27
28

29
30

31

32

150 OpenMP API • Version 4.0 - July 2013

• Formal arguments of called routines in the region that are passed by reference inherit
the data-sharing attributes of the associated actual argument.

C/C++
• Other variables declared in called routines in the region are private.

Fortran

• Local variables declared in called routines in the region and that have the save
attribute, or that are data initialized, are shared unless they appear in a
threadprivate directive.

• Variables belonging to common blocks, or declared in modules, and referenced in
called routines in the region are shared unless they appear in a threadprivate
directive.

• Dummy arguments of called routines in the region that are passed by reference inherit
the data-sharing attributes of the associated actual argument.

• Cray pointees inherit the data-sharing attribute of the storage with which their Cray
pointers are associated.

• Implied-do indices, forall indices, and other local variables declared in called

Fortran

routines in the region are private.

2.14.2 threadprivate Directive

Summary

The threadprivate directive specifies that variables are replicated, with each thread
having its own copy. The threadprivate directive is a declarative directive.

Syntax

C/C++
The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of file-scope, namespace-scope, or static

C/C++
block-scope variables that do not have incomplete types.

#pragma omp threadprivate(list) new-line

1
2

3

4
5
6

7
8
9

10
11

12
13

14
15

16

17

18
19

20

21

22
23

Chapter 2 Directives 151

Fortran

The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of named variables and named common blocks.

Fortran

Common block names must appear between slashes.

Description

Each copy of a threadprivate variable is initialized once, in the manner specified by the
program, but at an unspecified point in the program prior to the first reference to that
copy. The storage of all copies of a threadprivate variable is freed according to how
static variables are handled in the base language, but at an unspecified point in the
program.

A program in which a thread references another thread’s copy of a threadprivate variable
is non-conforming.

The content of a threadprivate variable can change across a task scheduling point if the
executing thread switches to another task that modifies the variable. For more details on
task scheduling, see Section 1.3 on page 14 and Section 2.11 on page 113.

In parallel regions, references by the master thread will be to the copy of the
variable in the thread that encountered the parallel region.

During a sequential part references will be to the initial thread’s copy of the variable.
The values of data in the initial thread’s copy of a threadprivate variable are guaranteed
to persist between any two consecutive references to the variable in the program.

The values of data in the threadprivate variables of non-initial threads are guaranteed to
persist between two consecutive active parallel regions only if all the following
conditions hold:

• Neither parallel region is nested inside another explicit parallel region.

• The number of threads used to execute both parallel regions is the same.

• The thread affinity policies used to execute both parallel regions are the same.

• The value of the dyn-var internal control variable in the enclosing task region is false
at entry to both parallel regions.

If these conditions all hold, and if a threadprivate variable is referenced in both regions,
then threads with the same thread number in their respective regions will reference the
same copy of that variable.

!$omp threadprivate(list)

1

2
3

4

5
6
7
8
9

10
11

12
13
14

15
16

17
18
19

20
21
22

23

24

25

26
27

28
29
30

152 OpenMP API • Version 4.0 - July 2013

C/C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy
of a threadprivate variable that does not appear in any copyin clause on the second
region will be retained. Otherwise, the storage duration, lifetime, and value of a thread’s
copy of the variable in the second region is unspecified.

If the value of a variable referenced in an explicit initializer of a threadprivate variable
is modified prior to the first reference to any instance of the threadprivate variable, then

C/C++
the behavior is unspecified.

C++
The order in which any constructors for different threadprivate variables of class type
are called is unspecified. The order in which any destructors for different threadprivate

C++

variables of class type are called is unspecified.

Fortran

A variable is affected by a copyin clause if the variable appears in the copyin clause
or it is in a common block that appears in the copyin clause.

If the above conditions hold, the definition, association, or allocation status of a thread’s
copy of a threadprivate variable or a variable in a threadprivate common
block, that is not affected by any copyin clause that appears on the second region, will
be retained. Otherwise, the definition and association status of a thread’s copy of the
variable in the second region is undefined, and the allocation status of an allocatable
variable will be implementation defined.

If a threadprivate variable or a variable in a threadprivate common block is
not affected by any copyin clause that appears on the first parallel region in which
it is referenced, the variable or any subobject of the variable is initially defined or
undefined according to the following rules:

• If it has the ALLOCATABLE attribute, each copy created will have an initial
allocation status of not currently allocated.

• If it has the POINTER attribute:

• if it has an initial association status of disassociated, either through explicit
initialization or default initialization, each copy created will have an association
status of disassociated;

• otherwise, each copy created will have an association status of undefined.

• If it does not have either the POINTER or the ALLOCATABLE attribute:

• if it is initially defined, either through explicit initialization or default
initialization, each copy created is so defined;

1
2
3
4

5
6
7

8
9

10

11
12

13
14
15
16
17
18

19
20
21
22

23
24

25

26
27
28

29

30

31
32

Chapter 2 Directives 153

Fortran

• otherwise, each copy created is undefined.

Restrictions

The restrictions to the threadprivate directive are as follows:

• A threadprivate variable must not appear in any clause except the copyin,
copyprivate, schedule, num_threads, thread_limit, and if clauses.

• A program in which an untied task accesses threadprivate storage is non-conforming.

C/C++
• A variable that is part of another variable (as an array or structure element) cannot

appear in a threadprivate clause unless it is a static data member of a C++
class.

• A threadprivate directive for file-scope variables must appear outside any
definition or declaration, and must lexically precede all references to any of the
variables in its list.

• A threadprivate directive for namespace-scope variables must appear outside
any definition or declaration other than the namespace definition itself, and must
lexically precede all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive at file, namespace, or class
scope must refer to a variable declaration at file, namespace, or class scope that
lexically precedes the directive.

• A threadprivate directive for static block-scope variables must appear in the
scope of the variable and not in a nested scope. The directive must lexically precede
all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive in block scope must refer to
a variable declaration in the same scope that lexically precedes the directive. The
variable declaration must use the static storage-class specifier.

• If a variable is specified in a threadprivate directive in one translation unit, it
must be specified in a threadprivate directive in every translation unit in which
it is declared.

C/C++
• The address of a threadprivate variable is not an address constant.

C++
• A threadprivate directive for static class member variables must appear in the

class definition, in the same scope in which the member variables are declared, and
must lexically precede all references to any of the variables in its list.

• A threadprivate variable must not have an incomplete type or a reference type.

1

2

3

4
5

6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28

29
30
31

32

154 OpenMP API • Version 4.0 - July 2013

• A threadprivate variable with class type must have:

• an accessible, unambiguous default constructor in case of default initialization
without a given initializer;

• an accessible, unambiguous constructor accepting the given argument in case of
direct initialization;

• an accessible, unambiguous copy constructor in case of copy initialization with an

C/C++
explicit initializer.

Fortran

• A variable that is part of another variable (as an array or structure element) cannot
appear in a threadprivate clause.

• The threadprivate directive must appear in the declaration section of a scoping
unit in which the common block or variable is declared. Although variables in
common blocks can be accessed by use association or host association, common
block names cannot. This means that a common block name specified in a
threadprivate directive must be declared to be a common block in the same
scoping unit in which the threadprivate directive appears.

• If a threadprivate directive specifying a common block name appears in one
program unit, then such a directive must also appear in every other program unit that
contains a COMMON statement specifying the same name. It must appear after the last
such COMMON statement in the program unit.

• If a threadprivate variable or a threadprivate common block is declared
with the BIND attribute, the corresponding C entities must also be specified in a
threadprivate directive in the C program.

• A blank common block cannot appear in a threadprivate directive.

• A variable can only appear in a threadprivate directive in the scope in which it
is declared. It must not be an element of a common block or appear in an
EQUIVALENCE statement.

• A variable that appears in a threadprivate directive must be declared in the

Fortran

scope of a module or have the SAVE attribute, either explicitly or implicitly.

Cross References:
• dyn-var ICV, see Section 2.3 on page 34.

• number of threads used to execute a parallel region, see Section 2.5.1 on page 47.

• copyin clause, see Section 2.14.4.1 on page 173.

1

2
3

4
5

6
7

8
9

10
11
12
13
14
15

16
17
18
19

20
21
22

23

24
25
26

27
28

29

30

31

32

Chapter 2 Directives 155

2.14.3 Data-Sharing Attribute Clauses
Several constructs accept clauses that allow a user to control the data-sharing attributes
of variables referenced in the construct. Data-sharing attribute clauses apply only to
variables for which the names are visible in the construct on which the clause appears.

Not all of the clauses listed in this section are valid on all directives. The set of clauses
that is valid on a particular directive is described with the directive.

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page
26). All list items appearing in a clause must be visible, according to the scoping rules
of the base language. With the exception of the default clause, clauses may be
repeated as needed. A list item that specifies a given variable may not appear in more
than one clause on the same directive, except that a variable may be specified in both
firstprivate and lastprivate clauses.

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a
template, and there are no other references to that variable in the program, then any

C++

behavior related to that variable is unspecified.

Fortran

A named common block may be specified in a list by enclosing the name in slashes.
When a named common block appears in a list, it has the same meaning as if every
explicit member of the common block appeared in the list. An explicit member of a
common block is a variable that is named in a COMMON statement that specifies the
common block name and is declared in the same scoping unit in which the clause
appears.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. As a result, a common block name specified
in a data-sharing attribute clause must be declared to be a common block in the same
scoping unit in which the data-sharing attribute clause appears.

When a named common block appears in a private, firstprivate,
lastprivate, or shared clause of a directive, none of its members may be declared
in another data-sharing attribute clause in that directive. When individual members of a
common block appear in a private, firstprivate, lastprivate, or
reduction clause of a directive, the storage of the specified variables is no longer

Fortran

associated with the storage of the common block itself.

1

2
3
4

5
6

7
8
9

10
11
12

13
14
15

16
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31

156 OpenMP API • Version 4.0 - July 2013

2.14.3.1 default clause

Summary

The default clause explicitly determines the data-sharing attributes of variables that
are referenced in a parallel, task or teams construct and would otherwise be
implicitly determined (see Section 2.14.1.1 on page 146).

Syntax

C/C++
The syntax of the default clause is as follows:

C/C++

Fortran

The syntax of the default clause is as follows:

Fortran

Description

The default(shared) clause causes all variables referenced in the construct that
have implicitly determined data-sharing attributes to be shared.

Fortran

The default(firstprivate) clause causes all variables in the construct that have
implicitly determined data-sharing attributes to be firstprivate.

The default(private) clause causes all variables referenced in the construct that

Fortran

have implicitly determined data-sharing attributes to be private.

default(shared | none)

default(private | firstprivate | shared | none)

1

2

3
4
5

6

7

8
9

10

11

12

13
14

15
16

17
18

Chapter 2 Directives 157

The default(none) clause requires that each variable that is referenced in the
construct, and that does not have a predetermined data-sharing attribute, must have its
data-sharing attribute explicitly determined by being listed in a data-sharing attribute
clause.

Restrictions

The restrictions to the default clause are as follows:

• Only a single default clause may be specified on a parallel, task, or teams
directive.

2.14.3.2 shared clause

Summary

The shared clause declares one or more list items to be shared by tasks generated by
a parallel, task or teams construct.

Syntax

The syntax of the shared clause is as follows:

Description

All references to a list item within a task refer to the storage area of the original variable
at the point the directive was encountered.

It is the programmer's responsibility to ensure, by adding proper synchronization, that
storage shared by an explicit task region does not reach the end of its lifetime before
the explicit task region completes its execution.

Fortran

The association status of a shared pointer becomes undefined upon entry to and on exit
from the parallel, task or teams construct if it is associated with a target or a
subobject of a target that is in a private, firstprivate, lastprivate, or
reduction clause inside the construct.

shared(list)

1
2
3
4

5

6

7
8

9

10

11
12

13

14

15

16
17

18
19
20

21
22
23
24

158 OpenMP API • Version 4.0 - July 2013

Under certain conditions, passing a shared variable to a non-intrinsic procedure may
result in the value of the shared variable being copied into temporary storage before the
procedure reference, and back out of the temporary storage into the actual argument
storage after the procedure reference. It is implementation defined when this situation
occurs.

Note – Use of intervening temporary storage may occur when the following three
conditions hold regarding an actual argument in a reference to a non-intrinsic procedure:

a. The actual argument is one of the following:

• A shared variable.

• A subobject of a shared variable.

• An object associated with a shared variable.

• An object associated with a subobject of a shared variable.

b. The actual argument is also one of the following:

• An array section.

• An array section with a vector subscript.

• An assumed-shape array.

• A pointer array.

c. The associated dummy argument for this actual argument is an explicit-shape array
or an assumed-size array.

These conditions effectively result in references to, and definitions of, the temporary
storage during the procedure reference. Any references to (or definitions of) the shared
storage that is associated with the dummy argument by any other task must be
synchronized with the procedure reference to avoid possible race conditions.

Fortran

Restrictions

The restrictions for the shared clause are as follows:

C/C++
• A variable that is part of another variable (as an array or structure element) cannot

C/C++
appear in a shared clause unless it is a static data member of a C++ class.

1
2
3
4
5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20
21
22
23

24

25

26

27
28

Chapter 2 Directives 159

Fortran

• A variable that is part of another variable (as an array or structure element) cannot

Fortran

appear in a shared clause.

2.14.3.3 private clause

Summary

The private clause declares one or more list items to be private to a task or to a
SIMD lane.

Syntax

The syntax of the private clause is as follows:

Description

Each task that references a list item that appears in a private clause in any statement
in the construct receives a new list item. Each SIMD lane used in a simd construct that
references a list item that appears in a private clause in any statement in the construct
receives a new list item. Language-specific attributes for new list items are derived from
the corresponding original list item. Inside the construct, all references to the original
list item are replaced by references to the new list item. In the rest of the region, it is
unspecified whether references are to the new list item or the original list item.
Therefore, if an attempt is made to reference the original item, its value after the region
is also unspecified. If a SIMD construct or a task does not reference a list item that
appears in a private clause, it is unspecified whether SIMD lanes or the task receive
a new list item.

The value and/or allocation status of the original list item will change only:

• if accessed and modified via pointer,

• if possibly accessed in the region but outside of the construct,

• as a side effect of directives or clauses, or

private(list)

1
2

3

4

5
6

7

8

9

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24

160 OpenMP API • Version 4.0 - July 2013

Fortran

Fortran

• if accessed and modified via construct association.

List items that appear in a private, firstprivate, or reduction clause in a
parallel construct may also appear in a private clause in an enclosed parallel,
task, or worksharing, or simd construct.

List items that appear in a private or firstprivate clause in a task construct
may also appear in a private clause in an enclosed parallel or task construct.

List items that appear in a private, firstprivate, lastprivate, or
reduction clause in a worksharing construct may also appear in a private clause
in an enclosed parallel or task construct.

C/C++
A new list item of the same type, with automatic storage duration, is allocated for the
construct. The storage and thus lifetime of these list items lasts until the block in which
they are created exits. The size and alignment of the new list item are determined by the
type of the variable. This allocation occurs once for each task generated by the construct
and/or once for each SIMD lane used by the construct.

The new list item is initialized, or has an undefined initial value, as if it had been locally

C/C++
declared without an initializer.

C++
The order in which any default constructors for different private variables of class type
are called is unspecified. The order in which any destructors for different private

C++

variables of class type are called is unspecified.

Fortran

If any statement of the construct references a list item, a new list item of the same type
and type parameters is allocated: once for each implicit task in the parallel
construct; once for each task generated by a task construct; and once for each SIMD
lane used by a simd construct. The initial value of the new list item is undefined.
Within a parallel, worksharing, task, teams, or simd region, the initial status
of a private pointer is undefined.

For a list item or the subobject of a list item with the ALLOCATABLE attribute:

• if the allocation status is "not currently allocated", the new list item or the subobject
of the new list item will have an initial allocation status of "not currently allocated";

1

2
3
4

5
6

7
8
9

10
11
12
13
14

15
16

17
18
19

20
21
22
23
24
25

26

27
28

Chapter 2 Directives 161

• if the allocation status is "currently allocated", the new list item or the subobject of
the new list item will have an initial allocation status of "currently allocated". If the
new list item or the subobject of the new list item is an array, its bounds will be the
same as those of the original list item or the subobject of the original list item.

A list item that appears in a private clause may be storage-associated with other
variables when the private clause is encountered. Storage association may exist
because of constructs such as EQUIVALENCE or COMMON. If A is a variable appearing
in a private clause and B is a variable that is storage-associated with A, then:

• The contents, allocation, and association status of B are undefined on entry to the
parallel, task, simd, or teams region.

• Any definition of A, or of its allocation or association status, causes the contents,
allocation, and association status of B to become undefined.

• Any definition of B, or of its allocation or association status, causes the contents,
allocation, and association status of A to become undefined.

A list item that appears in a private clause may be a selector of an ASSOCIATE
construct. If the construct association is established prior to a parallel region, the
association between the associate name and the original list item will be retained in the

Fortran

region.

Restrictions

The restrictions to the private clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot
appear in a private clause.

C/C++
• A variable of class type (or array thereof) that appears in a private clause requires

an accessible, unambiguous default constructor for the class type.

• A variable that appears in a private clause must not have a const-qualified type
unless it is of class type with a mutable member. This restriction does not apply to
the firstprivate clause.

• A variable that appears in a private clause must not have an incomplete type or a

C/C++
reference type.

Fortran

• A variable that appears in a private clause must either be definable, or an
allocatable variable. This restriction does not apply to the firstprivate clause.

1
2
3
4

5
6
7
8

9
10

11
12

13
14

15
16
17
18

19

20

21
22

23
24

25
26
27

28
29

30
31

162 OpenMP API • Version 4.0 - July 2013

• Variables that appear in namelist statements, in variable format expressions, and in
expressions for statement function definitions, may not appear in a private clause.

• Pointers with the INTENT(IN) attribute may not appear in a private clause. This

Fortran

restriction does not apply to the firstprivate clause.

2.14.3.4 firstprivate clause

Summary

The firstprivate clause declares one or more list items to be private to a task, and
initializes each of them with the value that the corresponding original item has when the
construct is encountered.

Syntax

The syntax of the firstprivate clause is as follows:

Description

The firstprivate clause provides a superset of the functionality provided by the
private clause.

A list item that appears in a firstprivate clause is subject to the private clause
semantics described in Section 2.14.3.3 on page 159, except as noted. In addition, the
new list item is initialized from the original list item existing before the construct. The
initialization of the new list item is done once for each task that references the list item
in any statement in the construct. The initialization is done prior to the execution of the
construct.

For a firstprivate clause on a parallel, task, or teams construct, the initial
value of the new list item is the value of the original list item that exists immediately
prior to the construct in the task region where the construct is encountered. For a
firstprivate clause on a worksharing construct, the initial value of the new list
item for each implicit task of the threads that execute the worksharing construct is the
value of the original list item that exists in the implicit task immediately prior to the
point in time that the worksharing construct is encountered.

firstprivate(list)

1
2

3
4

5

6

7
8
9

10

11

12

13
14

15
16
17
18
19
20

21
22
23
24
25
26
27

Chapter 2 Directives 163

To avoid race conditions, concurrent updates of the original list item must be
synchronized with the read of the original list item that occurs as a result of the
firstprivate clause.

If a list item appears in both firstprivate and lastprivate clauses, the update
required for lastprivate occurs after all the initializations for firstprivate.

C/C++
For variables of non-array type, the initialization occurs by copy assignment. For an
array of elements of non-array type, each element is initialized as if by assignment from

C/C++
an element of the original array to the corresponding element of the new array.

C++
For variables of class type, a copy constructor is invoked to perform the initialization.
The order in which copy constructors for different variables of class type are called is

C++

unspecified.

Fortran

If the original list item does not have the POINTER attribute, initialization of the new
list items occurs as if by intrinsic assignment, unless the original list item has the
allocation status of not currently allocated, in which case the new list items will have the
same status.

If the original list item has the POINTER attribute, the new list items receive the same

Fortran

association status of the original list item as if by pointer assignment.

Restrictions

The restrictions to the firstprivate clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot
appear in a firstprivate clause.

• A list item that is private within a parallel region must not appear in a
firstprivate clause on a worksharing construct if any of the worksharing
regions arising from the worksharing construct ever bind to any of the parallel
regions arising from the parallel construct.

1
2
3

4
5

6
7
8

9
10
11

12
13
14
15
16
17
18

19

20

21
22

23
24
25
26

164 OpenMP API • Version 4.0 - July 2013

• A list item that is private within a teams region must not appear in a
firstprivate clause on a distribute construct if any of the distribute
regions arising from the distribute construct ever bind to any of the teams
regions arising from the teams construct.

• A list item that appears in a reduction clause of a parallel construct must not
appear in a firstprivate clause on a worksharing or task construct if any of
the worksharing or task regions arising from the worksharing or task construct
ever bind to any of the parallel regions arising from the parallel construct.

• A list item that appears in a reduction clause of a teams construct must not
appear in a firstprivate clause on a distribute construct if any of the
distribute regions arising from the distribute construct ever bind to any of
the teams regions arising from the teams construct.

• A list item that appears in a reduction clause in a worksharing construct must not
appear in a firstprivate clause in a task construct encountered during execution
of any of the worksharing regions arising from the worksharing construct.

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause

C++

requires an accessible, unambiguous copy constructor for the class type.

C/C++
• A variable that appears in a firstprivate clause must not have an incomplete

C/C++
type or a reference type.

Fortran

• Variables that appear in namelist statements, in variable format expressions, and in
expressions for statement function definitions, may not appear in a firstprivate

Fortran

clause.

2.14.3.5 lastprivate clause

Summary

The lastprivate clause declares one or more list items to be private to an implicit
task or to a SIMD lane, and causes the corresponding original list item to be updated
after the end of the region.

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15

16
17

18
19

20
21
22

23

24

25
26
27

Chapter 2 Directives 165

Syntax

The syntax of the lastprivate clause is as follows:

Description

The lastprivate clause provides a superset of the functionality provided by the
private clause.

A list item that appears in a lastprivate clause is subject to the private clause
semantics described in Section 2.14.3.3 on page 159. In addition, when a
lastprivate clause appears on the directive that identifies a worksharing construct
or a SIMD construct, the value of each new list item from the sequentially last iteration
of the associated loops, or the lexically last section construct, is assigned to the
original list item.

C/C++
For an array of elements of non-array type, each element is assigned to the

C/C++
corresponding element of the original array.

Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by
intrinsic assignment.

If the original list item has the POINTER attribute, its update occurs as if by pointer

Fortran

assignment.

List items that are not assigned a value by the sequentially last iteration of the loops, or
by the lexically last section construct, have unspecified values after the construct.
Unassigned subcomponents also have unspecified values after the construct.

The original list item becomes defined at the end of the construct if there is an implicit
barrier at that point. To avoid race conditions, concurrent reads or updates of the original
list item must be synchronized with the update of the original list item that occurs as a
result of the lastprivate clause.

If the lastprivate clause is used on a construct to which nowait is applied,
accesses to the original list item may create a data race. To avoid this, synchronization
must be inserted to ensure that the sequentially last iteration or lexically last section
construct has stored and flushed that list item.

lastprivate(list)

1

2

3

4
5

6
7
8
9

10
11

12
13

14
15

16
17

18
19
20

21
22
23
24

25
26
27
28

166 OpenMP API • Version 4.0 - July 2013

If a list item appears in both firstprivate and lastprivate clauses, the update
required for lastprivate occurs after all initializations for firstprivate.

Restrictions

The restrictions to the lastprivate clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot
appear in a lastprivate clause.

• A list item that is private within a parallel region, or that appears in the
reduction clause of a parallel construct, must not appear in a lastprivate
clause on a worksharing construct if any of the corresponding worksharing regions
ever binds to any of the corresponding parallel regions.

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause

requires an accessible, unambiguous default constructor for the class type, unless the
list item is also specified in a firstprivate clause.

• A variable of class type (or array thereof) that appears in a lastprivate clause
requires an accessible, unambiguous copy assignment operator for the class type. The
order in which copy assignment operators for different variables of class type are

C++

called is unspecified.

C/C++
• A variable that appears in a lastprivate clause must not have a const-qualified

type unless it is of class type with a mutable member.

• A variable that appears in a lastprivate clause must not have an incomplete type

C/C++
or a reference type.

Fortran

• A variable that appears in a lastprivate clause must be definable.

• An original list item with the ALLOCATABLE attribute in the sequentially last
iteration or lexically last section must have an allocation status of allocated upon exit
from that iteration or section.

• Variables that appear in namelist statements, in variable format expressions, and in
expressions for statement function definitions, may not appear in a lastprivate

Fortran

clause.

1
2

3

4

5
6

7
8
9

10

11
12
13

14
15
16
17

18
19

20
21

22

23
24
25

26
27
28

Chapter 2 Directives 167

2.14.3.6 reduction clause

Summary

The reduction clause specifies a reduction-identifier and one or more list items. For
each list item, a private copy is created in each implicit task or SIMD lane, and is
initialized with the initializer value of the reduction-identifier. After the end of the
region, the original list item is updated with the values of the private copies using the
combiner associated with the reduction-identifier.

Syntax

C/C++
The syntax of the reduction clause is as follows:

where:

C
reduction-identifier is either an identifier or one of the following operators: +, -, *,

C
&, |, ^, && and ||

C++
reduction-identifier is either an id-expression or one of the following operators: +, -,

C++

*, &, |, ^, && and ||

The following table lists each reduction-identifier that is implicitly declared at every
scope for arithmetic types and its semantic initializer value. The actual initializer value
is that value as expressed in the data type of the reduction list item.

reduction(reduction-identifier:list)

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

- omp_priv = 0 omp_out += omp_in

& omp_priv = ~0 omp_out &= omp_in

1

2

3
4
5
6
7

8

9

10

11
12

13
14

15
16
17

168 OpenMP API • Version 4.0 - July 2013

where omp_in and omp_out correspond to two identifiers that refer to storage of the
type of the list item. omp_out holds the final value of the combiner operation.

C/C++

Fortran

The syntax of the reduction clause is as follows:

where reduction-identifier is either a base language identifier, or a user-defined operator,
or one of the following operators: +, -, *, .and., .or., .eqv., .neqv., or
one of the following intrinsic procedure names: max, min, iand, ior, ieor.

The following table lists each reduction-identifier that is implicitly declared for numeric
and logical types and its semantic initializer value. The actual initializer value is that
value as expressed in the data type of the reduction list item.

| omp_priv = 0 omp_out |= omp_in

^ omp_priv = 0 omp_out ^= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

reduction(reduction-identifier:list)

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

- omp_priv = 0 omp_out = omp_in + omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

1
2
3

4

5
6
7

8
9

10

Chapter 2 Directives 169

Fortran

Any reduction-identifier that is defined with the declare reduction directive is
also valid. In that case, the initializer and combiner of the reduction-identifier are
specified by the initializer-clause and the combiner in the declare reduction
directive.

Description

The reduction clause can be used to perform some forms of recurrence calculations
(involving mathematically associative and commutative operators) in parallel.

For parallel and worksharing constructs, a private copy of each list item is created,
one for each implicit task, as if the private clause had been used. For the simd
construct, a private copy of each list item is created, one for each SIMD lane as if the
private clause had been used. For the teams construct, a private copy of each list
item is created, one for each team in the league as if the private clause had been
used. The private copy is then initialized as specified above. At the end of the region for
which the reduction clause was specified, the original list item is updated by
combining its original value with the final value of each of the private copies, using the
combiner of the specified reduction-identifier.

The reduction-identifier specified in the reduction clause must match a previously
declared reduction-identifier of the same name and type for each of the list items. This
match is done by means of a name lookup in the base language.

C++
If the type of a list item is a reference to a type T then the type will be considered to be
T for all purposes of this clause.

If the type is a derived class, then any reduction-identifier that matches its base classes
are also a match, if there is no specific match for the type.

max omp_priv = Least
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

1

2
3
4
5

6

7
8

9
10
11
12
13
14
15
16
17

18
19
20

21
22

23
24

170 OpenMP API • Version 4.0 - July 2013

If the reduction-identifier is not an id-expression then it is implicitly converted to one by
prepending the keyword operator (for example, + becomes operator+).

If the reduction-identifier is qualified then a qualified name lookup is used to find the
declaration.

If the reduction-identifier is unqualified then an argument-dependent name lookup must

C++

be performed using the type of each list item.

If nowait is not used, the reduction computation will be complete at the end of the
construct; however, if the reduction clause is used on a construct to which nowait is
also applied, accesses to the original list item will create a race and, thus, have
unspecified effect unless synchronization ensures that they occur after all threads have
executed all of their iterations or section constructs, and the reduction computation
has completed and stored the computed value of that list item. This can most simply be
ensured through a barrier synchronization.

The location in the OpenMP program at which the values are combined and the order in
which the values are combined are unspecified. Therefore, when comparing sequential
and parallel runs, or when comparing one parallel run to another (even if the number of
threads used is the same), there is no guarantee that bit-identical results will be obtained
or that side effects (such as floating-point exceptions) will be identical or take place at
the same location in the OpenMP program.

To avoid race conditions, concurrent reads or updates of the original list item must be
synchronized with the update of the original list item that occurs as a result of the
reduction computation.

Restrictions

The restrictions to the reduction clause are as follows:

• A list item that appears in a reduction clause of a worksharing construct must be
shared in the parallel regions to which any of the worksharing regions arising
from the worksharing construct bind.

• A list item that appears in a reduction clause of the innermost enclosing
worksharing or parallel construct may not be accessed in an explicit task.

• Any number of reduction clauses can be specified on the directive, but a list item
can appear only once in the reduction clauses for that directive.

• For a reduction-identifier declared with the declare reduction construct, the
directive must appear before its use in a reduction clause.

1
2

3
4

5
6

7
8
9

10
11
12
13

14
15
16
17
18
19

20
21
22

23

24

25
26
27

28
29

30
31

32
33

Chapter 2 Directives 171

C/C++
• The type of a list item that appears in a reduction clause must be valid for the

reduction-identifier. For a max or min reduction in C, the type of the list item must
be an allowed arithmetic data type: char, int, float, double, or _Bool,
possibly modified with long, short, signed, or unsigned. For a max or min
reduction in C++, the type of the list item must be an allowed arithmetic data type:
char, wchar_t, int, float, double, or bool, possibly modified with long,
short, signed, or unsigned.

• Arrays may not appear in a reduction clause.

• A list item that appears in a reduction clause must not be const-qualified.

• If a list item is a reference type then it must bind to the same object for all threads of
the team.

C/C++
• The reduction-identifier for any list item must be unambiguous and accessible.

Fortran

• The type of a list item that appears in a reduction clause must be valid for the
reduction operator or intrinsic.

• A list item that appears in a reduction clause must be definable.

• A procedure pointer may not appear in a reduction clause.

• A pointer with the INTENT(IN) attribute may not appear in the reduction
clause.

• A pointer must be associated upon entry and exit to the region.

• A pointer must not have its association status changed within the region.

• An original list item with the POINTER attribute must be associated at entry to the
construct containing the reduction clause. Additionally, the list item must not be
deallocated, allocated, or pointer assigned within the region.

• An original list item with the ALLOCATABLE attribute must be in the allocated state
at entry to the construct containing the reduction clause. Additionally, the list
item must not be deallocated and/or allocated within the region.

• If the reduction-identifier is defined in a declare reduction directive, the
declare reduction directive must be in the same subprogram, or accessible by
host or use association.

• If the reduction-identifier is a user-defined operator, the same explicit interface for
that operator must be accessible as at the declare reduction directive.

1
2
3
4
5
6
7

8

9

10
11

12

13
14

15

16

17
18

19

20

21
22
23

24
25
26

27
28
29

30
31

172 OpenMP API • Version 4.0 - July 2013

• If the reduction-identifier is defined in a declare reduction directive, any
subroutine or function referenced in the initializer clause or combiner expression
must be an intrinsic function, or must have an explicit interface where the same

Fortran

explicit interface is accessible as at the declare reduction directive.

2.14.3.7 linear clause

Summary

The linear clause declares one or more list items to be private to a SIMD lane and to
have a linear relationship with respect to the iteration space of a loop.

Syntax

The syntax of the linear clause is as follows:

Description

The linear clause provides a superset of the functionality provided by the private
clause.

A list item that appears in a linear clause is subject to the private clause semantics
described in Section 2.14.3.3 on page 159 except as noted. In addition, the value of the
new list item on each iteration of the associated loop(s) corresponds to the value of the
original list item before entering the construct plus the logical number of the iteration
times linear-step. If linear-step is not specified it is assumed to be 1. The value
corresponding to the sequentially last iteration of the associated loops is assigned to the
original list item.

Restrictions
• The linear-step expression must be invariant during the execution of the region

associated with the construct. Otherwise, the execution results in unspecified
behavior.

• A list-item cannot appear in more than one linear clause.

linear(list[:linear-step])

1
2
3
4

5

6

7
8

9

10

11

12
13

14
15
16
17
18
19
20

21

22
23
24

25

Chapter 2 Directives 173

• A list-item that appears in a linear clause cannot appear in any other data-sharing
attribute clause.

C/C++

C/C++
• A list-item that appears in a linear clause must be of integral or pointer type.

Fortran

Fortran

• A list-item that appears in a linear clause must be of type integer.

2.14.4 Data Copying Clauses
This section describes the copyin clause (allowed on the parallel directive and
combined parallel worksharing directives) and the copyprivate clause (allowed on
the single directive).

These clauses support the copying of data values from private or threadprivate variables
on one implicit task or thread to the corresponding variables on other implicit tasks or
threads in the team.

The clauses accept a comma-separated list of list items (see Section 2.1 on page 26). All
list items appearing in a clause must be visible, according to the scoping rules of the
base language. Clauses may be repeated as needed, but a list item that specifies a given
variable may not appear in more than one clause on the same directive.

2.14.4.1 copyin clause

Summary

The copyin clause provides a mechanism to copy the value of the master thread’s
threadprivate variable to the threadprivate variable of each other member of the team
executing the parallel region.

Syntax

The syntax of the copyin clause is as follows:

copyin(list)

1
2

3

4

5

6
7
8

9
10
11

12
13
14
15

16

17

18
19
20

21

22

174 OpenMP API • Version 4.0 - July 2013

Description

C/C++
The copy is done after the team is formed and prior to the start of execution of the
associated structured block. For variables of non-array type, the copy occurs by copy
assignment. For an array of elements of non-array type, each element is copied as if by
assignment from an element of the master thread’s array to the corresponding element of

C/C++
the other thread’s array.

C++
For class types, the copy assignment operator is invoked. The order in which copy

C++

assignment operators for different variables of class type are called is unspecified.

Fortran

The copy is done, as if by assignment, after the team is formed and prior to the start of
execution of the associated structured block.

On entry to any parallel region, each thread’s copy of a variable that is affected by
a copyin clause for the parallel region will acquire the allocation, association, and
definition status of the master thread’s copy, according to the following rules:

• If the original list item has the POINTER attribute, each copy receives the same
association status of the master thread’s copy as if by pointer assignment.

• If the original list item does not have the POINTER attribute, each copy becomes
defined with the value of the master thread's copy as if by intrinsic assignment,
unless it has the allocation status of not currently allocated, in which case each copy

Fortran

will have the same status.

Restrictions

The restrictions to the copyin clause are as follows:

C/C++
• A list item that appears in a copyin clause must be threadprivate.

• A variable of class type (or array thereof) that appears in a copyin clause requires

C/C++
an accessible, unambiguous copy assignment operator for the class type.

1

2
3
4
5
6

7
8

9
10

11
12
13

14
15

16
17
18
19

20

21

22

23
24

Chapter 2 Directives 175

Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables
appearing in a threadprivate common block may be specified: it is not necessary to
specify the whole common block.

• A common block name that appears in a copyin clause must be declared to be a

Fortran

common block in the same scoping unit in which the copyin clause appears.

2.14.4.2 copyprivate clause

Summary

The copyprivate clause provides a mechanism to use a private variable to broadcast
a value from the data environment of one implicit task to the data environments of the
other implicit tasks belonging to the parallel region.

To avoid race conditions, concurrent reads or updates of the list item must be
synchronized with the update of the list item that occurs as a result of the
copyprivate clause.

Syntax

The syntax of the copyprivate clause is as follows:

Description

The effect of the copyprivate clause on the specified list items occurs after the
execution of the structured block associated with the single construct (see
Section 2.7.3 on page 63), and before any of the threads in the team have left the barrier
at the end of the construct.

C/C++
In all other implicit tasks belonging to the parallel region, each specified list item
becomes defined with the value of the corresponding list item in the implicit task whose
thread executed the structured block. For variables of non-array type, the definition
occurs by copy assignment. For an array of elements of non-array type, each element is

copyprivate(list)

1
2
3

4
5

6

7

8
9

10

11
12
13

14

15

16

17
18
19
20

21
22
23
24

176 OpenMP API • Version 4.0 - July 2013

copied by copy assignment from an element of the array in the data environment of the
implicit task associated with the thread that executed the structured block to the

C/C++
corresponding element of the array in the data environment of the other implicit tasks.

C++
For class types, a copy assignment operator is invoked. The order in which copy

C++

assignment operators for different variables of class type are called is unspecified.

Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks
belonging to the parallel region, the list item becomes defined as if by intrinsic
assignment with the value of the corresponding list item in the implicit task associated
with the thread that executed the structured block.

If the list item has the POINTER attribute, then, in all other implicit tasks belonging to
the parallel region, the list item receives, as if by pointer assignment, the same
association status of the corresponding list item in the implicit task associated with the

Fortran

thread that executed the structured block.

Note – The copyprivate clause is an alternative to using a shared variable for the
value when providing such a shared variable would be difficult (for example, in a
recursion requiring a different variable at each level).

Restrictions

The restrictions to the copyprivate clause are as follows:

• All list items that appear in the copyprivate clause must be either threadprivate
or private in the enclosing context.

• A list item that appears in a copyprivate clause may not appear in a private or
firstprivate clause on the single construct.

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause

C++

requires an accessible unambiguous copy assignment operator for the class type.

1
2
3

4
5

6
7
8
9

10
11
12
13

14
15
16

17

18

19
20

21
22

23
24

Chapter 2 Directives 177

Fortran

• A common block that appears in a copyprivate clause must be threadprivate.

• Pointers with the INTENT(IN) attribute may not appear in the copyprivate

Fortran

clause.

2.14.5 map Clause

Summary

The map clause maps a variable from the current task's data environment to the device
data environment associated with the construct.

Syntax

The syntax of the map clause is as follows:

Description

The list items that appear in a map clause may include array sections.

For list items that appear in a map clause, corresponding new list items are created in
the device data environment associated with the construct.

The original and corresponding list items may share storage such that writes to either
item by one task followed by a read or write of the other item by another task without
intervening synchronization can result in data races.

If a corresponding list item of the original list item is in the enclosing device data
environment, the new device data environment uses the corresponding list item from the
enclosing device data environment. No additional storage is allocated in the new device
data environment and neither initialization nor assignment is performed, regardless of
the map-type that is specified.

map([map-type :] list)

1

2
3

4

5

6
7

8

9

10

11

12
13

14
15
16

17
18
19
20
21

178 OpenMP API • Version 4.0 - July 2013

If a corresponding list item is not in the enclosing device data environment, a new list
item with language-specific attributes is derived from the original list item and created
in the new device data environment. This new list item becomes the corresponding list
item to the original list item in the new device data environment. Initialization and
assignment are performed if specified by the map-type.

C/C++
If a new list item is created then a new list item of the same type, with automatic storage
duration, is allocated for the construct. The storage and thus lifetime of this list item
lasts until the block in which it is created exits. The size and alignment of the new list
item are determined by the type of the variable. This allocation occurs if the region
references the list item in any statement.

If the type of the variable appearing in an array section is pointer, reference to array, or
reference to pointer then the variable is implicitly treated as if it had appeared in a map
clause with a map-type of alloc. The corresponding variable is assigned the address of
the storage location of the corresponding array section in the new device data
environment. If the variable appears in a to or from clause in a target update
region enclosed by the new device data environment but not as part of the specification

C/C++
of an array section, the behavior is unspecified.

Fortran

If a new list item is created then a new list item of the same type, type parameter, and

Fortran

rank is allocated.

The map-type determines how the new list item is initialized.

The alloc map-type declares that on entry to the region each new corresponding list
item has an undefined initial value.

The to map-type declares that on entry to the region each new corresponding list item
is initialized with the original list item's value.

The from map-type declares that on exit from the region the corresponding list item's
value is assigned to each original list item.

The tofrom map-type declares that on entry to the region each new corresponding list
item is initialized with the original list item's value and that on exit from the region the
corresponding list item's value is assigned to each original list item.

If a map-type is not specified, the map-type defaults to tofrom.

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15
16
17

18
19

20

21
22

23
24

25
26

27
28
29

30

Chapter 2 Directives 179

Restrictions
• If a list item is an array section, it must specify contiguous storage.

• At most one list item can be an array item derived from a given variable in map
clauses of the same construct.

• List items of map clauses in the same construct must not share original storage.

• If any part of the original storage of a list item has corresponding storage in the
enclosing device data environment, all of the original storage must have
corresponding storage in the enclosing device data environment.

• A variable that is part of another variable (such as a field of a structure) but is not an
array element or an array section cannot appear in a map clause.

• If variables that share storage are mapped, the behavior is unspecified.

• A list item must have a mappable type.

• threadprivate variables cannot appear in a map clause.

C/C++
• Initialization and assignment are through bitwise copy.

• A variable for which the type is pointer, reference to array, or reference to pointer and
an array section derived from that variable must not appear as list items of map
clauses of the same construct.

• A variable for which the type is pointer, reference to array, or reference to pointer
must not appear as a list item if the enclosing device data environment already
contains an array section derived from that variable.

• An array section derived from a variable for which the type is pointer, reference to
array, or reference to pointer must not appear as a list item if the enclosing device

C/C++
data environment already contains that variable.

Fortran

• The value of the new list item becomes that of the original list item in the map

Fortran

initialization and assignment.

1

2

3
4

5

6
7
8

9
10

11

12

13

14

15
16
17

18
19
20

21
22
23

24
25

180 OpenMP API • Version 4.0 - July 2013

2.15 declare reduction Directive

Summary

The following section describes the directive for declaring user-defined reductions. The
declare reduction directive declares a reduction-identifier that can be used in a
reduction clause. The declare reduction directive is a declarative directive.

Syntax

C

where:

• reduction-identifier is either a base language identifier or one of the following
operators: +, -, *, &, |, ^, && and ||

• typename-list is list of type names

• combiner is an expression

• initializer-clause is initializer (initializer-expr) where initializer-expr is

C
omp_priv = initializer or function-name (argument-list)

C++

where:

• reduction-identifier is either a base language identifier or one of the following
operators: +, -, *, &, |, ^, && and ||

• typename-list is a list of type names

• combiner is an expression

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

1

2

3
4
5

6
7

8

9
10

11

12

13
14

15

16

17
18

19

20

Chapter 2 Directives 181

• initializer-clause is initializer (initializer-expr) where initializer-expr is

C++

omp_priv initializer or function-name (argument-list)

Fortran

where:

• reduction-identifier is either a base language identifier, or a user-defined operator, or
one of the following operators: +, -, *, .and., .or., .eqv., .neqv., or one of
the following intrinsic procedure names: max, min, iand, ior, ieor.

• type-list is a list of type specifiers

• combiner is either an assignment statement or a subroutine name followed by an
argument list

• initializer-clause is initializer (initializer-expr), where initializer-expr is

Fortran

omp_priv = expression or subroutine-name (argument-list)

Description

Custom reductions can be defined using the declare reduction directive; the
reduction-identifier and the type identify the declare reduction directive. The
reduction-identifier can later be used in a reduction clause using variables of the
type or types specified in the declare reduction directive. If the directive applies
to several types then it is considered as if there were multiple declare reduction
directives, one for each type.

Fortran

If a type with deferred or assumed length type parameter is specified in a declare
reduction directive, the reduction-identifier of that directive can be used in a
reduction clause with any variable of the same type, regardless of the length type

Fortran

parameters with which the variable is declared.

!$omp declare reduction(reduction-identifier : type-list : combiner)
[initializer-clause]

1
2

3

4

5
6
7

8

9
10

11
12

13

14
15
16
17
18
19

20
21
22
23

182 OpenMP API • Version 4.0 - July 2013

The visibility and accessibility of this declaration are the same as those of a variable
declared at the same point in the program. The enclosing context of the combiner and of
the initializer-expr will be that of the declare reduction directive. The combiner
and the initializer-expr must be correct in the base language as if they were the body of
a function defined at the same point in the program.

C++
The declare reduction directive can also appear at points in the program at which
a static data member could be declared. In this case, the visibility and accessibility of
the declaration are the same as those of a static data member declared at the same point

C++

in the program.

The combiner specifies how partial results can be combined into a single value. The
combiner can use the special variable identifiers omp_in and omp_out that are of the
type of the variables being reduced with this reduction-identifier. Each of them will
denote one of the values to be combined before executing the combiner. It is assumed
that the special omp_out identifier will refer to the storage that holds the resulting
combined value after executing the combiner.

The number of times the combiner is executed, and the order of these executions, for
any reduction clause is unspecified.

Fortran

If the combiner is a subroutine name with an argument list, the combiner is evaluated by
calling the subroutine with the specified argument list.

If the combiner is an assignment statement, the combiner is evaluated by executing the

Fortran

assignment statement.

As the initializer-expr value of a user-defined reduction is not known a priori the
initializer-clause can be used to specify one. Then the contents of the initializer-clause
will be used as the initializer for private copies of reduction list items where the
omp_priv identifier will refer to the storage to be initialized. The special identifier
omp_orig can also appear in the initializer-clause and it will refer to the storage of the
original variable to be reduced.

The number of times that the initializer-expr is evaluated, and the order of these
evaluations, is unspecified.

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

16
17

18
19

20
21

22
23
24
25
26
27

28
29

Chapter 2 Directives 183

C/C++
If the initializer-expr is a function name with an argument list, the initializer-expr is
evaluated by calling the function with the specified argument list. Otherwise, the

C/C++
initializer-expr specifies how omp_priv is declared and initialized.

C
If no initializer-clause is specified, the private variables will be initialized following the

C
rules for initialization of objects with static storage duration.

C++
If no initializer-expr is specified, the private variables will be initialized following the

C++

rules for default-initialization.

Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is
evaluated by calling the subroutine with the specified argument list.

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by
executing the assignment statement.

If no initializer-clause is specified, the private variables will be initialized as follows:

• For complex, real, or integer types, the value 0 will be used.

• For logical types, the value .false. will be used.

• For derived types for which default initialization is specified, default initialization
will be used.

Fortran

• Otherwise, not specifying an initializer-clause results in unspecified behavior.

C/C++
If reduction-identifier is used in a target region then a declare target construct
must be specified for any function that can be accessed through combiner and

C/C++
initializer-expr.

1
2
3

4
5

6
7

8
9

10
11

12

13

14

15
16

17

18
19
20

184 OpenMP API • Version 4.0 - July 2013

Fortran

If reduction-identifier is used in a target region then a declare target construct
must be specified for any function or subroutine that can be accessed through combiner

Fortran

and initializer-expr.

Restrictions
• Only the variables omp_in and omp_out are allowed in the combiner.

• Only the variables omp_priv and omp_orig are allowed in the initializer-clause.

• If the variable omp_orig is modified in the initializer-clause, the behavior is
unspecified.

• If execution of the combiner or the initializer-expr results in the execution of an
OpenMP construct or an OpenMP API call, then the behavior is unspecified.

• A reduction-identifier may not be re-declared in the current scope for the same type
or for a type that is compatible according to the base language rules.

• At most one initializer-clause can be specified.

C/C++
• A type name in a declare reduction directive cannot be a function type, an

array type, a reference type, or a type qualified with const, volatile or

C/C++
restrict.

C
• If the initializer-expr is a function name with an argument list, then one of the

C
arguments must be the address of omp_priv.

C++
• If the initializer-expr is a function name with an argument list, then one of the

C++

arguments must be omp_priv or the address of omp_priv.

Fortran

• If the initializer-expr is a subroutine name with an argument list, then one of the
arguments must be omp_priv.

1
2
3

4

5

6

7
8

9
10

11
12

13

14
15
16

17
18

19
20

21
22

Chapter 2 Directives 185

• If the declare reduction directive appears in a module and the corresponding
reduction clause does not appear in the same module, the reduction-identifier
must be a user-defined operator, one of the allowed operators or one of the allowed
intrinsic procedures.

• If the reduction-identifier is a user-defined operator or an extended operator, the
interface for that operator must be defined in the same subprogram, or must be
accessible by host or use association.

• If the declare reduction directive appears in a module, any user-defined
operators used in the combiner must be defined in the same subprogram, or must be
accessible by host or use association. The user-defined operators must also be
accessible by host or use association in the subprogram in which the corresponding
reduction clause appears.

• Any subroutine or function used in the initializer clause or combiner
expression must be an intrinsic function, or must have an explicit interface in the
same subprogram or must be accessible by host or use association.

• If the length type parameter is specified for a character type, it must be a constant, a
colon or an *.

• If a character type with deferred or assumed length parameter is specified in a
declare reduction directive, no other declare reduction directives with

Fortran

character type and the same reduction-identifier are allowed in the same scope.

Cross References
• reduction clause, Section 2.14.3.6 on page 167.

1
2
3
4

5
6
7

8
9

10
11
12

13
14
15

16
17

18
19
20

21

22

186 OpenMP API • Version 4.0 - July 2013

2.16 Nesting of Regions
This section describes a set of restrictions on the nesting of regions. The restrictions on
nesting are as follows:

• A worksharing region may not be closely nested inside a worksharing, explicit task,
critical, ordered, atomic, or master region.

• A barrier region may not be closely nested inside a worksharing, explicit task,
critical, ordered, atomic, or master region.

• A master region may not be closely nested inside a worksharing, atomic, or
explicit task region.

• An ordered region may not be closely nested inside a critical, atomic, or
explicit task region.

• An ordered region must be closely nested inside a loop region (or parallel loop
region) with an ordered clause.

• A critical region may not be nested (closely or otherwise) inside a critical
region with the same name. Note that this restriction is not sufficient to prevent
deadlock.

• OpenMP constructs may not be nested inside an atomic region.

• OpenMP constructs may not be nested inside a simd region.

• If a target, target update, or target data construct appears within a
target region then the behavior is unspecified.

• If specified, a teams construct must be contained within a target construct. That
target construct must contain no statements or directives outside of the teams
construct.

• distribute, parallel, parallel sections, parallel workshare, and
the parallel loop and parallel loop SIMD constructs are the only OpenMP constructs
that can be closely nested in the teams region.

• A distribute construct must be closely nested in a teams region.

• If construct-type-clause is taskgroup, the cancel construct must be closely
nested inside a task construct and the cancel construct must be nested inside a
taskgroup region. Otherwise, the cancel construct must be closely nested inside
an OpenMP construct that matches the type specified in construct-type-clause of the
cancel construct.

• A cancellation point construct for which construct-type-clause is
taskgroup must be nested inside a task construct. A cancellation point
construct for which construct-type-clause is not taskgroup must be closely nested
inside an OpenMP construct that matches the type specified in construct-type-clause.

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15
16

17

18

19
20

21
22
23

24
25
26

27

28
29
30
31
32

33
34
35
36

187

CHAPTER 3

Runtime Library Routines

This chapter describes the OpenMP API runtime library routines and is divided into the
following sections:

• Runtime library definitions (Section 3.1 on page 188).

• Execution environment routines that can be used to control and to query the parallel
execution environment (Section 3.2 on page 189).

• Lock routines that can be used to synchronize access to data (Section 3.3 on page
224).

• Portable timer routines (Section 3.4 on page 233).

Throughout this chapter, true and false are used as generic terms to simplify the
description of the routines.

C/C++

C/C++
true means a nonzero integer value and false means an integer value of zero.

Fortran

Fortran

true means a logical value of .TRUE. and false means a logical value of .FALSE..

Fortran

Restrictions

The following restriction applies to all OpenMP runtime library routines:

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL

Fortran

procedures.

1

2

3
4

5

6
7

8
9

10

11

12
13

14

15

16

17

18
19

188 OpenMP API • Version 4.0 - July 2013

3.1 Runtime Library Definitions
For each base language, a compliant implementation must supply a set of definitions for
the OpenMP API runtime library routines and the special data types of their parameters.
The set of definitions must contain a declaration for each OpenMP API runtime library
routine and a declaration for the simple lock, nestable lock, schedule, and thread affinity
policy data types. In addition, each set of definitions may specify other implementation
specific values.

C/C++
The library routines are external functions with “C” linkage.

Prototypes for the C/C++ runtime library routines described in this chapter shall be
provided in a header file named omp.h. This file defines the following:

• The prototypes of all the routines in the chapter.

• The type omp_lock_t.

• The type omp_nest_lock_t.

• The type omp_sched_t.

• The type omp_proc_bind_t.

C/C++
See Section C.1 on page 288 for an example of this file.

Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return
values of these routines are of default kind, unless otherwise specified.

Interface declarations for the OpenMP Fortran runtime library routines described in this
chapter shall be provided in the form of a Fortran include file named omp_lib.h or
a Fortran 90 module named omp_lib. It is implementation defined whether the
include file or the module file (or both) is provided.

These files define the following:

• The interfaces of all of the routines in this chapter.

• The integer parameter omp_lock_kind.

• The integer parameter omp_nest_lock_kind.

• The integer parameter omp_sched_kind.

• The integer parameter omp_proc_bind_kind.

1

2
3
4
5
6
7

8

9
10

11

12

13

14

15

16

17
18

19
20
21
22

23

24

25

26

27

28

Chapter 3 Runtime Library Routines 189

• The integer parameter openmp_version with a value yyyymm where yyyy
and mm are the year and month designations of the version of the OpenMP Fortran
API that the implementation supports. This value matches that of the C preprocessor
macro _OPENMP, when a macro preprocessor is supported (see Section 2.2 on page
32).

See Section C.2 on page 290 and Section C.3 on page 293 for examples of these files.

It is implementation defined whether any of the OpenMP runtime library routines that
take an argument are extended with a generic interface so arguments of different KIND

Fortran

type can be accommodated. See Appendix C.4 for an example of such an extension.

3.2 Execution Environment Routines
This section describes routines that affect and monitor threads, processors, and the
parallel environment.

3.2.1 omp_set_num_threads

Summary

The omp_set_num_threads routine affects the number of threads to be used for
subsequent parallel regions that do not specify a num_threads clause, by setting the
value of the first element of the nthreads-var ICV of the current task.

1
2
3
4
5

6

7
8
9

10

11
12

13

14

15
16
17

190 OpenMP API • Version 4.0 - July 2013

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

The value of the argument passed to this routine must evaluate to a positive integer, or
else the behavior of this routine is implementation defined.

Binding

The binding task set for an omp_set_num_threads region is the generating task.

Effect

The effect of this routine is to set the value of the first element of the nthreads-var ICV
of the current task to the value specified in the argument.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

Cross References
• nthreads-var ICV, see Section 2.3 on page 34.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 239.

• omp_get_max_threads routine, see Section 3.2.3 on page 192.

• parallel construct, see Section 2.5 on page 44.

• num_threads clause, see Section 2.5 on page 44.

void omp_set_num_threads(int num_threads);

subroutine omp_set_num_threads(num_threads)
integer num_threads

1

2

3

4

5
6

7

8

9

10
11

12
13

14

15

16

17

18

19

Chapter 3 Runtime Library Routines 191

3.2.2 omp_get_num_threads

Summary

The omp_get_num_threads routine returns the number of threads in the current
team.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding region for an omp_get_num_threads region is the innermost enclosing
parallel region.

Effect

The omp_get_num_threads routine returns the number of threads in the team
executing the parallel region to which the routine region binds. If called from the
sequential part of a program, this routine returns 1.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

int omp_get_num_threads(void);

integer function omp_get_num_threads()

1

2

3
4

5

6

7

8

9

10
11

12

13
14
15

16
17

192 OpenMP API • Version 4.0 - July 2013

Cross References
• parallel construct, see Section 2.5 on page 44.

• omp_set_num_threads routine, see Section 3.2.1 on page 189.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 239.

3.2.3 omp_get_max_threads

Summary

The omp_get_max_threads routine returns an upper bound on the number of
threads that could be used to form a new team if a parallel construct without a
num_threads clause were encountered after execution returns from this routine.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_max_threads region is the generating task.

int omp_get_max_threads(void);

integer function omp_get_max_threads()

1

2

3

4

5

6

7
8
9

10

11

12

13

14

Chapter 3 Runtime Library Routines 193

Effect

The value returned by omp_get_max_threads is the value of the first element of
the nthreads-var ICV of the current task. This value is also an upper bound on the
number of threads that could be used to form a new team if a parallel region without a
num_threads clause were encountered after execution returns from this routine.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

Note – The return value of the omp_get_max_threads routine can be used to
dynamically allocate sufficient storage for all threads in the team formed at the
subsequent active parallel region.

Cross References
• nthreads-var ICV, see Section 2.3 on page 34.

• parallel construct, see Section 2.5 on page 44.

• num_threads clause, see Section 2.5 on page 44.

• omp_set_num_threads routine, see Section 3.2.1 on page 189.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 239.

3.2.4 omp_get_thread_num

Summary

The omp_get_thread_num routine returns the thread number, within the current
team, of the calling thread.

1

2
3
4
5

6
7

8
9

10

11

12

13

14

15

16

17

18

19
20

194 OpenMP API • Version 4.0 - July 2013

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_thread_num region is the current team. The
binding region for an omp_get_thread_num region is the innermost enclosing
parallel region.

Effect

The omp_get_thread_num routine returns the thread number of the calling thread,
within the team executing the parallel region to which the routine region binds. The
thread number is an integer between 0 and one less than the value returned by
omp_get_num_threads, inclusive. The thread number of the master thread of the
team is 0. The routine returns 0 if it is called from the sequential part of a program.

Note – The thread number may change during the execution of an untied task. The
value returned by omp_get_thread_num is not generally useful during the execution
of such a task region.

Cross References
• omp_get_num_threads routine, see Section 3.2.2 on page 191.

int omp_get_thread_num(void);

integer function omp_get_thread_num()

1

2

3

4

5
6
7

8

9
10
11
12
13

14
15
16

17

18

Chapter 3 Runtime Library Routines 195

3.2.5 omp_get_num_procs

Summary

The omp_get_num_procs routine returns the number of processors available to the
device.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_num_procs region is all threads on a device.
The effect of executing this routine is not related to any specific region corresponding to
any construct or API routine.

Effect

The omp_get_num_procs routine returns the number of processors that are available
to the device at the time the routine is called. Note that this value may change between
the time that it is determined by the omp_get_num_procs routine and the time that it
is read in the calling context due to system actions outside the control of the OpenMP
implementation.

int omp_get_num_procs(void);

integer function omp_get_num_procs()

1

2

3
4

5

6

7

8

9
10
11

12

13
14
15
16
17

196 OpenMP API • Version 4.0 - July 2013

3.2.6 omp_in_parallel

Summary

The omp_in_parallel routine returns true if the active-levels-var ICV is greater
than zero; otherwise, it returns false.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_in_parallel region is the generating task.

Effect

The effect of the omp_in_parallel routine is to return true if the current task is
enclosed by an active parallel region, and the parallel region is enclosed by the
outermost initial task region on the device; otherwise it returns false.

Cross References
• active-levels-var, see Section 2.3 on page 34.

• omp_get_active_level routine, see Section 3.2.20 on page 214.

int omp_in_parallel(void);

logical function omp_in_parallel()

1

2

3
4

5

6

7

8

9

10

11
12
13

14

15

16

Chapter 3 Runtime Library Routines 197

3.2.7 omp_set_dynamic

Summary

The omp_set_dynamic routine enables or disables dynamic adjustment of the
number of threads available for the execution of subsequent parallel regions by
setting the value of the dyn-var ICV.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_set_dynamic region is the generating task.

Effect

For implementations that support dynamic adjustment of the number of threads, if the
argument to omp_set_dynamic evaluates to true, dynamic adjustment is enabled for
the current task; otherwise, dynamic adjustment is disabled for the current task. For
implementations that do not support dynamic adjustment of the number of threads this
routine has no effect: the value of dyn-var remains false.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

void omp_set_dynamic(int dynamic_threads);

subroutine omp_set_dynamic (dynamic_threads)
logical dynamic_threads

1

2

3
4
5

6

7

8

9

10

11

12
13
14
15
16

17
18

198 OpenMP API • Version 4.0 - July 2013

Cross References:
• dyn-var ICV, see Section 2.3 on page 34.

• omp_get_num_threads routine, see Section 3.2.2 on page 191.

• omp_get_dynamic routine, see Section 3.2.8 on page 198.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 240.

3.2.8 omp_get_dynamic

Summary

The omp_get_dynamic routine returns the value of the dyn-var ICV, which
determines whether dynamic adjustment of the number of threads is enabled or disabled.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_dynamic region is the generating task.

Effect

This routine returns true if dynamic adjustment of the number of threads is enabled for
the current task; it returns false, otherwise. If an implementation does not support
dynamic adjustment of the number of threads, then this routine always returns false.

int omp_get_dynamic(void);

logical function omp_get_dynamic()

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16
17
18

Chapter 3 Runtime Library Routines 199

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

Cross References
• dyn-var ICV, see Section 2.3 on page 34.

• omp_set_dynamic routine, see Section 3.2.7 on page 197.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 240.

3.2.9 omp_get_cancellation

Summary

The omp_get_cancellation routine returns the value of the cancel-var ICV, which
controls the behavior of the cancel construct and cancellation points.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_cancellation region is the whole program.

int omp_get_cancellation(void);

logical function omp_get_cancellation()

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

200 OpenMP API • Version 4.0 - July 2013

Effect

This routine returns true if cancellation is activated. It returns false otherwise.

Cross References:
• cancel-var ICV, see Section 2.3.1 on page 35.

• OMP_CANCELLATION environment variable, see Section 4.11 on page 246.

3.2.10 omp_set_nested

Summary

The omp_set_nested routine enables or disables nested parallelism, by setting the
nest-var ICV.

C/C++
Format

C/C++

Fortran

Fortran

void omp_set_nested(int nested);

subroutine omp_set_nested (nested)
logical nested

1

2

3

4

5

6

7

8
9

10

11

12

Chapter 3 Runtime Library Routines 201

Binding

The binding task set for an omp_set_nested region is the generating task.

Effect

For implementations that support nested parallelism, if the argument to
omp_set_nested evaluates to true, nested parallelism is enabled for the current task;
otherwise, nested parallelism is disabled for the current task. For implementations that
do not support nested parallelism, this routine has no effect: the value of nest-var
remains false.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

Cross References
• nest-var ICV, see Section 2.3 on page 34.

• omp_set_max_active_levels routine, see Section 3.2.15 on page 207.

• omp_get_max_active_levels routine, see Section 3.2.16 on page 209.

• omp_get_nested routine, see Section 3.2.11 on page 201.

• OMP_NESTED environment variable, see Section 4.6 on page 243.

3.2.11 omp_get_nested

Summary

The omp_get_nested routine returns the value of the nest-var ICV, which
determines if nested parallelism is enabled or disabled.

1

2

3

4
5
6
7
8

9
10

11

12

13

14

15

16

17

18

19
20

202 OpenMP API • Version 4.0 - July 2013

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_nested region is the generating task.

Effect

This routine returns true if nested parallelism is enabled for the current task; it returns
false, otherwise. If an implementation does not support nested parallelism, this routine
always returns false.

See Section 2.5.1 on page 47 for the rules governing the number of threads used to
execute a parallel region.

Cross References
• nest-var ICV, see Section 2.3 on page 34.

• omp_set_nested routine, see Section 3.2.10 on page 200.

• OMP_NESTED environment variable, see Section 4.6 on page 243.

int omp_get_nested(void);

logical function omp_get_nested()

1

2

3

4

5

6

7
8
9

10
11

12

13

14

15

Chapter 3 Runtime Library Routines 203

3.2.12 omp_set_schedule

Summary

The omp_set_schedule routine affects the schedule that is applied when runtime
is used as schedule kind, by setting the value of the run-sched-var ICV.

Format

C/C++

C/C++

Fortran

Fortran

Constraints on Arguments

The first argument passed to this routine can be one of the valid OpenMP schedule kinds
(except for runtime) or any implementation specific schedule. The C/C++ header file
(omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90 module file
(omp_lib) define the valid constants. The valid constants must include the following,
which can be extended with implementation specific values:

void omp_set_schedule(omp_sched_t kind, int modifier);

subroutine omp_set_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

1

2

3
4

5

6

7

8

9

10

11
12
13
14
15

204 OpenMP API • Version 4.0 - July 2013

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_set_schedule region is the generating task.

Effect

The effect of this routine is to set the value of the run-sched-var ICV of the current task
to the values specified in the two arguments. The schedule is set to the schedule type
specified by the first argument kind. It can be any of the standard schedule types or
any other implementation specific one. For the schedule types static, dynamic, and
guided the chunk_size is set to the value of the second argument, or to the default
chunk_size if the value of the second argument is less than 1; for the schedule type
auto the second argument has no meaning; for implementation specific schedule types,
the values and associated meanings of the second argument are implementation defined.

typedef enum omp_sched_t {
omp_sched_static = 1,
omp_sched_dynamic = 2,
omp_sched_guided = 3,
omp_sched_auto = 4

} omp_sched_t;

integer(kind=omp_sched_kind), parameter :: omp_sched_static = 1
integer(kind=omp_sched_kind), parameter :: omp_sched_dynamic = 2
integer(kind=omp_sched_kind), parameter :: omp_sched_guided = 3
integer(kind=omp_sched_kind), parameter :: omp_sched_auto = 4

1

2

3

4

5

6

7
8
9

10
11
12
13
14

Chapter 3 Runtime Library Routines 205

Cross References
• run-sched-var ICV, see Section 2.3 on page 34.

• omp_get_schedule routine, see Section 3.2.13 on page 205.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 238.

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 59.

3.2.13 omp_get_schedule

Summary

The omp_get_schedule routine returns the schedule that is applied when the
runtime schedule is used.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_schedule region is the generating task.

void omp_get_schedule(omp_sched_t * kind, int * modifier);

subroutine omp_get_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

206 OpenMP API • Version 4.0 - July 2013

Effect

This routine returns the run-sched-var ICV in the task to which the routine binds. The
first argument kind returns the schedule to be used. It can be any of the standard
schedule types as defined in Section 3.2.12 on page 203, or any implementation specific
schedule type. The second argument is interpreted as in the omp_set_schedule call,
defined in Section 3.2.12 on page 203.

Cross References
• run-sched-var ICV, see Section 2.3 on page 34.

• omp_set_schedule routine, see Section 3.2.12 on page 203.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 238.

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 59.

3.2.14 omp_get_thread_limit

Summary

The omp_get_thread_limit routine returns the maximum number of OpenMP
threads available on the device.

Format

C/C++

C/C++

Fortran

Fortran

int omp_get_thread_limit(void);

integer function omp_get_thread_limit()

1

2
3
4
5
6

7

8

9

10

11

12

13

14
15

16

17

18

19

Chapter 3 Runtime Library Routines 207

Binding

The binding thread set for an omp_get_thread_limit region is all threads on the
device. The effect of executing this routine is not related to any specific region
corresponding to any construct or API routine.

Effect

The omp_get_thread_limit routine returns the maximum number of OpenMP
threads available on the device as stored in the ICV thread-limit-var.

Cross References
• thread-limit-var ICV, see Section 2.3 on page 34.

• OMP_THREAD_LIMIT environment variable, see Section 4.10 on page 246.

3.2.15 omp_set_max_active_levels

Summary

The omp_set_max_active_levels routine limits the number of nested active
parallel regions on the device, by setting the max-active-levels-var ICV.

Format

C/C++

C/C++

void omp_set_max_active_levels (int max_levels);

1

2
3
4

5

6
7

8

9

10

11

12

13
14

15

16

17

208 OpenMP API • Version 4.0 - July 2013

Fortran

Fortran

Constraints on Arguments

The value of the argument passed to this routine must evaluate to a non-negative integer,
otherwise the behavior of this routine is implementation defined.

Binding

When called from a sequential part of the program, the binding thread set for an
omp_set_max_active_levels region is the encountering thread. When called
from within any explicit parallel region, the binding thread set (and binding region, if
required) for the omp_set_max_active_levels region is implementation defined.

Effect

The effect of this routine is to set the value of the max-active-levels-var ICV to the value
specified in the argument.

If the number of parallel levels requested exceeds the number of levels of parallelism
supported by the implementation, the value of the max-active-levels-var ICV will be set
to the number of parallel levels supported by the implementation.

This routine has the described effect only when called from a sequential part of the
program. When called from within an explicit parallel region, the effect of this
routine is implementation defined.

Cross References
• max-active-levels-var ICV, see Section 2.3 on page 34.

• omp_get_max_active_levels routine, see Section 3.2.16 on page 209.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 245.

subroutine omp_set_max_active_levels (max_levels)
integer max_levels

1

2

3

4
5

6

7
8
9

10

11

12
13

14
15
16

17
18
19

20

21

22

23

Chapter 3 Runtime Library Routines 209

3.2.16 omp_get_max_active_levels

Summary

The omp_get_max_active_levels routine returns the value of the max-active-
levels-var ICV, which determines the maximum number of nested active parallel regions
on the device.

Format

C/C++

C/C++

Fortran

Fortran

Binding

When called from a sequential part of the program, the binding thread set for an
omp_get_max_active_levels region is the encountering thread. When called
from within any explicit parallel region, the binding thread set (and binding region, if
required) for the omp_get_max_active_levels region is implementation defined.

Effect

The omp_get_max_active_levels routine returns the value of the max-active-
levels-var ICV, which determines the maximum number of nested active parallel regions
on the device.

int omp_get_max_active_levels(void);

integer function omp_get_max_active_levels()

1

2

3
4
5

6

7

8

9

10

11
12
13
14

15

16
17
18

210 OpenMP API • Version 4.0 - July 2013

Cross References
• max-active-levels-var ICV, see Section 2.3 on page 34.

• omp_set_max_active_levels routine, see Section 3.2.15 on page 207.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 245.

3.2.17 omp_get_level

Summary

The omp_get_level routine returns the value of the levels-var ICV.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_level region is the generating task.

int omp_get_level(void);

integer function omp_get_level()

1

2

3

4

5

6

7

8

9

10

11

12

13

Chapter 3 Runtime Library Routines 211

Effect

The effect of the omp_get_level routine is to return the number of nested
parallel regions (whether active or inactive) enclosing the current task such that all
of the parallel regions are enclosed by the outermost initial task region on the
current device.

Cross References
• levels-var ICV, see Section 2.3 on page 34.

• omp_get_active_level routine, see Section 3.2.20 on page 214.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 245.

3.2.18 omp_get_ancestor_thread_num

Summary

The omp_get_ancestor_thread_num routine returns, for a given nested level of
the current thread, the thread number of the ancestor of the current thread.

Format

C/C++

C/C++

Fortran

Fortran

int omp_get_ancestor_thread_num(int level);

integer function omp_get_ancestor_thread_num(level)
integer level

1

2
3
4
5

6

7

8

9

10

11

12
13

14

15

16

17

212 OpenMP API • Version 4.0 - July 2013

Binding

The binding thread set for an omp_get_ancestor_thread_num region is the
encountering thread. The binding region for an omp_get_ancestor_thread_num
region is the innermost enclosing parallel region.

Effect

The omp_get_ancestor_thread_num routine returns the thread number of the
ancestor at a given nest level of the current thread or the thread number of the current
thread. If the requested nest level is outside the range of 0 and the nest level of the
current thread, as returned by the omp_get_level routine, the routine returns -1.

Note – When the omp_get_ancestor_thread_num routine is called with a value
of level=0, the routine always returns 0. If level=omp_get_level(), the routine
has the same effect as the omp_get_thread_num routine.

Cross References
• omp_get_level routine, see Section 3.2.17 on page 210.

• omp_get_thread_num routine, see Section 3.2.4 on page 193.

• omp_get_team_size routine, see Section 3.2.19 on page 212.

3.2.19 omp_get_team_size

Summary

The omp_get_team_size routine returns, for a given nested level of the current
thread, the size of the thread team to which the ancestor or the current thread belongs.

1

2
3
4

5

6
7
8
9

10
11
12

13

14

15

16

17

18

19
20

Chapter 3 Runtime Library Routines 213

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_team_size region is the encountering
thread. The binding region for an omp_get_team_size region is the innermost
enclosing parallel region.

Effect

The omp_get_team_size routine returns the size of the thread team to which the
ancestor or the current thread belongs. If the requested nested level is outside the range
of 0 and the nested level of the current thread, as returned by the omp_get_level
routine, the routine returns -1. Inactive parallel regions are regarded like active parallel
regions executed with one thread.

Note – When the omp_get_team_size routine is called with a value of level=0,
the routine always returns 1. If level=omp_get_level(), the routine has the same
effect as the omp_get_num_threads routine.

int omp_get_team_size(int level);

integer function omp_get_team_size(level)
integer level

1

2

3

4

5

6
7
8

9

10
11
12
13
14

15
16
17

214 OpenMP API • Version 4.0 - July 2013

Cross References
• omp_get_num_threads routine, see Section 3.2.2 on page 191.

• omp_get_level routine, see Section 3.2.17 on page 210.

• omp_get_ancestor_thread_num routine, see Section 3.2.18 on page 211.

3.2.20 omp_get_active_level

Summary

The omp_get_active_level routine returns the value of the active-level-vars ICV..

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for the an omp_get_active_level region is the generating
task.

int omp_get_active_level(void);

integer function omp_get_active_level()

1

2

3

4

5

6

7

8

9

10

11

12

13
14

Chapter 3 Runtime Library Routines 215

Effect

The effect of the omp_get_active_level routine is to return the number of nested,
active parallel regions enclosing the current task such that all of the parallel
regions are enclosed by the outermost initial task region on the current device.

Cross References
• active-levels-var ICV, see Section 2.3 on page 34.

• omp_get_level routine, see Section 3.2.17 on page 210.

3.2.21 omp_in_final

Summary

The omp_in_final routine returns true if the routine is executed in a final task
region; otherwise, it returns false.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_in_final region is the generating task.

int omp_in_final(void);

logical function omp_in_final()

1

2
3
4

5

6

7

8

9

10
11

12

13

14

15

16

17

216 OpenMP API • Version 4.0 - July 2013

Effect

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns
false.

3.2.22 omp_get_proc_bind

Summary

The omp_get_proc_bind routine returns the thread affinity policy to be used for the
subsequent nested parallel regions that do not specify a proc_bind clause.

Format

C/C++

C/C++

Fortran

Fortran

Constraints on Arguments

The value returned by this routine must be one of the valid affinity policy kinds. The C/
C++ header file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90
module file (omp_lib) define the valid constants. The valid constants must include the
following:

omp_proc_bind_t omp_get_proc_bind(void);

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()

1

2
3

4

5

6
7

8

9

10

11

12

13

14
15
16
17

Chapter 3 Runtime Library Routines 217

C/C++

typedef enum omp_proc_bind_t {
omp_proc_bind_false = 0,
omp_proc_bind_true = 1,
omp_proc_bind_master = 2,
omp_proc_bind_close = 3,
omp_proc_bind_spread = 4

C/C++
} omp_proc_bind_t;

Fortran

integer (kind=omp_proc_bind_kind), &
parameter :: omp_proc_bind_false = 0

integer (kind=omp_proc_bind_kind), &
parameter :: omp_proc_bind_true = 1

integer (kind=omp_proc_bind_kind), &
parameter :: omp_proc_bind_master = 2

integer (kind=omp_proc_bind_kind), &
parameter :: omp_proc_bind_close = 3

integer (kind=omp_proc_bind_kind), &

Fortran

parameter :: omp_proc_bind_spread = 4

Binding

The binding task set for an omp_get_proc_bind region is the generating task.

Effect

The effect of this routine is to return the value of the first element of the bind-var ICV
of the current task. See Section 2.5.2 on page 49 for the rules governing the thread
affinity policy.

Cross References
• bind-var ICV, see Section 2.3 on page 34.

• OMP_PROC_BIND environment variable, see Section 4.4 on page 241.

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 49.

1

2
3
4
5
6
7
8

9

10
11

12
13

14
15

16
17

18
19

20

21

22

23
24
25

26

27

28

29

218 OpenMP API • Version 4.0 - July 2013

3.2.23 omp_set_default_device

Summary

The omp_set_default_device routine controls the default target device by
assigning the value of the default-device-var ICV.

Format

C/C++

C/C++

Fortran

Fortran
Binding

The binding task set for an omp_set_default_device region is the generating
task.

Effect

The effect of this routine is to set the value of the default-device-var ICV of the current
task to the value specified in the argument. When called from within a target region
the effect of this routine is unspecified.

Cross References:
• default-device-var, see Section 2.3 on page 34.

• omp_get_default_device, see Section 3.2.24 on page 219.

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 248

void omp_set_default_device(int device_num);

subroutine omp_set_default_device(device_num)
integer device_num

1

2

3
4

5

6

7

8

9
10

11

12
13
14

15

16

17

18

Chapter 3 Runtime Library Routines 219

3.2.24 omp_get_default_device

Summary

The omp_get_default_device routine returns the default target device.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_default_device region is the generating
task.

Effect

The omp_get_default_device routine returns the value of the default-device-var
ICV of the current task. When called from within a target region the effect of this
routine is unspecified.

Cross References
• default-device-var, see Section 2.3 on page 34.

• omp_set_default_device, see Section 3.2.23 on page 218.

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 248.

int omp_get_default_device(void);

integer function omp_get_default_device()

1

2

3

4

5

6

7

8
9

10

11
12
13

14

15

16

17

220 OpenMP API • Version 4.0 - July 2013

3.2.25 omp_get_num_devices

Summary

The omp_get_num_devices routine returns the number of target devices.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_num_devices region is the generating task.

Effect

The omp_get_num_devices routine returns the number of available target devices.
When called from within a target region the effect of this routine is unspecified.

Cross References:

None.

int omp_get_num_devices(void);

integer function omp_get_num_devices()

1

2

3

4

5

6

7

8

9

10

11
12

13

14

Chapter 3 Runtime Library Routines 221

3.2.26 omp_get_num_teams

Summary

The omp_get_num_teams routine returns the number of teams in the current teams
region.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_num_teams region is the generating task.

Effect

The effect of this routine is to return the number of teams in the current teams region.
The routine returns 1 if it is called from outside of a teams region.

Cross References:
• teams construct, see Section 2.9.5 on page 86.

int omp_get_num_teams(void);

integer function omp_get_num_teams()

1

2

3
4

5

6

7

8

9

10

11

12
13

14

15

222 OpenMP API • Version 4.0 - July 2013

3.2.27 omp_get_team_num

Summary

The omp_get_team_num routine returns the team number of the calling thread.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_team_num region is the generating task.

Effect

The omp_get_team_num routine returns the team number of the calling thread. The
team number is an integer between 0 and one less than the value returned by
omp_get_num_teams, inclusive. The routine returns 0 if it is called outside of a
teams region.

Cross References:
• teams construct, see Section 2.9.5 on page 86.

• omp_get_num_teams routine, see Section 3.2.26 on page 221.

int omp_get_team_num(void);

integer function omp_get_team_num()

1

2

3

4

5

6

7

8

9

10

11
12
13
14

15

16

17

Chapter 3 Runtime Library Routines 223

3.2.28 omp_is_initial_device

Summary

The omp_is_initial_device routine returns true if the current task is executing
on the host device; otherwise, it returns false.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_is_initial_device region is the generating task.

Effect

The effect of this routine is to return true if the current task is executing on the host
device; otherwise, it returns false.

Cross References:
• target construct, see Section 2.9.2 on page 79.

int omp_is_initial_device(void);

logical function omp_is_initial_device()

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

224 OpenMP API • Version 4.0 - July 2013

3.3 Lock Routines
The OpenMP runtime library includes a set of general-purpose lock routines that can be
used for synchronization. These general-purpose lock routines operate on OpenMP locks
that are represented by OpenMP lock variables. OpenMP lock variables must be
accessed only through the routines described in this section; programs that otherwise
access OpenMP lock variables are non-conforming.

An OpenMP lock can be in one of the following states: uninitialized, unlocked, or
locked. If a lock is in the unlocked state, a task can set the lock, which changes its state
to locked. The task that sets the lock is then said to own the lock. A task that owns a
lock can unset that lock, returning it to the unlocked state. A program in which a task
unsets a lock that is owned by another task is non-conforming.

Two types of locks are supported: simple locks and nestable locks. A nestable lock can
be set multiple times by the same task before being unset; a simple lock cannot be set if
it is already owned by the task trying to set it. Simple lock variables are associated with
simple locks and can only be passed to simple lock routines. Nestable lock variables are
associated with nestable locks and can only be passed to nestable lock routines.

Constraints on the state and ownership of the lock accessed by each of the lock routines
are described with the routine. If these constraints are not met, the behavior of the
routine is unspecified.

The OpenMP lock routines access a lock variable in such a way that they always read
and update the most current value of the lock variable. It is not necessary for an
OpenMP program to include explicit flush directives to ensure that the lock variable’s
value is consistent among different tasks.

Binding

The binding thread set for all lock routine regions is all threads in the contention group.
As a consequence, for each OpenMP lock, the lock routine effects relate to all tasks that
call the routines, without regard to which teams the threads in the contention group
executing the tasks belong.

1

2
3
4
5
6

7
8
9

10
11

12
13
14
15
16

17
18
19

20
21
22
23

24

25
26
27
28

Chapter 3 Runtime Library Routines 225

Simple Lock Routines

C/C++
The type omp_lock_t is a data type capable of representing a simple lock. For the
following routines, a simple lock variable must be of omp_lock_t type. All simple

C/C++
lock routines require an argument that is a pointer to a variable of type omp_lock_t.

Fortran

For the following routines, a simple lock variable must be an integer variable of

Fortran

kind=omp_lock_kind.

The simple lock routines are as follows:

• The omp_init_lock routine initializes a simple lock.

• The omp_destroy_lock routine uninitializes a simple lock.

• The omp_set_lock routine waits until a simple lock is available, and then sets it.

• The omp_unset_lock routine unsets a simple lock.

• The omp_test_lock routine tests a simple lock, and sets it if it is available.

Nestable Lock Routines:

C/C++
The type omp_nest_lock_t is a data type capable of representing a nestable lock.
For the following routines, a nested lock variable must be of omp_nest_lock_t type.
All nestable lock routines require an argument that is a pointer to a variable of type

C/C++
omp_nest_lock_t.

Fortran

For the following routines, a nested lock variable must be an integer variable of

Fortran

kind=omp_nest_lock_kind.

The nestable lock routines are as follows:

• The omp_init_nest_lock routine initializes a nestable lock.

• The omp_destroy_nest_lock routine uninitializes a nestable lock.

• The omp_set_nest_lock routine waits until a nestable lock is available, and then
sets it.

1

2
3
4

5
6

7

8

9

10

11

12

13

14
15
16
17

18
19

20

21

22

23
24

226 OpenMP API • Version 4.0 - July 2013

• The omp_unset_nest_lock routine unsets a nestable lock.

• The omp_test_nest_lock routine tests a nestable lock, and sets it if it is
available.

Restrictions

OpenMP lock routines have the following restrictions:

• The use of the same OpenMP lock in different contention groups results in
unspecified behavior.

3.3.1 omp_init_lock and omp_init_nest_lock

Summary

These routines provide the only means of initializing an OpenMP lock.

C/C++
Format

C/C++

Fortran

Fortran

void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2
3

4

5

6
7

8

9

10

11

12

13

Chapter 3 Runtime Library Routines 227

Constraints on Arguments

A program that accesses a lock that is not in the uninitialized state through either routine
is non-conforming.

Effect

The effect of these routines is to initialize the lock to the unlocked state; that is, no task
owns the lock. In addition, the nesting count for a nestable lock is set to zero.

3.3.2 omp_destroy_lock and
omp_destroy_nest_lock

Summary

These routines ensure that the OpenMP lock is uninitialized.

C/C++
Format

C/C++

Fortran

Fortran

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2
3

4

5
6

7

8

9

10

11

12

13

228 OpenMP API • Version 4.0 - July 2013

Constraints on Arguments

A program that accesses a lock that is not in the unlocked state through either routine is
non-conforming.

Effect

The effect of these routines is to change the state of the lock to uninitialized.

3.3.3 omp_set_lock and omp_set_nest_lock

Summary

These routines provide a means of setting an OpenMP lock. The calling task region is
suspended until the lock is set.

C/C++
Format

C/C++

Fortran

Fortran

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2
3

4

5

6

7

8
9

10

11

12

Chapter 3 Runtime Library Routines 229

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state
must not be owned by the task that contains the call or deadlock will result.

Effect

Each of these routines causes suspension of the task executing the routine until the
specified lock is available and then sets the lock.

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task
executing the routine.

A nestable lock is available if it is unlocked or if it is already owned by the task
executing the routine. The task executing the routine is granted, or retains, ownership of
the lock, and the nesting count for the lock is incremented.

3.3.4 omp_unset_lock and omp_unset_nest_lock

Summary

These routines provide the means of unsetting an OpenMP lock.

1

2
3
4

5

6
7

8
9

10
11
12

13

14

15

16

230 OpenMP API • Version 4.0 - July 2013

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A program that accesses a lock that is not in the locked state or that is not owned by the
task that contains the call through either routine is non-conforming.

Effect

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting
count, and causes the lock to become unlocked if the resulting nesting count is zero.

For either routine, if the lock becomes unlocked, and if one or more task regions were
suspended because the lock was unavailable, the effect is that one task is chosen and
given ownership of the lock.

void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2

3

4

5
6

7

8

9
10

11
12
13

Chapter 3 Runtime Library Routines 231

3.3.5 omp_test_lock and omp_test_nest_lock

Summary

These routines attempt to set an OpenMP lock but do not suspend execution of the task
executing the routine.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is
non-conforming. The behavior is unspecified if a simple lock accessed by
omp_test_lock is in the locked state and is owned by the task that contains the call.

Effect

These routines attempt to set a lock in the same manner as omp_set_lock and
omp_set_nest_lock, except that they do not suspend execution of the task
executing the routine.

For a simple lock, the omp_test_lock routine returns true if the lock is successfully
set; otherwise, it returns false.

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2

3
4

5

6

7

8

9
10
11

12

13
14
15

16
17

232 OpenMP API • Version 4.0 - July 2013

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count
if the lock is successfully set; otherwise, it returns zero.

1
2

Chapter 3 Runtime Library Routines 233

3.4 Timing Routines
This section describes routines that support a portable wall clock timer.

3.4.1 omp_get_wtime

Summary

The omp_get_wtime routine returns elapsed wall clock time in seconds.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtime region is the encountering thread. The
routine’s return value is not guaranteed to be consistent across any set of threads.

Effect

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in
seconds since some “time in the past”. The actual “time in the past” is arbitrary, but it is
guaranteed not to change during the execution of the application program. The time
returned is a “per-thread time”, so it is not required to be globally consistent across all
the threads participating in an application.

double omp_get_wtime(void);

double precision function omp_get_wtime()

1

2

3

4

5

6

7

8

9

10
11

12

13
14
15
16
17

234 OpenMP API • Version 4.0 - July 2013

Note – It is anticipated that the routine will be used to measure elapsed times as shown

C/C++
in the following example:

C/C++

Fortran

Fortran

3.4.2 omp_get_wtick

Summary

The omp_get_wtick routine returns the precision of the timer used by
omp_get_wtime.

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf("Work took %f seconds\n", end - start);

DOUBLE PRECISION START, END
START = omp_get_wtime()
... work to be timed ...
END = omp_get_wtime()
PRINT *, "Work took", END - START, "seconds"

1
2

3

4

5

6

7

8
9

Chapter 3 Runtime Library Routines 235

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtick region is the encountering thread. The
routine’s return value is not guaranteed to be consistent across any set of threads.

Effect

The omp_get_wtick routine returns a value equal to the number of seconds between
successive clock ticks of the timer used by omp_get_wtime.

double omp_get_wtick(void);

double precision function omp_get_wtick()

1

2

3

4

5
6

7

8
9

236 OpenMP API • Version 4.0 - July 2013

237

CHAPTER 4

Environment Variables

This chapter describes the OpenMP environment variables that specify the settings of
the ICVs that affect the execution of OpenMP programs (see Section 2.3 on page 34).
The names of the environment variables must be upper case. The values assigned to the
environment variables are case insensitive and may have leading and trailing white
space. Modifications to the environment variables after the program has started, even if
modified by the program itself, are ignored by the OpenMP implementation. However,
the settings of some of the ICVs can be modified during the execution of the OpenMP
program by the use of the appropriate directive clauses or OpenMP API routines.

The environment variables are as follows:

• OMP_SCHEDULE sets the run-sched-var ICV that specifies the runtime schedule type
and chunk size. It can be set to any of the valid OpenMP schedule types.

• OMP_NUM_THREADS sets the nthreads-var ICV that specifies the number of threads
to use for parallel regions.

• OMP_DYNAMIC sets the dyn-var ICV that specifies the dynamic adjustment of
threads to use for parallel regions.

• OMP_PROC_BIND sets the bind-var ICV that controls the OpenMP thread affinity
policy.

• OMP_PLACES sets the place-partition-var ICV that defines the OpenMP places that
are available to the execution environment.

• OMP_NESTED sets the nest-var ICV that enables or disables nested parallelism.

• OMP_STACKSIZE sets the stacksize-var ICV that specifies the size of the stack for
threads created by the OpenMP implementation.

• OMP_WAIT_POLICY sets the wait-policy-var ICV that controls the desired behavior
of waiting threads.

• OMP_MAX_ACTIVE_LEVELS sets the max-active-levels-var ICV that controls the
maximum number of nested active parallel regions.

• OMP_THREAD_LIMIT sets the thread-limit-var ICV that controls the maximum
number of threads participating in the OpenMP program.

1

2

3
4
5
6
7
8
9

10

11

12
13

14
15

16
17

18
19

20
21

22

23
24

25
26

27
28

29
30

238 OpenMP API • Version 4.0 - July 2013

• OMP_CANCELLATION sets the cancel-var ICV that enables or disables cancellation.

• OMP_DISPLAY_ENV instructs the runtime to display the OpenMP version number
and the initial values of the ICVs, once, during initialization of the runtime.

• OMP_DEFAULT_DEVICE sets the default-device-var ICV that controls the default
device number.

The examples in this chapter only demonstrate how these variables might be set in Unix
C shell (csh) environments. In Korn shell (ksh) and DOS environments the actions are
similar, as follows:

• csh:

• ksh:

• DOS:

4.1 OMP_SCHEDULE
The OMP_SCHEDULE environment variable controls the schedule type and chunk size
of all loop directives that have the schedule type runtime, by setting the value of the
run-sched-var ICV.

The value of this environment variable takes the form:

type[,chunk]

where

• type is one of static, dynamic, guided, or auto

• chunk is an optional positive integer that specifies the chunk size

If chunk is present, there may be white space on either side of the “,”. See Section 2.7.1
on page 53 for a detailed description of the schedule types.

The behavior of the program is implementation defined if the value of OMP_SCHEDULE
does not conform to the above format.

setenv OMP_SCHEDULE "dynamic"

export OMP_SCHEDULE="dynamic"

set OMP_SCHEDULE=dynamic

1

2
3

4
5

6
7
8

9

10

11

12

13
14
15

16

17

18

19

20

21
22

23
24

Chapter 4 Environment Variables 239

Implementation specific schedules cannot be specified in OMP_SCHEDULE. They can
only be specified by calling omp_set_schedule, described in Section 3.2.12 on page
203.

Example:

Cross References
• run-sched-var ICV, see Section 2.3 on page 34.

• Loop construct, see Section 2.7.1 on page 53.

• Parallel loop construct, see Section 2.10.1 on page 95.

• omp_set_schedule routine, see Section 3.2.12 on page 203.

• omp_get_schedule routine, see Section 3.2.13 on page 205.

4.2 OMP_NUM_THREADS
The OMP_NUM_THREADS environment variable sets the number of threads to use for
parallel regions by setting the initial value of the nthreads-var ICV. See Section 2.3
on page 34 for a comprehensive set of rules about the interaction between the
OMP_NUM_THREADS environment variable, the num_threads clause, the
omp_set_num_threads library routine and dynamic adjustment of threads, and
Section 2.5.1 on page 47 for a complete algorithm that describes how the number of
threads for a parallel region is determined.

The value of this environment variable must be a list of positive integer values. The
values of the list set the number of threads to use for parallel regions at the
corresponding nested levels.

The behavior of the program is implementation defined if any value of the list specified
in the OMP_NUM_THREADS environment variable leads to a number of threads which is
greater than an implementation can support, or if any value is not a positive integer.

Example:

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"

setenv OMP_NUM_THREADS 4,3,2

1
2
3

4

5

6

7

8

9

10

11

12
13
14
15
16
17
18

19
20
21

22
23
24

25

240 OpenMP API • Version 4.0 - July 2013

Cross References:
• nthreads-var ICV, see Section 2.3 on page 34.

• num_threads clause, Section 2.5 on page 44.

• omp_set_num_threads routine, see Section 3.2.1 on page 189.

• omp_get_num_threads routine, see Section 3.2.2 on page 191.

• omp_get_max_threads routine, see Section 3.2.3 on page 192.

• omp_get_team_size routine, see Section 3.2.19 on page 212.

4.3 OMP_DYNAMIC
The OMP_DYNAMIC environment variable controls dynamic adjustment of the number
of threads to use for executing parallel regions by setting the initial value of the
dyn-var ICV. The value of this environment variable must be true or false. If the
environment variable is set to true, the OpenMP implementation may adjust the
number of threads to use for executing parallel regions in order to optimize the use
of system resources. If the environment variable is set to false, the dynamic
adjustment of the number of threads is disabled. The behavior of the program is
implementation defined if the value of OMP_DYNAMIC is neither true nor false.

Example:

Cross References:
• dyn-var ICV, see Section 2.3 on page 34.

• omp_set_dynamic routine, see Section 3.2.7 on page 197.

• omp_get_dynamic routine, see Section 3.2.8 on page 198.

setenv OMP_DYNAMIC true

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15
16
17

18

19

20

21

22

Chapter 4 Environment Variables 241

4.4 OMP_PROC_BIND
The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV.
The value of this environment variable is either true, false, or a comma separated
list of master, close, or spread. The values of the list set the thread affinity policy
to be used for parallel regions at the corresponding nested level.

If the environment variable is set to false, the execution environment may move
OpenMP threads between OpenMP places, thread affinity is disabled, and proc_bind
clauses on parallel constructs are ignored.

Otherwise, the execution environment should not move OpenMP threads between
OpenMP places, thread affinity is enabled, and the initial thread is bound to the first
place in the OpenMP place list.

The behavior of the program is implementation defined if any of the values in the
OMP_PROC_BIND environment variable is not true, false, or a comma separated
list of master, close, or spread. The behavior is also implementation defined if an
initial thread cannot be bound to the first place in the OpenMP place list.

Example:

Cross References:
• bind-var ICV, see Section 2.3 on page 34.

• proc_bind clause, see Section 2.5.2 on page 49.

• omp_get_proc_bind routine, see Section 3.2.22 on page 216.

4.5 OMP_PLACES
A list of places can be specified in the OMP_PLACES environment variable. The place-
partition-var ICV obtains its initial value from the OMP_PLACES value, and makes the
list available to the execution environment. The value of OMP_PLACES can be one of
two types of values: either an abstract name describing a set of places or an explicit list
of places described by non-negative numbers.

setenv OMP_PROC_BIND false
setenv OMP_PROC_BIND "spread, spread, close"

1

2
3
4
5

6
7
8

9
10
11

12
13
14
15

16

17

18

19

20

21

22
23
24
25
26

242 OpenMP API • Version 4.0 - July 2013

The OMP_PLACES environment variable can be defined using an explicit ordered list of
comma-separated places. A place is defined by an unordered set of comma-separated
non-negative numbers enclosed by braces. The meaning of the numbers and how the
numbering is done are implementation defined. Generally, the numbers represent the
smallest unit of execution exposed by the execution environment, typically a hardware
thread.

Intervals may also be used to define places. Intervals can be specified using the <lower-
bound> : <length> : <stride> notation to represent the following list of numbers:
“<lower-bound>, <lower-bound> + <stride>, …, <lower-bound> + (<length>-
1)*<stride>.” When <stride> is omitted, a unit stride is assumed. Intervals can specify
numbers within a place as well as sequences of places.

An exclusion operator “!” can also be used to exclude the number or place immediately
following the operator.

Alternatively, the abstract names listed in TABLE 4-1 should be understood by the
execution and runtime environment. The precise definitions of the abstract names are
implementation defined. An implementation may also add abstract names as appropriate
for the target platform.

The abstract name may be appended by a positive number in parentheses to denote the
length of the place list to be created, that is abstract_name(num-places). When
requesting fewer places than available on the system, the determination of which
resources of type abstract_name are to be included in the place list is implementation
defined. When requesting more resources than available, the length of the place list is
implementation defined.

The behavior of the program is implementation defined when the execution environment
cannot map a numerical value (either explicitly defined or implicitly derived from an
interval) within the OMP_PLACES list to a processor on the target platform, or if it maps
to an unavailable processor. The behavior is also implementation defined when the
OMP_PLACES environment variable is defined using an abstract name.

TABLE 4-1 List of defined abstract names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the target machine.

cores Each place corresponds to a single core (having one or more hardware
threads) on the target machine.

sockets Each place corresponds to a single socket (consisting of one or more cores)
on the target machine.

1
2
3
4
5
6

7
8
9

10
11

12
13

14
15
16
17

18
19
20
21
22
23

24
25
26
27
28

Chapter 4 Environment Variables 243

Example:

where each of the last three definitions corresponds to the same 4 places including the
smallest units of execution exposed by the execution environment numbered, in turn, 0
to 3, 4 to 7, 8 to 11, and 12 to 15.

Cross References
• place-partition-var, Section 2.3 on page 34.

• Controlling OpenMP thread affinity, Section 2.5.2 on page 49.

4.6 OMP_NESTED
The OMP_NESTED environment variable controls nested parallelism by setting the
initial value of the nest-var ICV. The value of this environment variable must be true
or false. If the environment variable is set to true, nested parallelism is enabled; if
set to false, nested parallelism is disabled. The behavior of the program is
implementation defined if the value of OMP_NESTED is neither true nor false.

Example:

Cross References
• nest-var ICV, see Section 2.3 on page 34.

• omp_set_nested routine, see Section 3.2.10 on page 200.

• omp_get_nested routine, see Section 3.2.19 on page 212.

setenv OMP_PLACES threads
setenv OMP_PLACES "threads(4)"
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"

setenv OMP_NESTED false

1

2
3
4

5

6

7

8

9
10
11
12
13

14

15

16

17

18

19

244 OpenMP API • Version 4.0 - July 2013

4.7 OMP_STACKSIZE
The OMP_STACKSIZE environment variable controls the size of the stack for threads
created by the OpenMP implementation, by setting the value of the stacksize-var ICV.
The environment variable does not control the size of the stack for an initial thread.

The value of this environment variable takes the form:

size | sizeB | sizeK | sizeM | sizeG

where:

• size is a positive integer that specifies the size of the stack for threads that are created
by the OpenMP implementation.

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes
(1024 Bytes), Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes),
respectively. If one of these letters is present, there may be white space between
size and the letter.

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be
in Kilobytes.

The behavior of the program is implementation defined if OMP_STACKSIZE does not
conform to the above format, or if the implementation cannot provide a stack with the
requested size.

Examples:

Cross References
• stacksize-var ICV, see Section 2.3 on page 34.

setenv OMP_STACKSIZE 2000500B
setenv OMP_STACKSIZE "3000 k "
setenv OMP_STACKSIZE 10M
setenv OMP_STACKSIZE " 10 M "
setenv OMP_STACKSIZE "20 m "
setenv OMP_STACKSIZE " 1G"
setenv OMP_STACKSIZE 20000

1

2
3
4

5

6

7

8
9

10
11
12
13

14
15

16
17
18

19

20

21

Chapter 4 Environment Variables 245

4.8 OMP_WAIT_POLICY
The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP
implementation about the desired behavior of waiting threads by setting the wait-policy-
var ICV. A compliant OpenMP implementation may or may not abide by the setting of
the environment variable.

The value of this environment variable takes the form:

ACTIVE | PASSIVE

The ACTIVE value specifies that waiting threads should mostly be active, consuming
processor cycles, while waiting. An OpenMP implementation may, for example, make
waiting threads spin.

The PASSIVE value specifies that waiting threads should mostly be passive, not
consuming processor cycles, while waiting. For example, an OpenMP implementation
may make waiting threads yield the processor to other threads or go to sleep.

The details of the ACTIVE and PASSIVE behaviors are implementation defined.

Examples:

Cross References
• wait-policy-var ICV, see Section 2.3 on page 24.

4.9 OMP_MAX_ACTIVE_LEVELS
The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number
of nested active parallel regions by setting the initial value of the max-active-levels-
var ICV.

setenv OMP_WAIT_POLICY ACTIVE
setenv OMP_WAIT_POLICY active
setenv OMP_WAIT_POLICY PASSIVE
setenv OMP_WAIT_POLICY passive

1

2
3
4
5

6

7

8
9

10

11
12
13

14

15

16

17

18

19
20
21

246 OpenMP API • Version 4.0 - July 2013

The value of this environment variable must be a non-negative integer. The behavior of
the program is implementation defined if the requested value of
OMP_MAX_ACTIVE_LEVELS is greater than the maximum number of nested active
parallel levels an implementation can support, or if the value is not a non-negative
integer.

Cross References
• max-active-levels-var ICV, see Section 2.3 on page 34.

• omp_set_max_active_levels routine, see Section 3.2.15 on page 207.

• omp_get_max_active_levels routine, see Section 3.2.16 on page 209.

4.10 OMP_THREAD_LIMIT
The OMP_THREAD_LIMIT environment variable sets the number of OpenMP threads
to use for the whole OpenMP program by setting the thread-limit-var ICV.

The value of this environment variable must be a positive integer. The behavior of the
program is implementation defined if the requested value of OMP_THREAD_LIMIT is
greater than the number of threads an implementation can support, or if the value is not
a positive integer.

Cross References
• thread-limit-var ICV, see Section 2.3 on page 34.

• omp_get_thread_limit routine, see Section 3.2.14 on page 206.

4.11 OMP_CANCELLATION
The OMP_CANCELLATION environment variable sets the initial value of the cancel-var
ICV.

The value of this environment variable must be true or false. If set to true, the
effects of the cancel construct and of cancellation points are enabled and cancellation
is activated. If set to false, cancellation is disabled and the cancel construct and
cancellation points are effectively ignored.

1
2
3
4
5

6

7

8

9

10

11
12

13
14
15
16

17

18

19

20

21
22

23
24
25
26

Chapter 4 Environment Variables 247

Cross References:
• cancel-var, see Section 2.3.1 on page 35.

• cancel construct, see Section 2.13.1 on page 140.

• cancellation point construct, see Section 2.13.2 on page 143

• omp_get_cancellation routine, see Section 3.2.9 on page 199

4.12 OMP_DISPLAY_ENV
The OMP_DISPLAY_ENV environment variable instructs the runtime to display the
OpenMP version number and the value of the ICVs associated with the environment
variables described in Chapter 4, as name = value pairs. The runtime displays this
information once, after processing the environment variables and before any user calls
to change the ICV values by runtime routines defined in Chapter 3.

The value of the OMP_DISPLAY_ENV environment variable may be set to one of these
values:

TRUE | FALSE | VERBOSE

The TRUE value instructs the runtime to display the OpenMP version number defined by
the _OPENMP version macro (or the openmp_version Fortran parameter) value and
the initial ICV values for the environment variables listed in Chapter 4. The VERBOSE
value indicates that the runtime may also display the values of runtime variables that
may be modified by vendor-specific environment variables. The runtime does not
display any information when the OMP_DISPLAY_ENV environment variable is
FALSE, undefined, or any other value than TRUE or VERBOSE.

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by
the _OPENMP version macro (or the openmp_version Fortran parameter) value and
ICV values, in the format NAME '=' VALUE. NAME corresponds to the macro or
environment variable name, optionally prepended by a bracketed device-type. VALUE
corresponds to the value of the macro or ICV associated with this environment variable.
Values should be enclosed in single quotes. The display is terminated with "OPENMP
DISPLAY ENVIRONMENT END".

Example:

% setenv OMP_DISPLAY_ENV TRUE

1

2

3

4

5

6

7
8
9

10
11

12
13

14

15
16
17
18
19
20
21

22
23
24
25
26
27
28

29

30

248 OpenMP API • Version 4.0 - July 2013

The above example causes an OpenMP implementation to generate output of the
following form:

4.13 OMP_DEFAULT_DEVICE
The OMP_DEFAULT_DEVICE environment variable sets the device number to use in
device constructs by setting the initial value of the default-device-var ICV.

The value of this environment variable must be a non-negative integer value.

Cross References:
• default-device-var ICV, see Section 2.3 on page 34.

• device constructs, Section 2.9 on page 77

OPENMP DISPLAY ENVIRONMENT BEGIN
 _OPENMP='201307'
 [host] OMP_SCHEDULE='GUIDED,4'
 [host] OMP_NUM_THREADS='4,3,2'
 [device] OMP_NUM_THREADS='2'
 [host,device] OMP_DYNAMIC='TRUE'
 [host] OMP_PLACES='{0:4},{4:4},{8:4},{12:4}'
 ...
OPENMP DISPLAY ENVIRONMENT END

1
2

3

4
5

6

7

8

9

249

APPENDIX A

Stubs for Runtime Library
Routines

This section provides stubs for the runtime library routines defined in the OpenMP API.
The stubs are provided to enable portability to platforms that do not support the
OpenMP API. On these platforms, OpenMP programs must be linked with a library
containing these stub routines. The stub routines assume that the directives in the
OpenMP program are ignored. As such, they emulate serial semantics.

Note that the lock variable that appears in the lock routines must be accessed
exclusively through these routines. It should not be initialized or otherwise modified in
the user program.

In an actual implementation the lock variable might be used to hold the address of an
allocated memory block, but here it is used to hold an integer value. Users should not
make assumptions about mechanisms used by OpenMP implementations to implement
locks based on the scheme used by the stub procedures.

Fortran

Note – In order to be able to compile the Fortran stubs file, the include file
omp_lib.h was split into two files: omp_lib_kinds.h and omp_lib.h and the
omp_lib_kinds.h file included where needed. There is no requirement for the

Fortran

implementation to provide separate files.

1

2

3

4
5
6
7
8

9
10
11

12
13
14
15

16
17
18
19

250 OpenMP API • Version 4.0 - July 2013

A.1 C/C++ Stub Routines
#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

void omp_set_num_threads(int num_threads)
{
}

int omp_get_num_threads(void)
{
 return 1;
}

int omp_get_max_threads(void)
{
 return 1;
}

int omp_get_thread_num(void)
{
 return 0;
}

int omp_get_num_procs(void)
{
 return 1;
}

int omp_in_parallel(void)
{
 return 0;
}

void omp_set_dynamic(int dynamic_threads)
{
}

int omp_get_dynamic(void)
{
 return 0;
}

int omp_get_cancellation(void)
{
 return 0;
}

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Appendix A Stubs for Runtime Library Routines 251

void omp_set_nested(int nested)
{
}

int omp_get_nested(void)
{
 return 0;
}

void omp_set_schedule(omp_sched_t kind, int modifier)
{
}

void omp_get_schedule(omp_sched_t *kind, int *modifier)
{
 *kind = omp_sched_static;
 *modifier = 0;
}

int omp_get_thread_limit(void)
{
 return 1;
}

void omp_set_max_active_levels(int max_active_levels)
{
}

int omp_get_max_active_levels(void)
{
 return 0;
}

int omp_get_level(void)
{
 return 0;
}

int omp_get_ancestor_thread_num(int level)
{
 if (level == 0)
 {
 return 0;
 }
 else
 {
 return -1;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

252 OpenMP API • Version 4.0 - July 2013

int omp_get_team_size(int level)
{
 if (level == 0)
 {
 return 1;
 }
 else
 {
 return -1;
 }
}

int omp_get_active_level(void)
{
 return 0;
}

int omp_in_final(void)
{
 return 1;
}

omp_proc_bind_t omp_get_proc_bind(void)
{
 return omp_proc_bind_false;
}

void omp_set_default_device(int device_num)
{
}

int omp_get_default_device(void)
{
 return 0;
}

int omp_get_num_devices(void)
{
 return 0;
}

int omp_get_num_teams(void)
{
 return 1;
}

int omp_get_team_num(void)
{
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix A Stubs for Runtime Library Routines 253

int omp_is_initial_device(void)
{

return 1;
}

struct __omp_lock
{
 int lock;
};

enum { UNLOCKED = -1, INIT, LOCKED };

void omp_init_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
 lock->lock = UNLOCKED;
}

void omp_destroy_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
 lock->lock = INIT;
}

void omp_set_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
 if (lock->lock == UNLOCKED)
 {
 lock->lock = LOCKED;
 }
 else if (lock->lock == LOCKED)
 {
 fprintf(stderr,

"error: deadlock in using lock variable\n");
 exit(1);
 }
 else
 {
 fprintf(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

void omp_unset_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
 if (lock->lock == LOCKED)
 {
 lock->lock = UNLOCKED;
 }
 else if (lock->lock == UNLOCKED)
 {

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

254 OpenMP API • Version 4.0 - July 2013

 fprintf(stderr, "error: lock not set\n");
 exit(1);
 }
 else
 {
 fprintf(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

int omp_test_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
 if (lock->lock == UNLOCKED)
 {
 lock->lock = LOCKED;
 return 1;
 }
 else if (lock->lock == LOCKED)
 {
 return 0;
 }
 else
 {
 fprintf(stderr, "error: lock not initialized\n");
 exit(1);
 }
}

struct __omp_nest_lock
{
 short owner;

short count;
};

enum { NOOWNER = -1, MASTER = 0 };

void omp_init_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
nlock->owner = NOOWNER;

 nlock->count = 0;
}

void omp_destroy_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
 nlock->owner = NOOWNER;
 nlock->count = UNLOCKED;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Appendix A Stubs for Runtime Library Routines 255

void omp_set_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
 if (nlock->owner == MASTER && nlock->count >= 1)
 {
 nlock->count++;
 }
 else if (nlock->owner == NOOWNER && nlock->count == 0)
 {
 nlock->owner = MASTER;
 nlock->count = 1;
 }
 else
 {
 fprintf(stderr,

"error: lock corrupted or not initialized\n");
 exit(1);
 }
}

void omp_unset_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
 if (nlock->owner == MASTER && nlock->count >= 1)
 {
 nlock->count--;
 if (nlock->count == 0)
 {
 nlock->owner = NOOWNER;
 }
 }
 else if (nlock->owner == NOOWNER && nlock->count == 0)
 {
 fprintf(stderr, "error: lock not set\n");
 exit(1);
 }
 else
 {
 fprintf(stderr,

"error: lock corrupted or not initialized\n");
 exit(1);
 }
}

int omp_test_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
 omp_set_nest_lock(arg);
 return nlock->count;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

256 OpenMP API • Version 4.0 - July 2013

double omp_get_wtime(void)
{
/* This function does not provide a working
 * wallclock timer. Replace it with a version
 * customized for the target machine.
 */
 return 0.0;
}

double omp_get_wtick(void)
{
/* This function does not provide a working
 * clock tick function. Replace it with
 * a version customized for the target machine.
 */
 return 365. * 86400.;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18

Appendix A Stubs for Runtime Library Routines 257

A.2 Fortran Stub Routines

 subroutine omp_set_num_threads(num_threads)
 integer num_threads
 return
 end subroutine

 integer function omp_get_num_threads()
 omp_get_num_threads = 1
 return
 end function

 integer function omp_get_max_threads()
 omp_get_max_threads = 1
 return
 end function

 integer function omp_get_thread_num()
 omp_get_thread_num = 0
 return
 end function

 integer function omp_get_num_procs()
 omp_get_num_procs = 1
 return
 end function

 logical function omp_in_parallel()
 omp_in_parallel = .false.
 return
 end function

 subroutine omp_set_dynamic(dynamic_threads)
 logical dynamic_threads
 return
 end subroutine

 logical function omp_get_dynamic()
 omp_get_dynamic = .false.
 return
 end function

logical function omp_get_cancellation()
 omp_get_cancellation = .false.
 return

end function

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

258 OpenMP API • Version 4.0 - July 2013

subroutine omp_set_nested(nested)
 logical nested
 return
 end subroutine

logical function omp_get_nested()
 omp_get_nested = .false.
 return
 end function

 subroutine omp_set_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier
 return
 end subroutine

 subroutine omp_get_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier
 kind = omp_sched_static
 modifier = 0
 return
 end subroutine

 integer function omp_get_thread_limit()
 omp_get_thread_limit = 1
 return
 end function

 subroutine omp_set_max_active_levels(level)
 integer level
 end subroutine

 integer function omp_get_max_active_levels()
 omp_get_max_active_levels = 0
 return
 end function

 integer function omp_get_level()
 omp_get_level = 0
 return
 end function

 integer function omp_get_ancestor_thread_num(level)
 integer level
 if (level .eq. 0) then
 omp_get_ancestor_thread_num = 0
 else
 omp_get_ancestor_thread_num = -1
 end if
 return
 end function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix A Stubs for Runtime Library Routines 259

integer function omp_get_team_size(level)
 integer level
 if (level .eq. 0) then
 omp_get_team_size = 1
 else
 omp_get_team_size = -1
 end if
 return
 end function

 integer function omp_get_active_level()
 omp_get_active_level = 0
 return
 end function

logical function omp_in_final()
 omp_in_final = .true.
 return

end function

function omp_get_proc_bind()
include 'omp_lib_kinds.h'
integer (kind=omp_proc_bind_kind) omp_get_proc_bind
omp_get_proc_bind = omp_proc_bind_false

end function omp_get_proc_bind

subroutine omp_set_default_device(device_num)
 integer device_num
 return

end subroutine

integer function omp_get_default_device()
 omp_get_default_device = 0
 return

end function

integer function omp_get_num_devices()
 omp_get_num_devices = 0
 return

end function

integer function omp_get_num_teams()
 omp_get_num_teams = 1
 return

end function

integer function omp_get_team_num()
 omp_get_team_num = 0
 return

end function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

260 OpenMP API • Version 4.0 - July 2013

logical function omp_is_initial_device()
 omp_is_initial_device = .true.
 return

end function

 subroutine omp_init_lock(lock)
 ! lock is 0 if the simple lock is not initialized
 ! -1 if the simple lock is initialized but not set
 ! 1 if the simple lock is set
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

 lock = -1
 return
 end subroutine

 subroutine omp_destroy_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

 lock = 0
 return
 end subroutine

 subroutine omp_set_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

 if (lock .eq. -1) then
 lock = 1
 elseif (lock .eq. 1) then
 print *, 'error: deadlock in using lock variable'
 stop
 else
 print *, 'error: lock not initialized'
 stop
 endif
 return
 end subroutine

 subroutine omp_unset_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

 if (lock .eq. 1) then
 lock = -1
 elseif (lock .eq. -1) then
 print *, 'error: lock not set'
 stop
 else
 print *, 'error: lock not initialized'
 stop
 endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix A Stubs for Runtime Library Routines 261

 return
 end subroutine

 logical function omp_test_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

 if (lock .eq. -1) then
 lock = 1
 omp_test_lock = .true.
 elseif (lock .eq. 1) then
 omp_test_lock = .false.
 else
 print *, 'error: lock not initialized'
 stop
 endif

 return
 end function

 subroutine omp_init_nest_lock(nlock)
 ! nlock is

! 0 if the nestable lock is not initialized
 ! -1 if the nestable lock is initialized but not set
 ! 1 if the nestable lock is set
 ! no use count is maintained
 include 'omp_lib_kinds.h'
 integer(kind=omp_nest_lock_kind) nlock

 nlock = -1

 return
 end subroutine

 subroutine omp_destroy_nest_lock(nlock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_nest_lock_kind) nlock

 nlock = 0

 return
 end subroutine

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

262 OpenMP API • Version 4.0 - July 2013

 subroutine omp_set_nest_lock(nlock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_nest_lock_kind) nlock

 if (nlock .eq. -1) then
 nlock = 1
 elseif (nlock .eq. 0) then
 print *, 'error: nested lock not initialized'
 stop
 else
 print *, 'error: deadlock using nested lock variable'
 stop
 endif

 return
 end subroutine

 subroutine omp_unset_nest_lock(nlock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_nest_lock_kind) nlock

 if (nlock .eq. 1) then
 nlock = -1
 elseif (nlock .eq. 0) then
 print *, 'error: nested lock not initialized'
 stop
 else
 print *, 'error: nested lock not set'
 stop
 endif

 return
 end subroutine

 integer function omp_test_nest_lock(nlock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_nest_lock_kind) nlock

 if (nlock .eq. -1) then
 nlock = 1
 omp_test_nest_lock = 1
 elseif (nlock .eq. 1) then
 omp_test_nest_lock = 0
 else
 print *, 'error: nested lock not initialized'
 stop
 endif

 return
 end function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix A Stubs for Runtime Library Routines 263

 double precision function omp_get_wtime()
 ! this function does not provide a working
 ! wall clock timer. replace it with a version
 ! customized for the target machine.

 omp_get_wtime = 0.0d0

 return
 end function

 double precision function omp_get_wtick()
 ! this function does not provide a working
 ! clock tick function. replace it with
 ! a version customized for the target machine.
 double precision one_year
 parameter (one_year=365.d0*86400.d0)

 omp_get_wtick = one_year

 return
 end function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

264 OpenMP API • Version 4.0 - July 2013

This page intentionally left blank.1

265

APPENDIX B

OpenMP C and C++ Grammar

B.1 Notation
The grammar rules consist of the name for a non-terminal, followed by a colon,
followed by replacement alternatives on separate lines.

The syntactic expression termopt indicates that the term is optional within the
replacement.

The syntactic expression termoptseq is equivalent to term-seqopt with the following
additional rules:

term-seq :

term

term-seq term

term-seq , term

1

2

3

4

5
6

7
8

9
10

11

12

13

14

266 OpenMP API • Version 4.0 - July 2013

B.2 Rules
The notation is described in Section 6.1 of the C standard. This grammar appendix
shows the extensions to the base language grammar for the OpenMP C and C++
directives.

C++
statement-seq:

statement

openmp-directive

statement-seq statement

C++

statement-seq openmp-directive

C90
statement-list:

statement

openmp-directive

statement-list statement

C90

statement-list openmp-directive

C99

block-item:

declaration

statement

C99

openmp-directive

1

2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Appendix B OpenMP C and C++ Grammar 267

statement:

/* standard statements */

openmp-construct

 declaration-definition:

 /* Any C or C++ declaration or definition statement */

 function-statement:

 /* C or C++ function definition or declaration */

declarations-definitions-seq:

 declaration-definition

 declarations-definitions-seq declaration-definition

openmp-construct:

parallel-construct

for-construct

sections-construct

single-construct

simd-construct

for-simd-construct

parallel-for-simd-construct

target-data-construct

target-construct

target-update-construct

teams-construct

distribute-construct

distribute-simd-construct

distribute-parallel-for-construct

distribute-parallel-for-simd-construct

target-teams-construct

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

268 OpenMP API • Version 4.0 - July 2013

teams-distribute-construct

teams-distribute-simd-construct

target-teams-distribute-construct

target-teams-distribute-simd-construct

teams-distribute-parallel-for-construct

target-teams-distribute-parallel-for-construct

teams-distribute-parallel-for-simd-construct

target-teams-distribute-parallel-for-simd-construct

parallel-for-construct

parallel-sections-construct

task-construct

master-construct

critical-construct

atomic-construct

ordered-construct

openmp-directive:

barrier-directive

taskwait-directive

taskyield-directive

flush-directive

structured-block:

statement

parallel-construct:

parallel-directive structured-block

parallel-directive:

pragma omp parallel parallel-clauseoptseq new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Appendix B OpenMP C and C++ Grammar 269

parallel-clause:

unique-parallel-clause

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-sharing-clause

data-reduction-clause

unique-parallel-clause:

if-clause

num_threads (expression)

copyin (variable-list)

for-construct:

for-directive iteration-statement

for-directive:

pragma omp for for-clauseoptseq new-line

for-clause:

unique-for-clause

data-privatization-clause

data-privatization-in-clause

data-privatization-out-clause

data-reduction-clause

nowait

unique-for-clause:

ordered

schedule (schedule-kind)

schedule (schedule-kind , expression)

collapse (expression)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

270 OpenMP API • Version 4.0 - July 2013

schedule-kind:

static

dynamic

guided

auto

runtime

sections-construct:

sections-directive section-scope

sections-directive:

pragma omp sections sections-clauseoptseq new-line

sections-clause:

data-privatization-clause

data-privatization-in-clause

data-privatization-out-clause

data-reduction-clause

nowait

section-scope:

{ section-sequence }

section-sequence:

section-directiveopt structured-block

section-sequence section-directive structured-block

section-directive:

pragma omp section new-line

single-construct:

single-directive structured-block

single-directive:

pragma omp single single-clauseoptseq new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Appendix B OpenMP C and C++ Grammar 271

single-clause:

unique-single-clause

data-privatization-clause

data-privatization-in-clause

nowait

unique-single-clause:

copyprivate (variable-list)

simd-construct:

simd-directive iteration-statement

simd-directive:

pragma omp simd simd-clauseoptseq new-line

simd-clause:

collapse (expression)

aligned-clause

linear-clause

uniform-clause

data-reduction-clause

inbranch-clause

inbranch-clause:

inbranch

notinbranch

uniform-clause:

uniform (variable-list)

linear-clause:

linear (variable-list)

linear (variable-list : expression)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

272 OpenMP API • Version 4.0 - July 2013

aligned-clause:

aligned (variable-list)

aligned (variable-list : expression)

declare-simd-construct:

declare-simd-directive-seq function-statement

declare-simd-directive-seq:

 declare-simd-directive

 declare-simd-directive-seq declare-simd-directive

declare-simd-directive:

pragma omp declare simd declare-simd-clauseoptseq new-line

declare-simd-clause:

simdlen (expression)

aligned-clause

linear-clause

uniform-clause

data-reduction-clause

inbranch-clause

for-simd-construct:

for-simd-directive iteration-statement

for-simd-directive:

pragma omp for simd for-simd-clauseoptseq new-line

for-simd-clause:

for-clause

simd-clause

parallel-for-simd-construct:

parallel-for-simd-directive iteration-statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Appendix B OpenMP C and C++ Grammar 273

parallel-for-simd-directive:

pragma omp parallel for simd parallel-for-simd-clauseoptseq new-line

parallel-for-simd-clause:

parallel-for-clause

simd-clause

target-data-construct:

target-data-directive structured-block

target-data-directive:

pragma omp target data target-data-clauseoptseq new-line

target-data-clause:

device-clause

map-clause

if-clause

device-clause:

device (expression)

map-clause:

map (map-typeopt variable-array-section-list)

map-type:

alloc:

to:

from:

tofrom:

target-construct:

target-directive structured-block

target-directive:

pragma omp target target-clauseoptseq new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

274 OpenMP API • Version 4.0 - July 2013

target-clause:

device-clause

map-clause

if-clause

target-update-construct:

target-update-directive structured-block

target-update-directive:

pragma omp target update target-update-clauseseq new-line

target-update-clause:

motion-clause

device-clause

if-clause

motion-clause:

to (variable-array-section-list)

from (variable-array-section-list)

declare-target-construct:

declare-target-directive declarations-definitions-seq end-declare-target-directive

declare-target-directive:

pragma omp declare target new-line

end-declare-target-directive:

pragma omp end declare target new-line

teams-construct:

teams-directive structured-block

teams-directive:

pragma omp teams teams-clauseoptseq new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Appendix B OpenMP C and C++ Grammar 275

teams-clause:

num_teams (expression)

thread_limit (expression)

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-sharing-clause

data-reduction-clause

distribute-construct:

distribute-directive iteration-statement

distribute-directive:

pragma omp distribute distribute-clauseoptseq new-line

distribute-clause:

data-privatization-clause

data-privatization-in-clause

collapse (expression)

dist_schedule (static)

dist_schedule (static , expression)

distribute-simd-construct:

 distribute-simd-directive iteration-statement

distribute-simd-directive:

 #pragma omp distribute simd distribute-simd-clauseoptseq new-line

distribute-simd-clause:

 distribute-clause

 simd-clause

distribute-parallel-for-construct:

 distribute-parallel-for-directive iteration-statement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

276 OpenMP API • Version 4.0 - July 2013

distribute-parallel-for-directive:

#pragma omp distribute parallel for distribute-parallel-for-clauseoptseq
new-line

 distribute-parallel-for-clause:

 distribute-clause

 parallel-for-clause

 distribute-parallel-for-simd-construct:

 distribute-parallel-for-simd-directive iteration-statement

 distribute-parallel-for-simd-directive:

 #pragma omp distribute parallel for distribute-parallel-for-simd-
clauseoptseq new-line

 distribute-parallel-for-simd-clause:

 distribute-clause

 parallel-for-simd-clause

 target-teams-construct:

 target-teams-directive iteration-statement

 target-teams-directive:

 #pragma omp target teams target-teams-clauseoptseq new-line

 target-teams-clause:

 target-clause

 teams-clause

 teams-distribute-construct:

 teams-distribute-directive iteration-statement

 teams-distribute-directive:

 #pragma omp teams distribute teams-distribute-clauseoptseq new-line

 teams-distribute-clause:

 teams-clause

 distribute-clause

 teams-distribute-simd-construct:

 teams-distribute-simd-directive iteration-statement

1

2
3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Appendix B OpenMP C and C++ Grammar 277

 teams-distribute-simd-directive:

 #pragma omp teams distribute simd teams-distribute-simd-clauseoptseq
new-line

 teams-distribute-simd-clause:

 teams-clause

 distribute-simd-clause

 target-teams-distribute-construct:

 target-teams-distribute-directive iteration-statement

 target-teams-distribute-directive:

 #pragma omp target teams distribute target-teams-distribute-clauseoptseq
new-line

 target-teams-distribute-clause:

 target-clause

 teams-distribute-clause

 target-teams-distribute-simd-construct:

 target-teams-distribute-simd-directive iteration-statement

 target-teams-distribute-simd-directive:

 #pragma omp target teams distribute simd target-teams-distribute-
simd-clauseoptseq new-line

 target-teams-distribute-simd-clause:

 target-clause

 teams-distribute-simd-clause

 teams-distribute-parallel-for-construct:

 teams-distribute-parallel-for-directive iteration-statement

 teams-distribute-parallel-for-directive:

 #pragma omp teams distribute parallel for teams-distribute-
parallel-for-clauseoptseq new-line

 teams-distribute-parallel-for-clause:

 teams-clause

distribute-parallel-for-clause

1

2
3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26
27

28

29

30

31

278 OpenMP API • Version 4.0 - July 2013

 target-teams-distribute-parallel-for-construct:

 target-teams-distribute-parallel-for-directive iteration-statement

 target-teams-distribute-parallel-for-directive:

 #pragma omp teams distribute parallel for target-teams-distribute-
parallel-for-clauseoptseq new-line

 target-teams-distribute-parallel-for-clause:

 target-clause

 teams-distribute-parallel-for-clause

 teams-distribute-parallel-for-simd-construct:

 teams-distribute-parallel-for-simd-directive iteration-statement

 teams-distribute-parallel-for-simd-directive:

 #pragma omp teams distribute parallel for simd teams-distribute-
parallel-for-simd-clauseoptseq new-line

 teams-distribute-parallel-for-simd-clause:

 teams-clause

 distribute-parallel-for-simd-clause

 target-teams-distribute-parallel-for-simd-construct:

 target-teams-distribute-parallel-for-simd-directive iteration-statement

 target-teams-distribute-parallel-for-simd-directive:

 #pragma omp target teams distribute parallel for simd target-
teams-distribute-parallel-for-simd-clauseoptseq new-line

 target-teams-distribute-parallel-for-simd-clause:

 target-clause

 teams-distribute-parallel-for-simd-clause

task-construct:

task-directive structured-block

task-directive:

pragma omp task task-clauseoptseq new-line

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

Appendix B OpenMP C and C++ Grammar 279

task-clause:

unique-task-clause

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-sharing-clause

unique-task-clause:

if-clause

final(scalar-expression)

untied

mergeable

depend (dependence-type : variable-array-section-list)

dependence-type:

in

out

inout

parallel-for-construct:

parallel-for-directive iteration-statement

parallel-for-directive:

pragma omp parallel for parallel-for-clauseoptseq new-line

parallel-for-clause:

unique-parallel-clause

unique-for-clause

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-privatization-out-clause

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

280 OpenMP API • Version 4.0 - July 2013

data-sharing-clause

data-reduction-clause

parallel-sections-construct:

 parallel-sections-directive section-scope

 parallel-sections-directive:

pragma omp parallel sections parallel-sections-clauseoptseq new-line

parallel-sections-clause:

unique-parallel-clause

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-privatization-out-clause

data-sharing-clause

data-reduction-clause

master-construct:

master-directive structured-block

master-directive:

pragma omp master new-line

critical-construct:

critical-directive structured-block

critical-directive:

pragma omp critical region-phraseopt new-line

region-phrase:

(identifier)

barrier-directive:

pragma omp barrier new-line

taskwait-directive:

pragma omp taskwait new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Appendix B OpenMP C and C++ Grammar 281

taskgroup-construct:

taskgroup-directive structured-block

taskgroup-directive:

pragma omp taskgroup new-line

taskyield-directive:

pragma omp taskyield new-line

atomic-construct:

atomic-directive expression-statement

atomic-directive structured block

atomic-directive:

pragma omp atomic atomic-clauseopt seq_cst-clauseopt new-line

atomic-clause:

read

write

update

capture

seq-cst-clause:

 seq_cst

flush-directive:

pragma omp flush flush-varsopt new-line

flush-vars:

(variable-list)

ordered-construct:

ordered-directive structured-block

ordered-directive:

pragma omp ordered new-line

cancel-directive:

pragma omp cancel construct-type-clause if-clauseopt new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

282 OpenMP API • Version 4.0 - July 2013

construct-type-clause:

parallel

sections

for

taskgroup

cancellation-point-directive:

pragma omp cancellation point construct-type-clause new-line

declaration:

/* standard declarations */

threadprivate-directive

declare-simd-directive

declare-target-construct

declare-reduction-directive

threadprivate-directive:

pragma omp threadprivate (variable-list) new-line

declare-reduction-directive:

pragma omp declare reduction (reduction-identifier :
reduction-type-list : expression) initializer-clauseopt new-line

reduction-identifier:

C

C
identifier

C++

C++

id-expression

C/C++

C/C++
one of: + * - & ^ | && || min max

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

Appendix B OpenMP C and C++ Grammar 283

reduction-type-list:

type-id

reduction-type-list, type-id

initializer-clause:

C
initializer (identifier = initializer)

C
 initializer (identifier (argument-expression-list))

C++
initializer (identifier initializer)

C++

 initializer (id-expression (expression-list))

data-default-clause:

default (shared)

default (none)

data-privatization-clause:

private (variable-list)

data-privatization-in-clause:

firstprivate (variable-list)

data-privatization-out-clause:

lastprivate (variable-list)

data-sharing-clause:

shared (variable-list)

data-reduction-clause:

reduction (reduction-identifier : variable-list)

if-clause:

if (scalar-expression)

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

284 OpenMP API • Version 4.0 - July 2013

C
array-section:

identifier array-section-subscript

variable-list:

identifier

variable-list , identifier

variable-array-section-list:

identifier

array-section

variable-array-section-list , identifier

C
variable-array-section-list , array-section

C++
array-section:

id-expression array-section-subscript

variable-list:

id-expression

variable-list , id-expression

variable-array-section-list:

id-expression

array-section

variable-array-section-list , id-expression

C++

variable-array-section-list , array-section

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Appendix B OpenMP C and C++ Grammar 285

array-section-subscript:

array-section-subscript [expressionopt : expressionopt]

array-section-subscript [expression]

[expressionopt : expressionopt]

[expression]

1

2

3

4

5

286 OpenMP API • Version 4.0 - July 2013

This page intentionally left blank.1

287

APPENDIX C

Interface Declarations

This appendix gives examples of the C/C++ header file, the Fortran include file and
Fortran module that shall be provided by implementations as specified in Chapter 3. It
also includes an example of a Fortran 90 generic interface for a library routine. This is a
non-normative section, implementation files may differ.

1

2

3
4
5
6

288 OpenMP API • Version 4.0 - July 2013

C.1 Example of the omp.h Header File
#ifndef _OMP_H_DEF
#define _OMP_H_DEF

/*
 * define the lock data types
 */
typedef void *omp_lock_t;

typedef void *omp_nest_lock_t;

/*
 * define the schedule kinds
 */
typedef enum omp_sched_t
{
 omp_sched_static = 1,
 omp_sched_dynamic = 2,
 omp_sched_guided = 3,
 omp_sched_auto = 4
/* , Add vendor specific schedule constants here */
} omp_sched_t;

/*
* define the proc bind values
*/

typedef enum omp_proc_bind_t
{
 omp_proc_bind_false = 0,
 omp_proc_bind_true = 1,
 omp_proc_bind_master = 2,
 omp_proc_bind_close = 3,
 omp_proc_bind_spread = 4
} omp_proc_bind_t;

/*
 * exported OpenMP functions
 */
#ifdef __cplusplus
extern "C"
{
#endif

extern void omp_set_num_threads(int num_threads);
extern int omp_get_num_threads(void);
extern int omp_get_max_threads(void);
extern int omp_get_thread_num(void);
extern int omp_get_num_procs(void);
extern int omp_in_parallel(void);
extern void omp_set_dynamic(int dynamic_threads);

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Appendix C Interface Declarations 289

extern int omp_get_dynamic(void);
extern void omp_set_nested(int nested);
extern int omp_get_cancellation(void);
extern int omp_get_nested(void);
extern void omp_set_schedule(omp_sched_t kind, int modifier);
extern void omp_get_schedule(omp_sched_t *kind, int *modifier);
extern int omp_get_thread_limit(void);
extern void omp_set_max_active_levels(int max_active_levels);
extern int omp_get_max_active_levels(void);
extern int omp_get_level(void);
extern int omp_get_ancestor_thread_num(int level);
extern int omp_get_team_size(int level);
extern int omp_get_active_level(void);
extern int omp_in_final(void);
extern omp_proc_bind_t omp_get_proc_bind(void);
extern void omp_set_default_device(int device_num);
extern int omp_get_default_device(void);
extern int omp_get_num_devices(void);
extern int omp_get_num_teams(void);
extern int omp_get_team_num(void);
extern int omp_is_initial_device(void);

extern void omp_init_lock(omp_lock_t *lock);
extern void omp_destroy_lock(omp_lock_t *lock);
extern void omp_set_lock(omp_lock_t *lock);
extern void omp_unset_lock(omp_lock_t *lock);
extern int omp_test_lock(omp_lock_t *lock);

extern void omp_init_nest_lock(omp_nest_lock_t *lock);
extern void omp_destroy_nest_lock(omp_nest_lock_t *lock);
extern void omp_set_nest_lock(omp_nest_lock_t *lock);
extern void omp_unset_nest_lock(omp_nest_lock_t *lock);
extern int omp_test_nest_lock(omp_nest_lock_t *lock);

extern double omp_get_wtime(void);
extern double omp_get_wtick(void);

#ifdef __cplusplus
}
#endif

#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

290 OpenMP API • Version 4.0 - July 2013

C.2 Example of an Interface Declaration include
File
omp_lib_kinds.h:

integer omp_lock_kind
integer omp_nest_lock_kind

! this selects an integer that is large enough to hold a 64 bit integer
parameter (omp_lock_kind = selected_int_kind(10))
parameter (omp_nest_lock_kind = selected_int_kind(10))

 integer omp_sched_kind
! this selects an integer that is large enough to hold a 32 bit integer

parameter (omp_sched_kind = selected_int_kind(8))
 integer (omp_sched_kind) omp_sched_static
 parameter (omp_sched_static = 1)
 integer (omp_sched_kind) omp_sched_dynamic
 parameter (omp_sched_dynamic = 2)
 integer (omp_sched_kind) omp_sched_guided
 parameter (omp_sched_guided = 3)
 integer (omp_sched_kind) omp_sched_auto
 parameter (omp_sched_auto = 4)
 integer omp_proc_bind_kind
 parameter (omp_proc_bind_kind = selected_int_kind(8))
 integer (omp_proc_bind_kind) omp_proc_bind_false
 parameter (omp_proc_bind_false = 0)
 integer (omp_proc_bind_kind) omp_proc_bind_true
 parameter (omp_proc_bind_true = 1)
 integer (omp_proc_bind_kind) omp_proc_bind_master
 parameter (omp_proc_bind_master = 2)
 integer (omp_proc_bind_kind) omp_proc_bind_close
 parameter (omp_proc_bind_close = 3)
 integer (omp_proc_bind_kind) omp_proc_bind_spread
 parameter (omp_proc_bind_spread = 4)

omp_lib.h:
! default integer type assumed below
! default logical type assumed below
! OpenMP API v4.0

 include 'omp_lib_kinds.h'
integer openmp_version

 parameter (openmp_version = 201307)

 external omp_set_num_threads
 external omp_get_num_threads
 integer omp_get_num_threads
 external omp_get_max_threads
 integer omp_get_max_threads
 external omp_get_thread_num
 integer omp_get_thread_num
 external omp_get_num_procs

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Appendix C Interface Declarations 291

 integer omp_get_num_procs
 external omp_in_parallel
 logical omp_in_parallel
 external omp_set_dynamic
 external omp_get_dynamic
 logical omp_get_dynamic

external omp_get_cancellation
 integer omp_get_cancellation
 external omp_set_nested
 external omp_get_nested
 logical omp_get_nested
 external omp_set_schedule
 external omp_get_schedule
 external omp_get_thread_limit
 integer omp_get_thread_limit
 external omp_set_max_active_levels
 external omp_get_max_active_levels
 integer omp_get_max_active_levels
 external omp_get_level
 integer omp_get_level
 external omp_get_ancestor_thread_num
 integer omp_get_ancestor_thread_num
 external omp_get_team_size
 integer omp_get_team_size
 external omp_get_active_level
 integer omp_get_active_level

external omp_set_default_device
 external omp_get_default_device
 integer omp_get_default_device
 external omp_get_num_devices
 integer omp_get_num_devices
 external omp_get_num_teams
 integer omp_get_num_teams
 external omp_get_team_num
 integer omp_get_team_num

external omp_is_initial_device
logical omp_is_initial_device

external omp_in_final
logical omp_in_final

integer (omp_proc_bind_kind) omp_get_proc_bind
 external omp_get_proc_bind

 external omp_init_lock
 external omp_destroy_lock
 external omp_set_lock
 external omp_unset_lock
 external omp_test_lock
 logical omp_test_lock

 external omp_init_nest_lock
 external omp_destroy_nest_lock
 external omp_set_nest_lock

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

292 OpenMP API • Version 4.0 - July 2013

 external omp_unset_nest_lock
 external omp_test_nest_lock
 integer omp_test_nest_lock

 external omp_get_wtick
 double precision omp_get_wtick
 external omp_get_wtime
 double precision omp_get_wtime

1
2
3
4
5
6
7
8

9

Appendix C Interface Declarations 293

C.3 Example of a Fortran Interface Declaration
module
! the "!" of this comment starts in column 1
!23456

 module omp_lib_kinds
integer, parameter :: omp_lock_kind = selected_int_kind(10)
integer, parameter :: omp_nest_lock_kind = selected_int_kind(10)
integer, parameter :: omp_sched_kind = selected_int_kind(8)
integer(kind=omp_sched_kind), parameter ::

 & omp_sched_static = 1
 integer(kind=omp_sched_kind), parameter ::
 & omp_sched_dynamic = 2
 integer(kind=omp_sched_kind), parameter ::
 & omp_sched_guided = 3
 integer(kind=omp_sched_kind), parameter ::
 & omp_sched_auto = 4

integer, parameter :: omp_proc_bind_kind = selected_int_kind(8)
 integer (kind=omp_proc_bind_kind), parameter ::
 & omp_proc_bind_false = 0
 integer (kind=omp_proc_bind_kind), parameter ::
 & omp_proc_bind_true = 1
 integer (kind=omp_proc_bind_kind), parameter ::
 & omp_proc_bind_master = 2
 integer (kind=omp_proc_bind_kind), parameter ::
 & omp_proc_bind_close = 3
 integer (kind=omp_proc_bind_kind), parameter ::
 & omp_proc_bind_spread = 4
 end module omp_lib_kinds

 module omp_lib

 use omp_lib_kinds
! OpenMP API v4.0
 integer, parameter :: openmp_version = 201307

interface

 subroutine omp_set_num_threads (number_of_threads_expr)
 integer, intent(in) :: number_of_threads_expr
 end subroutine omp_set_num_threads

 function omp_get_num_threads ()
 integer :: omp_get_num_threads
 end function omp_get_num_threads

 function omp_get_max_threads ()
 integer :: omp_get_max_threads
 end function omp_get_max_threads

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

294 OpenMP API • Version 4.0 - July 2013

 function omp_get_thread_num ()
 integer :: omp_get_thread_num
 end function omp_get_thread_num

 function omp_get_num_procs ()
 integer :: omp_get_num_procs
 end function omp_get_num_procs

 function omp_in_parallel ()
 logical :: omp_in_parallel
 end function omp_in_parallel

 subroutine omp_set_dynamic (enable_expr)
 logical, intent(in) ::enable_expr
 end subroutine omp_set_dynamic

 function omp_get_dynamic ()
 logical :: omp_get_dynamic
 end function omp_get_dynamic

function omp_get_cancellation ()
 integer :: omp_get_cancellation
 end function omp_get_cancellation

 subroutine omp_set_nested (enable_expr)
 logical, intent(in) :: enable_expr
 end subroutine omp_set_nested

 function omp_get_nested ()
 logical :: omp_get_nested
 end function omp_get_nested

 subroutine omp_set_schedule (kind, modifier)
 use omp_lib_kinds
 integer(kind=omp_sched_kind), intent(in) :: kind
 integer, intent(in) :: modifier
 end subroutine omp_set_schedule

 subroutine omp_get_schedule (kind, modifier)
 use omp_lib_kinds
 integer(kind=omp_sched_kind), intent(out) :: kind
 integer, intent(out)::modifier
 end subroutine omp_get_schedule

 function omp_get_thread_limit()
 integer :: omp_get_thread_limit
 end function omp_get_thread_limit

 subroutine omp_set_max_active_levels(var)
 integer, intent(in) :: var
 end subroutine omp_set_max_active_levels

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix C Interface Declarations 295

 function omp_get_max_active_levels()
 integer :: omp_get_max_active_levels
 end function omp_get_max_active_levels

 function omp_get_level()
 integer :: omp_get_level
 end function omp_get_level

 function omp_get_ancestor_thread_num(level)
integer, intent(in) :: level

 integer :: omp_get_ancestor_thread_num
 end function omp_get_ancestor_thread_num

 function omp_get_team_size(level)
 integer, intent(in) :: level
 integer :: omp_get_team_size
 end function omp_get_team_size

 function omp_get_active_level()
 integer :: omp_get_active_level
 end function omp_get_active_level

function omp_in_final()
logical omp_in_final

end function omp_in_final

function omp_get_proc_bind()
 include 'omp_lib_kinds.h'
 integer (kind=omp_proc_bind_kind) omp_get_proc_bind
 omp_get_proc_bind = omp_proc_bind_false
 end function omp_get_proc_bind

subroutine omp_set_default_device (device_num)
 integer :: device_num
 end subroutine omp_set_default_device

 function omp_get_default_device ()
 integer :: omp_get_default_device
 end function omp_get_default_device

 function omp_get_num_devices ()
 integer :: omp_get_num_devices
 end function omp_get_num_devices

 function omp_get_num_teams ()
 integer :: omp_get_num_teams
 end function omp_get_num_teams

 function omp_get_team_num ()
 integer :: omp_get_team_num
 end function omp_get_team_num

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

296 OpenMP API • Version 4.0 - July 2013

function omp_is_initial_device ()
logical :: omp_is_initial_device

end function omp_is_initial_device

 subroutine omp_init_lock (var)
 use omp_lib_kinds
 integer (kind=omp_lock_kind), intent(out) :: var
 end subroutine omp_init_lock

 subroutine omp_destroy_lock (var)
 use omp_lib_kinds
 integer (kind=omp_lock_kind), intent(inout) :: var
 end subroutine omp_destroy_lock

 subroutine omp_set_lock (var)
 use omp_lib_kinds
 integer (kind=omp_lock_kind), intent(inout) :: var
 end subroutine omp_set_lock

 subroutine omp_unset_lock (var)
 use omp_lib_kinds
 integer (kind=omp_lock_kind), intent(inout) :: var
 end subroutine omp_unset_lock

 function omp_test_lock (var)
 use omp_lib_kinds
 logical :: omp_test_lock
 integer (kind=omp_lock_kind), intent(inout) :: var
 end function omp_test_lock

 subroutine omp_init_nest_lock (var)
 use omp_lib_kinds
 integer (kind=omp_nest_lock_kind), intent(out) :: var
 end subroutine omp_init_nest_lock

 subroutine omp_destroy_nest_lock (var)
 use omp_lib_kinds
 integer (kind=omp_nest_lock_kind), intent(inout) :: var
 end subroutine omp_destroy_nest_lock

 subroutine omp_set_nest_lock (var)
 use omp_lib_kinds
 integer (kind=omp_nest_lock_kind), intent(inout) :: var
 end subroutine omp_set_nest_lock

 subroutine omp_unset_nest_lock (var)
 use omp_lib_kinds
 integer (kind=omp_nest_lock_kind), intent(inout) :: var
 end subroutine omp_unset_nest_lock

 function omp_test_nest_lock (var)
 use omp_lib_kinds
 integer :: omp_test_nest_lock
 integer (kind=omp_nest_lock_kind), intent(inout) :: var

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Appendix C Interface Declarations 297

 end function omp_test_nest_lock

 function omp_get_wtick ()
 double precision :: omp_get_wtick
 end function omp_get_wtick

 function omp_get_wtime ()
 double precision :: omp_get_wtime
 end function omp_get_wtime

 end interface

 end module omp_lib

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

298 OpenMP API • Version 4.0 - July 2013

C.4 Example of a Generic Interface for a Library
Routine
Any of the OpenMP runtime library routines that take an argument may be extended
with a generic interface so arguments of different KIND type can be accommodated.

The OMP_SET_NUM_THREADS interface could be specified in the omp_lib module
as follows:

 interface omp_set_num_threads

 subroutine omp_set_num_threads_4(number_of_threads_expr)
 use omp_lib_kinds
 integer(4), intent(in) :: number_of_threads_expr
 end subroutine omp_set_num_threads_4

 subroutine omp_set_num_threads_8(number_of_threads_expr)
 use omp_lib_kinds
 integer(8), intent(in) :: number_of_threads_expr
 end subroutine omp_set_num_threads_8

end interface omp_set_num_threads

1

2

3
4

5
6

7

8

299

APPENDIX D

OpenMP Implementation-
Defined Behaviors

This appendix summarizes the behaviors that are described as implementation defined in
this API. Each behavior is cross-referenced back to its description in the main
specification. An implementation is required to define and document its behavior in
these cases.

• Processor: a hardware unit that is implementation defined (see Section 1.2.1 on page
2).

• Device: an implementation defined logical execution engine (see Section 1.2.1 on
page 2).

• Memory model: the minimum size at which a memory update may also read and
write back adjacent variables that are part of another variable (as array or structure
elements) is implementation defined but is no larger than required by the base
language (see Section 1.4.1 on page 17).

• Memory model: Implementations are allowed to relax the ordering imposed by
implicit flush operations when the result is only visible to programs using non-
sequentially consistent atomic directives (see Section 1.4.4 on page 20).

• Internal control variables: the initial values of dyn-var, nthreads-var, run-sched-var,
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-
levels-var, place-partition-var, and default-device-var are implementation defined
(see Section 2.3.2 on page 36).

• Dynamic adjustment of threads: providing the ability to dynamically adjust the
number of threads is implementation defined . Implementations are allowed to deliver
fewer threads (but at least one) than indicated in Algorithm 2-1 even if dynamic
adjustment is disabled (see Section 2.5.1 on page 47).

• Thread affinity: With T<=P, when T does not divide P evenly, the assignment of the
remaining P-T*S places into subpartitions is implementation defined. With T>P,
when P does not divide T evenly, the assignment of the remaining T-P*S threads into
places is implementation defined. The determination of whether the affinity request

1

2

3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

300 OpenMP API • Version 4.0 - July 2013

can be fulfilled is implementation defined. If not, the number of threads in the team
and their mapping to places become implementation defined (see Section 2.5.2 on
page 49).

• Loop directive: the integer type (or kind, for Fortran) used to compute the iteration
count of a collapsed loop is implementation defined. The effect of the
schedule(runtime) clause when the run-sched-var ICV is set to auto is
implementation defined. See Section 2.7.1 on page 53.

• sections construct: the method of scheduling the structured blocks among threads
in the team is implementation defined (see Section 2.7.2 on page 60).

• single construct: the method of choosing a thread to execute the structured block
is implementation defined (see Section 2.7.3 on page 63)

• simd construct: the integer type (or kind, for Fortran) used to compute the iteration
count for the collapsed loop is implementation defined. The number of iterations that
are executed concurrently at any given time is implementation defined. If the
aligned clause is not specified, the assumed alignment is implementation defined
(see Section 2.8.1 on page 68).

• declare simd construct: if the simdlen clause is not specified, the number of
concurrent arguments for the function is implementation defined. If the aligned
clause is not specified, the assumed alignment is implementation defined (see
Section 2.8.2 on page 72).

• teams construct: the number of teams that are created is implementation defined but
less than or equal to the value of the num_teams clause if specified. The maximum
number of threads participating in the contention group that each team initiates is
implementation defined but less than or equal to the value of the thread_limit
clause if specified (see Section 2.9.5 on page 86).

• If no dist_schedule clause is specified then the schedule for the distribute
construct is implementation defined (see Section 2.9.6 on page 88).

• atomic construct: a compliant implementation may enforce exclusive access
between atomic regions that update different storage locations. The circumstances
under which this occurs are implementation defined. If the storage location
designated by x is not size-aligned (that is, if the byte alignment of x is not a multiple
of the size of x), then the behavior of the atomic region is implementation defined
(see Section 2.12.6 on page 127).

• omp_set_num_threads routine: if the argument is not a positive integer the
behavior is implementation defined (see Section 3.2.1 on page 189).

• omp_set_schedule routine: for implementation specific schedule types, the
values and associated meanings of the second argument are implementation defined.
(see Section 3.2.12 on page 203).

1
2
3

4
5
6
7

8
9

10
11

12
13
14
15
16

17
18
19
20

21
22
23
24
25

26
27

28
29
30
31
32
33

34
35

36
37
38

Appendix D OpenMP Implementation-Defined Behaviors 301

• omp_set_max_active_levels routine: when called from within any explicit
parallel region the binding thread set (and binding region, if required) for the
omp_set_max_active_levels region is implementation defined and the
behavior is implementation defined. If the argument is not a non-negative integer
then the behavior is implementation defined (see Section 3.2.15 on page 207).

• omp_get_max_active_levels routine: when called from within any explicit
parallel region the binding thread set (and binding region, if required) for the
omp_get_max_active_levels region is implementation defined (see
Section 3.2.16 on page 209).

• OMP_SCHEDULE environment variable: if the value of the variable does not
conform to the specified format then the result is implementation defined (see
Section 4.1 on page 238).

• OMP_NUM_THREADS environment variable: if any value of the list specified in the
OMP_NUM_THREADS environment variable leads to a number of threads that is
greater than the implementation can support, or if any value is not a positive integer,
then the result is implementation defined (see Section 4.2 on page 239).

• OMP_PROC_BIND environment variable: if the value is not true, false, or a
comma separated list of master, close, or spread, the behavior is
implementation defined. The behavior is also implementation defined if an initial
thread cannot be bound to the first place in the OpenMP place list (see Section 4.4 on
page 241).

• OMP_DYNAMIC environment variable: if the value is neither true nor false the
behavior is implementation defined (see Section 4.3 on page 240).

• OMP_NESTED environment variable: if the value is neither true nor false the
behavior is implementation defined (see Section on page 241).

• OMP_STACKSIZE environment variable: if the value does not conform to the
specified format or the implementation cannot provide a stack of the specified size
then the behavior is implementation defined (see Section 4.7 on page 244).

• OMP_WAIT_POLICY environment variable: the details of the ACTIVE and
PASSIVE behaviors are implementation defined (see Section 4.8 on page 245).

• OMP_MAX_ACTIVE_LEVELS environment variable: if the value is not a non-
negative integer or is greater than the number of parallel levels an implementation
can support then the behavior is implementation defined (see Section 4.9 on page
245).

• OMP_THREAD_LIMIT environment variable: if the requested value is greater than
the number of threads an implementation can support, or if the value is not a positive
integer, the behavior of the program is implementation defined (see Section 4.10 on
page 246).

• OMP_PLACES environment variable: the meaning of the numbers specified in the
environment variable and how the numbering is done are implementation defined.
The precise definitions of the abstract names are implementation defined. An

1
2
3
4
5

6
7
8
9

10
11
12

13
14
15
16

17
18
19
20
21

22
23

24
25

26
27
28

29
30

31
32
33
34

35
36
37
38

39
40
41

302 OpenMP API • Version 4.0 - July 2013

implementation may add implementation-defined abstract names as appropriate for
the target platform. When creating a place list of n elements by appending the
number n to an abstract name, the determination of which resources to include in the
place list is implementation defined. When requesting more resources than available,
the length of the place list is also implementation defined. The behavior of the
program is implementation defined when the execution environment cannot map a
numerical value (either explicitly defined or implicitly derived from an interval)
within the OMP_PLACES list to a processor on the target platform, or if it maps to an
unavailable processor. The behavior is also implementation defined when the
OMP_PLACES environment variable is defined using an abstract name (see
Section 4.5 on page 241).

• Thread affinity policy: if the affinity request for a parallel construct cannot be
fulfilled, the behavior of the thread affinity policy is implementation defined for that
parallel construct.

Fortran

• threadprivate directive: if the conditions for values of data in the threadprivate
objects of threads (other than an initial thread) to persist between two consecutive
active parallel regions do not all hold, the allocation status of an allocatable variable
in the second region is implementation defined (see Section 2.14.2 on page 150).

• shared clause: passing a shared variable to a non-intrinsic procedure may result in
the value of the shared variable being copied into temporary storage before the
procedure reference, and back out of the temporary storage into the actual argument
storage after the procedure reference. Situations where this occurs other than those
specified are implementation defined (see Section 2.14.3.2 on page 157).

• Runtime library definitions: it is implementation defined whether the include file
omp_lib.h or the module omp_lib (or both) is provided. It is implementation
defined whether any of the OpenMP runtime library routines that take an argument
are extended with a generic interface so arguments of different KIND type can be

Fortran

accommodated (see Section 3.1 on page 188).

1
2
3
4
5
6
7
8
9

10
11

12
13
14

15
16
17
18

19
20
21
22
23

24
25
26
27
28

303

APPENDIX E

Features History

This appendix summarizes the major changes between recent versions of the OpenMP
API since version 2.5.

E.1 Version 3.1 to 4.0 Differences
• Various changes throughout the specification were made to provide initial support of

Fortran 2003 (see Section 1.6 on page 22).

• C/C++ array syntax was extended to support array sections (see Section 2.4 on page
42).

• The proc_bind clause (see Section 2.5.2 on page 49), the OMP_PLACES
environment variable (see Section 4.5 on page 241), and the omp_get_proc_bind
runtime routine (see Section 3.2.22 on page 216) were added to support thread
affinity policies.

• SIMD constructs were added to support SIMD parallelism (see Section 2.8 on page
68).

• Device constructs (see Section 2.9 on page 77), the OMP_DEFAULT_DEVICE
environment variable (see Section 4.13 on page 248), the
omp_set_default_device, omp_get_default_device,
omp_get_num_devices, omp_get_num_teams, omp_get_team_num, and
omp_is_initial_device routines were added to support execution on devices.

• Implementation defined task scheduling points for untied tasks were removed (see
Section 2.11.3 on page 118).

• The depend clause (see Section 2.11.1.1 on page 116) was added to support task
dependences.

• The taskgroup construct (see Section 2.12.5 on page 126) was added to support
more flexible deep task synchronization.

1

2

3
4

5

6
7

8
9

10
11
12
13

14
15

16
17
18
19
20

21
22

23
24

25
26

304 OpenMP API • Version 4.0 - July 2013

• The reduction clause (see Section 2.14.3.6 on page 167) was extended and the
declare reduction construct (see Section 2.15 on page 180) was added to
support user defined reductions.

• The atomic construct (see Section 2.12.6 on page 127) was extended to support
atomic swap with the capture clause, to allow new atomic update and capture
forms, and to support sequentially consistent atomic operations with a new seq_cst
clause.

• The cancel construct (see Section 2.13.1 on page 140), the cancellation
point construct (see Section 2.13.2 on page 143), the omp_get_cancellation
runtime routine (see Section 3.2.9 on page 199) and the OMP_CANCELLATION
environment variable (see Section 4.11 on page 246) were added to support the
concept of cancellation.

• The OMP_DISPLAY_ENV environment variable (see Section 4.12 on page 247) was
added to display the value of ICVs associated with the OpenMP environment
variables.

• Examples (previously Appendix A) were moved to a separate document.

E.2 Version 3.0 to 3.1 Differences
• The final and mergeable clauses (see Section 2.11.1 on page 113) were added to

the task construct to support optimization of task data environments.

• The taskyield construct (see Section 2.11.2 on page 117) was added to allow
user-defined task scheduling points.

• The atomic construct (see Section 2.12.6 on page 127) was extended to include
read, write, and capture forms, and an update clause was added to apply
the already existing form of the atomic construct.

• Data environment restrictions were changed to allow intent(in) and const-
qualified types for the firstprivate clause (see Section 2.14.3.4 on page 162).

• Data environment restrictions were changed to allow Fortran pointers in
firstprivate (see Section 2.14.3.4 on page 162) and lastprivate (see
Section 2.14.3.5 on page 164).

• New reduction operators min and max were added for C and C++

• The nesting restrictions in Section 2.16 on page 186 were clarified to disallow
closely-nested OpenMP regions within an atomic region. This allows an atomic
region to be consistently defined with other OpenMP regions so that they include all
the code in the atomic construct.

• The omp_in_final runtime library routine (see Section 3.2.21 on page 215) was
added to support specialization of final task regions.

1
2
3

4
5
6
7

8
9

10
11
12

13
14
15

16

17

18
19

20
21

22
23
24

25
26

27
28
29

30

31
32
33
34

35
36

Appendix E Features History 305

• The nthreads-var ICV has been modified to be a list of the number of threads to use
at each nested parallel region level. The value of this ICV is still set with the
OMP_NUM_THREADS environment variable (see Section 4.2 on page 239), but the
algorithm for determining the number of threads used in a parallel region has been
modified to handle a list (see Section 2.5.1 on page 47).

• The bind-var ICV has been added, which controls whether or not threads are bound
to processors (see Section 2.3.1 on page 35). The value of this ICV can be set with
the OMP_PROC_BIND environment variable (see Section 4.4 on page 241).

• Descriptions of examples (see Appendix A on page 221) were expanded and clarified.

• Replaced incorrect use of omp_integer_kind in Fortran interfaces (see
Section C.3 on page 293 and Section C.4 on page 298) with
selected_int_kind(8).

E.3 Version 2.5 to 3.0 Differences
The concept of tasks has been added to the OpenMP execution model (see Section 1.2.4
on page 8 and Section 1.3 on page 14).

• The task construct (see Section 2.11 on page 113) has been added, which provides
a mechanism for creating tasks explicitly.

• The taskwait construct (see Section 2.12.4 on page 125) has been added, which
causes a task to wait for all its child tasks to complete.

• The OpenMP memory model now covers atomicity of memory accesses (see
Section 1.4.1 on page 17). The description of the behavior of volatile in terms of
flush was removed.

• In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and
run-sched-var internal control variables (ICVs) for the whole program. In Version
3.0, there is one copy of these ICVs per task (see Section 2.3 on page 34). As a result,
the omp_set_num_threads, omp_set_nested and omp_set_dynamic
runtime library routines now have specified effects when called from inside a
parallel region (see Section 3.2.1 on page 189, Section 3.2.7 on page 197 and
Section 3.2.10 on page 200).

• The definition of active parallel region has been changed: in Version 3.0 a
parallel region is active if it is executed by a team consisting of more than one
thread (see Section 1.2.2 on page 2).

• The rules for determining the number of threads used in a parallel region have
been modified (see Section 2.5.1 on page 47).

• In Version 3.0, the assignment of iterations to threads in a loop construct with a
static schedule kind is deterministic (see Section 2.7.1 on page 53).

1
2
3
4
5

6
7
8

9

10
11
12

13

14
15

16
17

18
19

20
21
22

23
24
25
26
27
28
29

30
31
32

33
34

35
36

306 OpenMP API • Version 4.0 - July 2013

• In Version 3.0, a loop construct may be associated with more than one perfectly
nested loop. The number of associated loops may be controlled by the collapse
clause (see Section 2.7.1 on page 53).

• Random access iterators, and variables of unsigned integer type, may now be used as
loop iterators in loops associated with a loop construct (see Section 2.7.1 on page 53).

• The schedule kind auto has been added, which gives the implementation the
freedom to choose any possible mapping of iterations in a loop construct to threads in
the team (see Section 2.7.1 on page 53).

• Fortran assumed-size arrays now have predetermined data-sharing attributes (see
Section 2.14.1.1 on page 146).

• In Fortran, firstprivate is now permitted as an argument to the default
clause (see Section 2.14.3.1 on page 156).

• For list items in the private clause, implementations are no longer permitted to use
the storage of the original list item to hold the new list item on the master thread. If
no attempt is made to reference the original list item inside the parallel region, its
value is well defined on exit from the parallel region (see Section 2.14.3.3 on
page 159).

• In Version 3.0, Fortran allocatable arrays may appear in private,
firstprivate, lastprivate, reduction, copyin and copyprivate
clauses. (see Section 2.14.2 on page 150, Section 2.14.3.3 on page 159,
Section 2.14.3.4 on page 162, Section 2.14.3.5 on page 164, Section 2.14.3.6 on page
167, Section 2.14.4.1 on page 173 and Section 2.14.4.2 on page 175).

• In Version 3.0, static class members variables may appear in a threadprivate
directive (see Section 2.14.2 on page 150).

• Version 3.0 makes clear where, and with which arguments, constructors and
destructors of private and threadprivate class type variables are called (see
Section 2.14.2 on page 150, Section 2.14.3.3 on page 159, Section 2.14.3.4 on page
162, Section 2.14.4.1 on page 173 and Section 2.14.4.2 on page 175)

• The runtime library routines omp_set_schedule and omp_get_schedule
have been added; these routines respectively set and retrieve the value of the
run-sched-var ICV (see Section 3.2.12 on page 203 and Section 3.2.13 on page 205).

• The thread-limit-var ICV has been added, which controls the maximum number of
threads participating in the OpenMP program. The value of this ICV can be set with
the OMP_THREAD_LIMIT environment variable and retrieved with the
omp_get_thread_limit runtime library routine (see Section 2.3.1 on page 35,
Section 3.2.14 on page 206 and Section 4.10 on page 246).

• The max-active-levels-var ICV has been added, which controls the number of nested
active parallel regions. The value of this ICV can be set with the
OMP_MAX_ACTIVE_LEVELS environment variable and the
omp_set_max_active_levels runtime library routine, and it can be retrieved

1
2
3

4
5

6
7
8

9
10

11
12

13
14
15
16
17

18
19
20
21
22

23
24

25
26
27
28

29
30
31

32
33
34
35
36

37
38
39
40

Appendix E Features History 307

with the omp_get_max_active_levels runtime library routine (see
Section 2.3.1 on page 35, Section 3.2.15 on page 207, Section 3.2.16 on page 209 and
Section 4.9 on page 245).

• The stacksize-var ICV has been added, which controls the stack size for threads that
the OpenMP implementation creates. The value of this ICV can be set with the
OMP_STACKSIZE environment variable (see Section 2.3.1 on page 35 and
Section 4.7 on page 244).

• The wait-policy-var ICV has been added, which controls the desired behavior of
waiting threads. The value of this ICV can be set with the OMP_WAIT_POLICY
environment variable (see Section 2.3.1 on page 35 and Section 4.8 on page 245).

• The omp_get_level runtime library routine has been added, which returns the
number of nested parallel regions enclosing the task that contains the call (see
Section 3.2.17 on page 210).

• The omp_get_ancestor_thread_num runtime library routine has been added,
which returns, for a given nested level of the current thread, the thread number of the
ancestor (see Section 3.2.18 on page 211).

• The omp_get_team_size runtime library routine has been added, which returns,
for a given nested level of the current thread, the size of the thread team to which the
ancestor belongs (see Section 3.2.19 on page 212).

• The omp_get_active_level runtime library routine has been added, which
returns the number of nested, active parallel regions enclosing the task that
contains the call (see Section 3.2.20 on page 214).

• In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page
224).

1
2
3

4
5
6
7

8
9

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24

308 OpenMP API • Version 4.0 - July 2013

 Index 309

Index

Symbols
_OPENMP macro, 2-32

A
array sections, 2-42

atomic, 2-127

atomic construct, 8-300

attributes, data-sharing, 2-146

auto, 2-57

B
barrier, 2-123

C
cancel, 2-140

cancellation constructs
cancel, 2-140
cancellation point, 2-143

cancellation point, 2-143

capture, atomic, 2-127

clauses
collapse, 2-55
copyin, 2-173
copyprivate, 2-175
data-sharing, 2-155
default, 2-156
depend, 2-116
firstprivate, 2-162
lastprivate, 2-164
map, 2-177
private, 2-159
reduction, 2-167

schedule, 2-56
shared, 2-157

collapse, 2-55

compliance, 1-21

conditional compilation, 2-32

constructs
atomic, 2-127
barrier, 2-123
cancel, 2-140
cancellation point, 2-143
critical, 2-122
declare simd, 2-72
declare target, 2-83
distribute, 2-88
distribute parallel do, 2-92
distribute parallel do simd, 2-94
distribute parallel for, 2-92
distribute parallel for simd, 2-94
distribute parallel loop, 2-92
distribute simd, 2-91
do, Fortran, 2-54
flush, 2-134
for, C/C++, 2-54
loop, 2-53
Loop SIMD, 2-76
master, 2-120
ordered, 2-138
parallel, 2-44
parallel for, C/C++, 2-95
parallel sections, 2-97
parallel workshare, Fortran, 2-99
sections, 2-60
simd, 2-68

Index-310 OpenMP API • Version 4.0 - July 2013

single, 2-63
target, 2-79
target data, 2-77
target teams, 2-101
target teams distribute, 2-102, 2-105
target update, 2-81
task, 2-113
taskgroup, 2-126
taskwait, 2-125
taskyield, 2-117
teams, 2-86
teams distribute, 2-102
workshare, 2-65
worksharing, 2-53

copyin, 2-173

copyprivate, 2-175

critical, 2-122

D
data sharing, 2-146

data-sharing clauses, 2-155

declare reduction, 2-180

declare simd construct, 2-72

declare target, 2-83

default, 2-156

depend, 2-116

device constructs
declare target, 2-83
distribute, 2-88
target, 2-79
target data, 2-77
target update, 2-81
teams, 2-86

device data environments, 1-18

directives, 2-25
format, 2-26
threadprivate, 2-150
see also constructs

distribute, 2-88

distribute parallel do, 2-92

distribute parallel do simd, 2-94

distribute parallel for, 2-92

distribute parallel for simd, 2-94

distribute simd, 2-91

do simd, 2-76

do, Fortran, 2-54

dynamic, 2-57

dynamic thread adjustment, 8-299

E
environment variables, 4-237

modifying ICV’s, 2-36
OMP_CANCELLATION, 4-246
OMP_DEFAULT_DEVICE, 4-248
OMP_DISPLAY_ENV, 4-247
OMP_DYNAMIC, 4-240
OMP_MAX_ACTIVE_LEVELS, 4-245
OMP_NESTED, 4-243
OMP_NUM_THREADS, 4-239
OMP_SCHEDULE, 4-238
OMP_STACKSIZE, 4-244
OMP_THREAD_LIMIT, 4-246
OMP_WAIT_POLICY, 4-245

execution model, 1-14

F
firstprivate, 2-162

flush, 2-134

flush operation, 1-19

for simd, 2-76

for, C/C++, 2-54

G
glossary, 1-2

grammar rules, 6-266

guided, 2-57

H
header files, 3-188, 7-287

I
ICVs (internal control variables), 2-34

implementation, 8-299

include files, 3-188, 7-287

internal control variables, 8-299

internal control variables (ICVs), 2-34

L
lastprivate, 2-164

loop directive, 8-300

loop SIMD construct, 2-76

Index-311

loop, scheduling, 2-59

M
map, 2-177

master, 2-120

memory model, 1-17, 8-299

model
execution, 1-14
memory, 1-17

N
nested parallelism, 1-15, 2-34, 3-200

nesting, 2-186

number of threads, 2-47

O
OMP_CANCELLATION, 4-246

OMP_DEFAULT_DEVICE, 4-248

omp_destroy_lock, 3-227

omp_destroy_nest_lock, 3-227

OMP_DISPLAY_ENV, 4-247

OMP_DYNAMIC, 4-240, 8-301

omp_get_active_level, 3-214

omp_get_ancestor_thread_num, 3-211

omp_get_cancellation, 3-199

omp_get_default_device, 3-219

omp_get_dynamic, 3-198

omp_get_level, 3-210

omp_get_max_active_levels, 3-209, 8-301

omp_get_max_threads, 3-192

omp_get_nested, 3-201

omp_get_num_devices, 3-220

omp_get_num_procs, 3-195

omp_get_num_teams, 3-221

omp_get_num_threads, 3-191

omp_get_proc_bind, 3-216

omp_get_schedule, 3-205

omp_get_team_num, 3-222

omp_get_team_size, 3-212

omp_get_thread_limit, 3-206

omp_get_thread_num, 3-193

omp_get_wtick, 3-234

omp_get_wtime, 3-233

omp_in_final, 3-215

omp_in_parallel, 3-196

omp_init_lock, 3-226

omp_init_nest_lock, 3-226

omp_is_initial_device, 3-223

omp_lock_kind, 3-225

omp_lock_t, 3-225

OMP_MAX_ACTIVE_LEVELS, 4-245, 8-301

omp_nest_lock_kind, 3-225

omp_nest_lock_t, 3-225

OMP_NESTED, 4-243, 8-301

OMP_NUM_THREADS, 4-239, 8-301

OMP_PLACES, 4-241, 8-301

OMP_PROC_BIND, 8-301

OMP_SCHEDULE, 4-238, 8-301

omp_set_default_device, 3-218

omp_set_dynamic, 3-197

omp_set_lock, 3-228

omp_set_max_active_levels, 3-207, 8-301

omp_set_nest_lock, 3-228

omp_set_nested, 3-200

omp_set_num_threads, 3-189, 8-300

omp_set_schedule, 3-203, 8-300

OMP_STACKSIZE, 4-244, 8-301

omp_test_lock, 3-231

omp_test_nest_lock, 3-231

OMP_THREAD_LIMIT, 4-246, 8-301

omp_unset_lock, 3-229

omp_unset_nest_lock, 3-229

OMP_WAIT_POLICY, 4-245, 8-301

OpenMP
compliance, 1-21
features history, 9-303
implementation, 8-299

ordered, 2-138

P
parallel, 2-44

parallel do, 2-96

parallel do simd, 2-100

parallel for simd, 2-100

parallel for, C/C++, 2-95

parallel loop SIMD construct, 2-100

parallel sections, 2-97

parallel workshare, Fortran, 2-99

Index-312 OpenMP API • Version 4.0 - July 2013

pragmas
see constructs

private, 2-159

R
read, atomic, 2-127

reduction, 2-167

references, 1-22

regions, nesting, 2-186

runtime, 2-58

runtime library
interfaces and prototypes, 3-188

runtime library definitions, 8-302

S
schedule, 2-56

scheduling
loop, 2-59
tasks, 2-118

sections, 2-60

sections construct, 8-300

shared, 2-157

shared clause, 8-302

simd, 2-68

simd construct, 2-68

SIMD lanes, 1-15

SIMD loop, 2-68

SIMD loop construct, 2-76

SIMD parallel loop construct, 2-100

single, 2-63

single construct, 8-300

static, 2-57

stubs for runtime library routines
C/C++, 5-250
Fortran, 5-257

synchronization, locks
constructs, 2-120
routines, 3-224

T
target, 2-79

target data, 2-77

target teams, 2-101

target teams distribute, 2-102, 2-105

target update, 2-81

task
scheduling, 2-118

task, 2-113

taskgroup, 2-126

tasking, 2-113

taskwait, 2-125

taskyield, 2-117

teams, 2-86

teams distribute, 2-102

terminology, 1-2

thread affinity policy, 8-302

threadprivate, 2-150, 8-302

timer, 3-233

timing routines, 3-233

U
update, atomic, 2-127

V
variables, environment, 4-237

W
wall clock timer, 3-233

website
www.openmp.org

workshare, 2-65

worksharing
constructs, 2-53
parallel, 2-95
scheduling, 2-59

write, atomic, 2-127

	Introduction
	1.1 Scope
	1.2 Glossary
	1.2.1 Threading Concepts
	1.2.2 OpenMP Language Terminology
	1.2.3 Synchronization Terminology
	1.2.4 Tasking Terminology
	1.2.5 Data Terminology
	1.2.6 Implementation Terminology

	1.3 Execution Model
	1.4 Memory Model
	1.4.1 Structure of the OpenMP Memory Model
	1.4.2 Device Data Environments
	1.4.3 The Flush Operation
	1.4.4 OpenMP Memory Consistency

	1.5 OpenMP Compliance
	1.6 Normative References
	1.7 Organization of this document

	Directives
	2.1 Directive Format
	2.1.1 Fixed Source Form Directives
	2.1.2 Free Source Form Directives
	2.1.3 Stand-Alone Directives

	2.2 Conditional Compilation
	2.2.1 Fixed Source Form Conditional Compilation Sentinels
	2.2.2 Free Source Form Conditional Compilation Sentinel

	2.3 Internal Control Variables
	2.3.1 ICV Descriptions
	2.3.2 ICV Initialization
	2.3.3 Modifying and Retrieving ICV Values
	2.3.4 How ICVs are Scoped
	2.3.4.1 How the Per-Data Environment ICVs Work

	2.3.5 ICV Override Relationships

	2.4 Array Sections
	2.5 parallel Construct
	2.5.1 Determining the Number of Threads for a parallel Region
	2.5.2 Controlling OpenMP Thread Affinity

	2.6 Canonical Loop Form
	2.7 Worksharing Constructs
	2.7.1 Loop Construct
	2.7.1.1 Determining the Schedule of a Worksharing Loop

	2.7.2 sections Construct
	2.7.3 single Construct
	2.7.4 workshare Construct

	2.8 SIMD Constructs
	2.8.1 simd construct
	2.8.2 declare simd construct
	2.8.3 Loop SIMD construct

	2.9 Device Constructs
	2.9.1 target data Construct
	2.9.2 target Construct
	2.9.3 target update Construct
	2.9.4 declare target Directive
	2.9.5 teams Construct
	2.9.6 distribute Construct
	2.9.7 distribute simd Construct
	2.9.8 Distribute Parallel Loop Construct
	2.9.9 Distribute Parallel Loop SIMD Construct

	2.10 Combined Constructs
	2.10.1 Parallel Loop Construct
	2.10.2 parallel sections Construct
	2.10.3 parallel workshare Construct
	2.10.4 Parallel Loop SIMD Construct
	2.10.5 target teams construct
	2.10.6 teams distribute Construct
	2.10.7 teams distribute simd Construct
	2.10.8 target teams distribute Construct
	2.10.9 target teams distribute simd Construct
	2.10.10 Teams Distribute Parallel Loop Construct
	2.10.11 Target Teams Distribute Parallel Loop Construct
	2.10.12 Teams Distribute Parallel Loop SIMD Construct
	2.10.13 Target Teams Distribute Parallel Loop SIMD Construct

	2.11 Tasking Constructs
	2.11.1 task Construct
	2.11.1.1 depend Clause

	2.11.2 taskyield Construct
	2.11.3 Task Scheduling

	2.12 Master and Synchronization Constructs
	2.12.1 master Construct
	2.12.2 critical Construct
	2.12.3 barrier Construct
	2.12.4 taskwait Construct
	2.12.5 taskgroup Construct
	2.12.6 atomic Construct
	2.12.7 flush Construct
	2.12.8 ordered Construct

	2.13 Cancellation Constructs
	2.13.1 cancel Construct
	2.13.2 cancellation point Construct

	2.14 Data Environment
	2.14.1 Data-sharing Attribute Rules
	2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in a Construct
	2.14.1.2 Data-sharing Attribute Rules for Variables Referenced in a Region but not in a Construct

	2.14.2 threadprivate Directive
	2.14.3 Data-Sharing Attribute Clauses
	2.14.3.1 default clause
	2.14.3.2 shared clause
	2.14.3.3 private clause
	2.14.3.4 firstprivate clause
	2.14.3.5 lastprivate clause
	2.14.3.6 reduction clause
	2.14.3.7 linear clause

	2.14.4 Data Copying Clauses
	2.14.4.1 copyin clause
	2.14.4.2 copyprivate clause

	2.14.5 map Clause

	2.15 declare reduction Directive
	2.16 Nesting of Regions

	Runtime Library Routines
	3.1 Runtime Library Definitions
	3.2 Execution Environment Routines
	3.2.1 omp_set_num_threads
	3.2.2 omp_get_num_threads
	3.2.3 omp_get_max_threads
	3.2.4 omp_get_thread_num
	3.2.5 omp_get_num_procs
	3.2.6 omp_in_parallel
	3.2.7 omp_set_dynamic
	3.2.8 omp_get_dynamic
	3.2.9 omp_get_cancellation
	3.2.10 omp_set_nested
	3.2.11 omp_get_nested
	3.2.12 omp_set_schedule
	3.2.13 omp_get_schedule
	3.2.14 omp_get_thread_limit
	3.2.15 omp_set_max_active_levels
	3.2.16 omp_get_max_active_levels
	3.2.17 omp_get_level
	3.2.18 omp_get_ancestor_thread_num
	3.2.19 omp_get_team_size
	3.2.20 omp_get_active_level
	3.2.21 omp_in_final
	3.2.22 omp_get_proc_bind
	3.2.23 omp_set_default_device
	3.2.24 omp_get_default_device
	3.2.25 omp_get_num_devices
	3.2.26 omp_get_num_teams
	3.2.27 omp_get_team_num
	3.2.28 omp_is_initial_device

	3.3 Lock Routines
	3.3.1 omp_init_lock and omp_init_nest_lock
	3.3.2 omp_destroy_lock and omp_destroy_nest_lock
	3.3.3 omp_set_lock and omp_set_nest_lock
	3.3.4 omp_unset_lock and omp_unset_nest_lock
	3.3.5 omp_test_lock and omp_test_nest_lock

	3.4 Timing Routines
	3.4.1 omp_get_wtime
	3.4.2 omp_get_wtick

	Environment Variables
	4.1 OMP_SCHEDULE
	4.2 OMP_NUM_THREADS
	4.3 OMP_DYNAMIC
	4.4 OMP_PROC_BIND
	4.5 OMP_PLACES
	4.6 OMP_NESTED
	4.7 OMP_STACKSIZE
	4.8 OMP_WAIT_POLICY
	4.9 OMP_MAX_ACTIVE_LEVELS
	4.10 OMP_THREAD_LIMIT
	4.11 OMP_CANCELLATION
	4.12 OMP_DISPLAY_ENV
	4.13 OMP_DEFAULT_DEVICE

	Stubs for Runtime Library Routines
	A.1 C/C++ Stub Routines
	A.2 Fortran Stub Routines

	OpenMP C and C++ Grammar
	B.1 Notation
	B.2 Rules

	Interface Declarations
	C.1 Example of the omp.h Header File
	C.2 Example of an Interface Declaration include File
	C.3 Example of a Fortran Interface Declaration module
	C.4 Example of a Generic Interface for a Library Routine

	OpenMP Implementation- Defined Behaviors
	Features History
	E.1 Version 3.1 to 4.0 Differences
	E.2 Version 3.0 to 3.1 Differences
	E.3 Version 2.5 to 3.0 Differences

	Index

