
Multi-Core Processors : Intel TBB 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

An Overview of Intel Thread Building Blocks (TBB)

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Intel TBB 2 C-DAC hyPACK-2013

 Why Thread Building Blocks (TBB) ?

 Summary of high-level templates Loops - Loop Parallelization

 Algorithms templates – Intel TBB

 Memory Allocation – TBB – Performance Issues

 TBB Task Scheduler – Speed-Up issues

 TBB Application Perspective

Lecture Outline

Following topics will be discussed

An Overview of Intel Thread Building Blocks

Multi-Core Processors : Intel TBB 3 C-DAC hyPACK-2013

Intel TBB

 Part II

Multi-Core Processors : Intel TBB 4 C-DAC hyPACK-2013

Parallel Code Block or a

section needs multithread

synchronization

. . .

 .

 .

 .

 .

 .

 .

Parallel Code Block

Implementation Source Code

Perform synchronization

operations using parallel

constructs Bi

Perform synchronization

operations using parallel

constructs Bj

T1 T2 Tn
. . .

T1
T2 Tn . . .

T1 …. p

Operational Flow of Threads

Background : Operational Flow of Threads for an Application

Source : http://www.intel.com ; Reference : [6]

http://www.intel.com/

Multi-Core Processors : Intel TBB 5 C-DAC hyPACK-2013

A) Single Core

B) Multiprocessor CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic
CPU State

Interrupt Logic

Cache Execution
Units

CPU State

Interrupt Logic

Cache Execution
Units

C) Hyper-Threading Technology
d) Multi-core

Simple Comparison of Single-core, Multi-
processor, and Multi-core Architectures

CPU State

Interrupt Logic

Execution
Units Cache

B) Multi Processor

CPU State

Interrupt Logic

Execution
Units

Cache

Source : http://www.intel.com ; Reference : [6], [29], [31]

CPU State

Interrupt Logic

Execution Units

CPU State

Interrupt Logic

Execution Units

Cache

E) Multi-core with
Shared Cache

CPU State

Interrupt Logic

CPU State

Interrupt Logic

Execution
Units

Cache

CPU State

Interrupt Logic

CPU State

Interrupt Logic

Execution
Units

Cache

F) Multi-core with Hyper-threading Technology

http://www.intel.com/

Multi-Core Processors : Intel TBB 6 C-DAC hyPACK-2013

 Out of Order Execution

 Pre-emptive and Co-operative Multitasking

 SMP to the rescue

 Super threading with Multi threaded Processor

 Hyper threading the next step (Implementation)

 Multitasking

 Caching and SMT

Multi Core : Programming Issues

Multi-Core Processors : Intel TBB 7 C-DAC hyPACK-2013

Application Perspective

 Part II

Multi-Core Processors : Intel TBB 8 C-DAC hyPACK-2013

Issues to be Addressed

Bigger OR Smaller Cores

Performance OR Scalability

Compute OR I/O Intensive

Cache Friendly OR Memory Intensive

Multi Cores - Unique Challenges

Source : http://www.intel.com ; Reference : [6]

TBB can be targeted for ease of development

http://www.intel.com/

Multi-Core Processors : Intel TBB 9 C-DAC hyPACK-2013

Use of TBB : Several Class of Applications

 Video : Body Tracking and Ray-Tracing

 Search for Video based imaging & Creation of Videos with

animation

 Games / Interactive 3D simulation
•

 Real-time realistic 3D Visualization of body systems

 Wall Street Financial Analysis; Business: Data Mining –

Security: Real Time Video surveillance Astrophysics,

 BioInformatics – Pattern Search Algorithms

 Emerging “Killer Apps of Tomorrow”

Parallel Algorithms Design

Multi-Core Processors : Intel TBB 10 C-DAC hyPACK-2013

FIMI PDE NLP

Level Set

Computer

Vision
Physical

Simulation
(Financial)

Analytics Data Mining

Particle

Filtering

SVM

Classification

SVM

Training
IPM

(LP, QP)

Fast Marching

Method

K-Means

Index

Bench Monte Carlo

Body

Tracking
Face

Detection
CFD

Face,

Cloth

Rigid

Body
Portfolio

Mgmt

Option

Pricing

Cluster/

Classify

Text

Index

Basic matrix primitives

(dense/sparse, structured/unstructured)

Basic Iterative

Solver

(Jacobi, GS, SOR)

Direct Solver

(Cholesky)

Krylov Iterative

Solvers (PCG)

Rendering

Global

Illumination

Collision

detection
LCP

Media

Synthesis

Machine

learning

Filter/

transform

Basic geometry primitives

(partitioning structures, primitive tests)

Non-Convex

Method

Source : Intel

TBB: Application – Algorithm Kernels

Multi-Core Processors : Intel TBB 11 C-DAC hyPACK-2013

Example : Implementation of Streaming Media Player on Multi-Core

 One decomposition of work using Multi-threads

 It consists of

 A thread Monitoring a network port for arriving data,

 A decompressor thread for decompressing packets

 Generating frames in a video sequence

 A rendering thread that displays frame at programmed intervals

Programming Aspects Examples

Source : Reference : [4]

TBB : Other Issues to be addressed

Multi-Core Processors : Intel TBB 12 C-DAC hyPACK-2013

Example : Implementation of Streaming Media Player on Multi-Core

 The thread must communicate via shared buffers –

 an in-buffer between the network and decompressor,

 an out-buffer between the decompressor and renderer

 It consists of

 Listen to port ……..Gather data from the network

 Thread generates frames with random bytes (Random string of

specific bytes)

 Render threads pick-up frames & from the out-buffer and calls the

display function

 Implement using the Thread Condition Variables

Programming Aspects Examples

Multi-Core Processors : Intel TBB 13 C-DAC hyPACK-2013

Workload convergence
The basic algorithms shared by these high-end workloads

Platform implications
How workload analysis guides future architectures

Programmer productivity
Optimized architectures will ease the development of

software

Call to Action
Benchmark suites in critical need for redress

Killer Apps of Tomorrow

TBB: Application-Driven Architectures:Analyzing Workloads

Multi-Core Processors : Intel TBB 14 C-DAC hyPACK-2013

Benefits

 Easy way to express parallelism in a C++ Program

 Library that helps to you leverage Multi-core processor

performance

 No need of having threading expert for parallelisztion

 High Level, tasks-based paralleism - for Performance and

Scalability

Why Threading Building Blocks ?

Multi-Core Processors : Intel TBB 15 C-DAC hyPACK-2013

TBB : Algorithms - Templates

 Part III

Multi-Core Processors : Intel TBB 16 C-DAC hyPACK-2013

Benefits

 Provides rich set of templates

 Templates and C++ concept of generic

programming (C++ Standard Template Library

(STL)

 Doe not require special language or compilers

 Ability to use Threading Building Blocks – any

processor with any C++ Complier

 Promote Scalable Data Parallelism

Threading Building Blocks – Overview

Multi-Core Processors : Intel TBB 17 C-DAC hyPACK-2013

Benefits

 Scalability

 Data Parallel Programming – Applications

 Take advantage of all cores on Multi core

Processor

 Specify Tasks instead of Threads

 Runtime library

 Automatically schedules tasks onto threads

 Makes use of efficient processor resources

 Load balancing many tasks

Threading Building Blocks – Overview

Multi-Core Processors : Intel TBB 18 C-DAC hyPACK-2013

Benefits

 Task Scheduling

 To use TBB library, you specify tasks, not threads

 Library maps tasks onto threads in an efficient manner

• Writing Parallel_for loop – tedious using threading

packages

• Scalable program – harder ; No benefits in

Performance

 Templates can give a creditable idea of performance

with respect to problem size as the number of core

increases

Threading Building Blocks - Overview

Multi-Core Processors : Intel TBB 19 C-DAC hyPACK-2013

Benefits

 Better portability

 Easier programming,

 More understandable source code,

 Scalability and Performance – can be predicted

 Avoid programming in a raw native thread model

Remarks :

 Programming in assembly language of parallel programming -

 An alternative use of raw threads.

 Maximum flexibility – Costs are very high

Thread Building Blocks – Overview

Multi-Core Processors : Intel TBB 20 C-DAC hyPACK-2013

Summary

 TBB enables developer to specify tasks instead of threads

 TBB targets threading for performance on Multi-cores

 TBB Compatible with other threading packages

 TBB emphasizes scalable, data-parallel programming

 Link libraries such as Intel's Math Kernel Library (MKL) and

Integrated Performance Primitives (IPP) library are implemented

internally using OpenMP.

 You can freely link a program using Threading Building

Blocks with the Intel MKL or Intel IPP library.

Threading Building Blocks – Overview

Multi-Core Processors : Intel TBB 21 C-DAC hyPACK-2013

Issues to be Addressed

 TBB enables developer to specify tasks instead of threads

 TBB targets threading for performance on Multi-cores

 TBB Compatible with other threading packages

 TBB emphasizes scalable, data-parallel programming

 Link libraries such as Intel's Math Kernel Library (MKL) and

Integrated Performance Primitives (IPP) library are implemented

internally using OpenMP.

 You can freely link a program using Threading Building

Blocks with the Intel MKL or Intel IPP library.

Threading Building Blocks – Overview

Multi-Core Processors : Intel TBB 22 C-DAC hyPACK-2013

 Static Load Balancing

Mapping for load balancing

Minimizing Interaction

 Data Sharing Overheads

 Dynamic Load Balancing

Overheads in parallel algorithms design

 Application Perspective - Parallel

Algorithms Design -TBB

How TBB can hide several task Scheduling events ?

Multi-Core Processors : Intel TBB 23 C-DAC hyPACK-2013

 Maximize data locality

 Minimize volume of data

 Minimize frequency of Interactions

 Overlapping computations with interactions.

 Data replication

 Minimize construction and Hot spots.

 Use highly optimized collective interaction operations.

• Collective data transfers and computations


 Maximize Concurrency.

How TBB can hide several task Scheduling events ?

 Application Perspective - Parallel

Algorithms Design -TBB

Multi-Core Processors : Intel TBB 24 C-DAC hyPACK-2013

Types of Parallelism :

 Data parallelism and Task parallelism

 Combination of Data & Task parallelism

 Stream parallelism

 Types of Parallelism

TBB : Other Issues to be addressed

Multi-Core Processors : Intel TBB 25 C-DAC hyPACK-2013

 Initializing and Terminating the Library

 Loop Paralleization

 Parallel_for, Parallel_reduce, Parallel_scan

(Grain size, Interval, Workload for iteration, Time

Taken)

 Automatic Grain Size (Not easy) – Performance

Issues

 Recursive Range Specifications (block_range),

Partitioning

TBB templates

Multi-Core Processors : Intel TBB 26 C-DAC hyPACK-2013

 parallel_while

 Use of an unstructured stream or pile of work.

Offers the ability to add additional work to the file

running

 pipeline (Throughput of pipeline)

 Parallel_sort

 Algorithm complexity

 Parallel algorithms for Streams

TBB templates- Advanced Algorithms

Multi-Core Processors : Intel TBB 27 C-DAC hyPACK-2013

 Containers

 TBB provides highly concurrent containers that permit

multiple threads to invoke a method simultaneously on the

same container.

• Concurrent queue, vector, and hash map are provided.

 These can be used with the library, OpenMP, or raw threads

 Remark : Highly concurrent containers are very important because

STL containers generally are not concurrent friendly.

 TBB provides Fine-grain locking and Lock free algorithm

 Algorithm complexity

 Parallel algorithms for Streams

TBB templates- Advanced Algorithms

Multi-Core Processors : Intel TBB 28 C-DAC hyPACK-2013

 Problems in Memory Allocation

 Each Competes for global lock for each allocation

and deallocation from a single global heap

 False Sharing

 TBB offers two memory allocators

 Scalable_allocator

 Cache_aligned_allocator

 Memory Consistency and Fence

 TBB provides atomic Templates

TBB Scalable Memory Allocation

Multi-Core Processors : Intel TBB 29 C-DAC hyPACK-2013

 TBB - Mutex

 Mutual exclusion will be in terms of tasks. Mutual

exclusion of tasks will lead to mutual exclusion of the

corresponding threads upon which TBB maps

defined tasks.

 When to Use Mutual Exclusion (To prevent race

conditions and other non-deterministic and

undesirable behavior of tasks)

 Mutex behavior

 TBB provides a thread-safe and portable method to

compute elapsed time

 tick_count Class

TBB Mutual Exclusion / Time

Multi-Core Processors : Intel TBB 30 C-DAC hyPACK-2013

 TBB - Task-based programming can improve the

performance

 Task Scheduler manages a thread pool and hides

complexity which is much better than Raw Native

Threads

 OverSubscription – Getting the number of threads

right is difficult

 Fair Scheduling – OS uses; round-robin fashion

 Load imbalance can be handled easily comparison to

thread-based programming

 Portability – TBB interfaces

TBB Task Scheduler

Multi-Core Processors : Intel TBB 31 C-DAC hyPACK-2013

 An Overview of TBB on Multi Cores is discussed

 TBB algorithm templates can be used

 TBB memory allocator may help to reduce the memory overheads

 TBB can improve the performance for certain class of applications on

2/4/8/24 cores

 TBB Codes can be plugged with different libraries (Use only thread-

safe libraries in your TBB application)

 Intel Tools can be used for debugging the TBB application.

 TBB can be used for several Data Parallel Applications.

Intel TBB conclusions

Multi-Core Processors : Intel TBB 32 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Intel TBB 33 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Intel TBB 34 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 35 C-DAC hyPACK-2013

 Thank You
 Any questions ?

