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 Why Thread Building Blocks (TBB) ? 

 Summary of high-level templates Loops - Loop Parallelization  

 Algorithms templates – Intel TBB  

 Memory Allocation – TBB – Performance Issues 

 TBB Task Scheduler – Speed-Up issues 

 TBB Application Perspective 

Lecture Outline  

Following topics will be discussed 

An Overview of Intel Thread Building Blocks    
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Intel TBB    

  Part II  
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Operational Flow of Threads 

Background : Operational Flow of Threads for an Application 

Source : http://www.intel.com ; Reference : [6]  

http://www.intel.com/
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A) Single Core 

B) Multiprocessor CPU State 
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C) Hyper-Threading Technology 
d) Multi-core 

Simple Comparison of Single-core, Multi-
processor, and Multi-core Architectures 
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Source : http://www.intel.com ; Reference : [6], [29], [31]  

CPU State 

Interrupt Logic 

Execution Units 

CPU State 

Interrupt Logic 

Execution Units 

Cache 

E) Multi-core with 
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F) Multi-core with Hyper-threading Technology 

http://www.intel.com/
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 Out of Order Execution 

 

 Pre-emptive and Co-operative Multitasking 

 

 SMP to the rescue 

 

 Super threading  with Multi threaded Processor 

 

 Hyper threading the next step (Implementation)  

 

 Multitasking 

 

 Caching and SMT 

Multi Core : Programming Issues 
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Application Perspective     

  Part II  
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Issues to be Addressed  

Bigger OR Smaller Cores 

Performance OR Scalability 

Compute OR I/O Intensive 

Cache Friendly OR Memory Intensive 

Multi Cores - Unique Challenges 

Source : http://www.intel.com ; Reference : [6]  

TBB can be targeted for ease of development  

http://www.intel.com/
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Use of TBB : Several Class of Applications  

 Video : Body Tracking and Ray-Tracing 
 

 Search for  Video based imaging & Creation of Videos with 

animation 
 

 Games /  Interactive 3D simulation 
•       

 Real-time realistic 3D Visualization of body systems 

 Wall Street Financial Analysis; Business: Data Mining – 

Security: Real Time Video surveillance Astrophysics, 

 BioInformatics – Pattern Search Algorithms 

   Emerging “Killer Apps of Tomorrow” 

Parallel Algorithms Design  
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FIMI PDE NLP 

Level Set 

Computer  

Vision 
Physical  

Simulation 
(Financial)  

Analytics Data Mining 

Particle 

Filtering 

SVM 

Classification 

SVM 

Training 
IPM 

(LP, QP) 

Fast Marching 

Method 

K-Means 

Index 

Bench Monte Carlo 

Body 

Tracking 
Face 

Detection 
CFD 

Face, 

Cloth 

Rigid 

Body 
Portfolio 

Mgmt 

Option 

Pricing 

Cluster/ 

Classify 

Text 

Index 

Basic matrix primitives 
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Source : Intel  

TBB: Application – Algorithm Kernels 
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Example : Implementation of Streaming Media Player on Multi-Core  

 One decomposition of work using Multi-threads  

 It consists of  

 A thread Monitoring a network port for arriving  data,  

  A decompressor thread for decompressing packets 

  Generating frames in a video sequence 

 A rendering thread that displays frame at programmed intervals 

Programming Aspects Examples   

Source : Reference : [4] 

TBB : Other Issues to be addressed  
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Example : Implementation of Streaming Media Player on Multi-Core  

 The thread must communicate via shared buffers – 

  an in-buffer between the network and decompressor,  

  an out-buffer between the decompressor and renderer 

 It consists of  

 Listen to port ……..Gather data from the network 

 Thread generates frames with random bytes (Random string of 

specific bytes) 

 Render threads pick-up frames & from the out-buffer and calls the 

display function 

  Implement using the Thread Condition Variables 

Programming Aspects Examples   
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Workload convergence 
The basic algorithms shared by these high-end workloads 

 

Platform implications 
How workload analysis guides future architectures 

 

Programmer productivity 
Optimized architectures will ease the development of 

software 

 

Call to Action 
Benchmark suites in critical need for redress 

Killer Apps of Tomorrow 

TBB: Application-Driven Architectures:Analyzing Workloads 
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Benefits 
 

 Easy way to express parallelism  in  a C++ Program 
 

 Library that helps to you leverage Multi-core processor 

performance  
 

 No need of having threading expert for parallelisztion  
 

 High Level, tasks-based paralleism  - for Performance and 

Scalability 

Why Threading Building Blocks ?   
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TBB : Algorithms - Templates      

  Part III  
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Benefits 

 Provides rich set of templates  

 Templates and C++ concept of generic 

programming (C++ Standard Template Library 

(STL)  

 Doe not require special language or compilers  

 Ability to use Threading Building Blocks – any 

processor  with any C++ Complier  

 Promote Scalable Data Parallelism  

Threading  Building Blocks – Overview    
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Benefits 
 

 Scalability   

 Data Parallel Programming – Applications 

 Take advantage of all cores on Multi core 

Processor 

 Specify Tasks instead of Threads  

 Runtime library  

 Automatically schedules tasks onto threads  

 Makes use of efficient processor resources 

 Load balancing many tasks 

Threading Building Blocks – Overview    
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Benefits 
 

 Task Scheduling  

 To use TBB library, you specify tasks, not threads 

 Library maps tasks onto threads in an efficient manner 

• Writing Parallel_for loop – tedious using threading 

packages 

• Scalable program – harder ; No benefits in 

Performance 

 Templates  can give a creditable idea of performance 

with respect to problem size as the number of core 

increases 
 

Threading Building Blocks - Overview    
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Benefits 
 

 Better portability  

 Easier programming,  

 More understandable source code,  

 Scalability and Performance – can be predicted  

 Avoid programming in a raw native thread model  
 

Remarks :  

 Programming in assembly language of parallel programming  -  

 An alternative use of raw threads.  

 Maximum flexibility – Costs are very high 
 

Thread Building Blocks – Overview    
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Summary  

 

 TBB enables developer to specify tasks instead of threads    

 TBB targets threading for performance on Multi-cores  

 TBB Compatible with other threading packages  

 TBB emphasizes scalable, data-parallel programming  

 Link libraries such as Intel's Math Kernel Library (MKL) and 

Integrated Performance Primitives (IPP) library are implemented 

internally using OpenMP. 

 You can freely link a program using Threading Building 

Blocks with the Intel MKL or Intel IPP library. 
 

Threading Building Blocks – Overview    
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Issues to be Addressed  

 TBB enables developer to specify tasks instead of threads    

 TBB targets threading for performance on Multi-cores  

 TBB Compatible with other threading packages  

 TBB emphasizes scalable, data-parallel programming  

 Link libraries such as Intel's Math Kernel Library (MKL) and 

Integrated Performance Primitives (IPP) library are implemented 

internally using OpenMP. 

 You can freely link a program using Threading Building 

Blocks with the Intel MKL or Intel IPP library. 
 

Threading Building Blocks – Overview    
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 Static  Load Balancing 

Mapping for load balancing  

Minimizing Interaction 

 Data Sharing Overheads 

 Dynamic Load Balancing  

Overheads in parallel algorithms design 

 

   Application Perspective -  Parallel 

Algorithms Design -TBB 

How TBB can hide several task Scheduling events ?  
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 Maximize data locality 
 

 Minimize volume of data 
 

 Minimize frequency of Interactions 
 

 Overlapping computations with interactions. 
 

 

 Data replication 
 

 Minimize construction and Hot spots. 
 

 Use highly optimized collective interaction operations. 

• Collective data transfers and computations  
       

 Maximize Concurrency. 

How TBB can hide several task Scheduling events ?  

   Application Perspective -  Parallel 

Algorithms Design -TBB 
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Types of Parallelism :  

 

 Data parallelism and Task parallelism 

 Combination of Data & Task parallelism 

 Stream parallelism 

  Types of Parallelism 

TBB : Other Issues to be addressed  
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 Initializing and Terminating the Library  

 Loop Paralleization  
 

 Parallel_for, Parallel_reduce, Parallel_scan  

(Grain size, Interval, Workload for iteration, Time 

Taken)  

 Automatic Grain Size (Not easy) – Performance 

Issues  

 Recursive Range Specifications (block_range), 

Partitioning 

TBB templates    
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 parallel_while 

 Use of an unstructured stream or pile of work. 

Offers the ability to add additional work to the file 

running   

 pipeline  (Throughput of pipeline)  

 Parallel_sort 

 Algorithm complexity  

 Parallel algorithms for Streams 

 

TBB templates- Advanced Algorithms     
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 Containers 

 TBB provides highly concurrent containers that permit 

multiple threads to invoke a method simultaneously on the 

same container. 

• Concurrent queue, vector, and hash map are provided. 

 These can be used with the library, OpenMP, or raw threads 

 Remark : Highly concurrent containers are very important because 

STL containers generally are not concurrent friendly. 

 TBB provides Fine-grain locking and Lock free algorithm 

 Algorithm complexity  

 Parallel algorithms for Streams 

TBB templates- Advanced Algorithms     
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 Problems in Memory Allocation  

 Each Competes for global lock for each allocation 

and deallocation from a single global heap  

 False Sharing  

 TBB offers two memory allocators 

 Scalable_allocator 

 Cache_aligned_allocator  

 Memory Consistency and Fence 

 TBB provides atomic Templates  

TBB Scalable Memory Allocation     
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 TBB  - Mutex 

 Mutual exclusion will be in terms of tasks. Mutual 

exclusion of tasks will lead to mutual exclusion of the 

corresponding threads upon which TBB maps  

defined tasks. 

 When to Use Mutual Exclusion  (To prevent race 

conditions and other non-deterministic and 

undesirable behavior of tasks) 

 Mutex behavior 

 TBB provides a thread-safe and portable method to 

compute elapsed time 

 tick_count Class 

TBB Mutual Exclusion / Time  
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 TBB  - Task-based programming can improve the 

performance  

 Task Scheduler manages a thread pool and hides 

complexity which is much better than Raw Native 

Threads  

 OverSubscription – Getting the number of threads 

right is difficult 

 Fair Scheduling – OS uses; round-robin fashion 

 Load imbalance can be handled easily comparison to 

thread-based programming 

 Portability – TBB interfaces 

TBB Task Scheduler  
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 An Overview of TBB on Multi Cores is discussed 

 TBB algorithm templates can be used  

 TBB memory allocator may help to reduce the memory overheads  

 TBB  can improve the performance for certain class of applications on 

2/4/8/24 cores  

 TBB Codes can be plugged with different libraries (Use only thread-

safe libraries in your TBB application) 

 Intel Tools can be used for debugging the TBB application. 

 TBB can be used for several  Data Parallel Applications. 

Intel TBB conclusions  
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 Thank You  
   Any questions ? 


