
Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

Pthreads Part-IV

Hybrid Computing – Co-Processors/Accelerators
Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 2 C-DAC hyPACK-2013

 Performance issues of Multi-Threaded Programs

 An Overview of Common Errors in Multi-threaded
Programs

Lecture Outline

Following Topics will be discussed

The POSIX Threads (Pthreads) Model

Source : Reference [4],[7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 3 C-DAC hyPACK-2013

Pthreads Prog. : Example : Value

Description : Method is based on generating random numbers

in a unit length square and counting the number of points that

fall within the largest circle inscribed in the square.

Area : Circle (r2) =π/4;

Area : Square = 1 X1

The fraction of random points that fall in

the circle should approach to /4

Source : Reference [4],[7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 4 C-DAC hyPACK-2013

1. Assign fixed number of points to each thread.

2. Each thread generates random points and keeps track of

the number of points that land in circle locality.

3. After all threads finish execution, their counts are

combined to computer the value of π (by calculating the

fraction over all threads and multiplying by 4)

º

º
º

º
º

º
º

Implementation & Performance Issues

 Use of pthread_create function and

pthread_join function

Pthreads Prog. : Example : Value

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 5 C-DAC hyPACK-2013

Implementation & Performance Issues

 Read Desired number of threads (num_threads) and the

number of sample points (sample_points)

 Divide the number of points equally among the threads
(Use of pthread_create function)

 Each thread keeps track of number of hits (points inside

the circle

 Each thread computes the respective hit ratios

 Combine the partial results to determine (Use of
pthread_join function)

Pthreads Prog. : Example : Value

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 6 C-DAC hyPACK-2013

Performance Issues

 False Sharing of data items (Two adjoining data items

(which likely reside on the same cache line) are being

continually written to by threads that might be scheduled on
different cores.

 Estimate the cache line size of the cores and use higher

dimensional arrays that are proportional to number of cores

which share the cache line.

Pthreads Prog. : Example : Value

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 7 C-DAC hyPACK-2013

 Controlling Thread Attributes and Synchronization

Attribute Objects for Threads

Attribute Objects for Mutexes

 Thread Cancellation

Clean-up functions are invoked for reclaiming the
thread data structures

Synchronization Primitives in Pthreads

 Composite synchronization Primitives

Read-Write Locks (Data Structure is read frequently
but written infrequently.

 Issues of Multiple reads /Serial writes

 Issues of Read Locks; read-write locks etc…

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 8 C-DAC hyPACK-2013

 Barriers

A barrier call is used to hold a thread until all other
threads participating in the barrier have reached the
barrier

Barriers can be implemented using a counter, a
mutex, and a condition variable.

 A single integer is used to keep track of the number
rof threads that have reached the Barrier

 Remark :

Barrier implementation using mutexes may suffer
from the overhead of busy-wait.

Synchronization Primitives in Pthreads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 9 C-DAC hyPACK-2013

 Mutual Exclusion for Shared Variables

Thread APIs provide support for implementing
critical sections and atomic operations using mutex-
locks (mutual exclusion locks)

 Condition Variables for Synchronization

When thread performs a condition wait, it takes itself
off the runnable list – Does not use any CPU cycle

Synchronization Primitives in Pthreads

Remark :

Mutex Lock consumes CPU cycles as it polls for
the lock

 Condition wait consumes CPU cycles when it is
woken up

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 10 C-DAC hyPACK-2013

new

runnable

new

run method

exits

start

stop

blocked

resume

suspend

notify

wait

not available

wait for lock

I/O complete

block in I/O

sleep

done sleeping

Pthreads:Synchronization & Thread States

 I/O Requests

 Read-Write Locks

 Available CPU

 Release Locks

 Critical Sections

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 11 C-DAC hyPACK-2013

Thread 1

transfer

Thread 2 Thread 1 Thread 2

transfer

transfer

transfer

Unsynchronized Unsynchronized

Too little / too much

synchronization

 In-Correct

Results

Performance –

Slow done the

results

Comparison of unsynchronized / synchronized threads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 12 C-DAC hyPACK-2013

THREAD 1 :

Increment (x)

{

x= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address)

THREAD 1 :

Increment (x)

{

x= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address

Example:Two threads on 2 cores are both trying to increment

a variable x at the same time (Assume x is initially 0)

 Synchronization Primitives in Pthreads

Use Threaded APIs mutex-locks (Mutual exclusion locks)

to avoid Race Conditions
Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 13 C-DAC hyPACK-2013

 Mutual Exclusion for Shared Variables

 Implementation of critical sections and atomic operations
using mutex-locks (mutual exclusion locks)

 Mutex locks have two states (locked and unlocked) Use
functions pthread_mutex_lock &
pthread_mutex_unlock function)

 A function to initialize a mutex-lock to its unlocked state -
pthread_mutex_init function)

 Synchronization Primitives in Pthreads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 14 C-DAC hyPACK-2013

 Example : Computing the minimum entry in a
list of integers

 The list is partitioned equally among the threads

 The size of each thread’s partition is stored in the
variable

 Performance for large number of threads is not
scalable (At any point of time, only one thread can
hold a lock, only one thread can test updates the
variable.)

 Synchronization Primitives in Pthreads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 15 C-DAC hyPACK-2013

Producer/Consumer Problem : Synchronizing Issues

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 16 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

 There is concurrent access to the task-queue, these

accesses must be serialized using critical blocks.

 The tasks of inserting and extracting from the task-

queue must be serialized.

 Define your own “insert_into_queue” and

“extract_from_queue” from queue (Note that queue full

& queue empty conditions must be explicitly handled)

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 17 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Possibilities & Implementation Issues on Multi cores

 The producer thread must not overwrite the shared

buffer when the previous task has not been picked up

by a consumer thread

 The consumer threads must not pick-up tasks until

there is something present in the shared data

structure.

 Individual consumer threads should pick-up tasks

one at a time.
 Implementation can be done using variable called

task_variable which handles the wait condition of

consumer & producer.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 18 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Implementation & Performance Issues on Multi cores

 If task_variable = 0

• Consumer threads wait but the producer thread

can insert tasks into the shared data structure.

 If task_variable = 1

• Producer threads wait to insert the task into the

shared data structure but one of the Consumer

threads can pick up the task available.

All these operations on the variable task_variable

should be protected by mutex-locks to ensure that only
one thread is executing test-update on it.

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 19 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Performance Issues on Multi cores

Consumer thread waits for a task to become available

and executes when it is available.

Locks represent sterilization points since critical

sections must be executed by one after the other.

Handle Shared Data Structures and Critical sections to

reduce the idling overhead.

 Alleviating Locking Overheads

To reduce the idling overhead associated with
locks using pthread_mutex_trylock.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 20 C-DAC hyPACK-2013

 Critical Section directive is a direct application of the

corresponding mutex function in Pthreads

 Reduce the size of the critical section in Pthreads/OpenMP

to get better performance (Remember that critical section

represents serialization points in the program)

 Critical section consists simply of an update to a single

memory location.

 Safeguard : Define Structured Block I.e. no jumps are

permitted into or out of the block. This leads to the threads

wait indefinitely.

Producer & Consumer : Critical Directive

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 21 C-DAC hyPACK-2013

Synchronization Primitives in Pthreads

:Alleviating Locking Overheads

 Example : Finding k-matches in a list

Finding k matches to a query item in a given list.

(The list is partitioned equally among the threads.
Assume that the list has n entries, each of p

threads is responsible for searching n/p entries of

the list.

 Implement using pthread_mutex_lock.

Reduce the idling overhead associated with locks
using pthread_mutex_trylock. (Reduce the

Locking overhead can be alleviated)

Source : Reference [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 22 C-DAC hyPACK-2013

 A Condition Variable is a data object used for

synchronization threads. This variable allows a thread to

block itself until specified data reaches a predefined state.

 A condition variable always has a mutex associated with it.

 Use functions pthread_cond_init for initializing and

pthread_cond_destroy for destroying condition

variables.

 The concept of polling for lock as it consumes CPU cycles

can be reduced. Use of condition variables may not use

any CPU cycles until it is woken up.

Producer & Consumer :

 Condition Variable for Synchronization

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 23 C-DAC hyPACK-2013

 The higher level synchronization constructs can be built

using basic constructs.

 Read-Write Constructs

 A data structure is read frequently but written

infrequently.

 Multiple reads can proceed without any coherence

problems. Write must be serialized.

 A structure can be defined as read-write lock

Composite Synchronization Constructs

Example 1 : Using read-write locks for computing the

minimum of a list of integers

Example 2 : Using read-write locks for implementing hash

tables. Source : Reference : [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 24 C-DAC hyPACK-2013

 Read-Write Struct

 typedef struct {

 int readers;

 int writer;

 pthread_conf_t readers_proceed;

 pthread_cond_t writer_proceed;

 int pending_writers;

 pthread_muex_t read_write_lock;

 } mylib_rwlock_t;

Composite Synchronization Constructs

Source : Reference : [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 25 C-DAC hyPACK-2013

 Read-Write Constructs

 Offer advantages over normal locks

 For frequent reads /Writes, overhead is less

 Using normal mutexes for writes is advantages when

there are a significant number of read operations

 For performance of database applications (hash tables) on
Multi Cores, the mutex lock version of the progam hashes

key into the table requires suitable modification.

Composite Synchronization Constructs

Source : Reference : [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 26 C-DAC hyPACK-2013

 Barrier : A barrier call is used to hold a thread until all

other threads participating in the barrier have reached the

barrier.

 Barrier can be implemented using a counter, a

mutex, and a condition variable.

 Overheads will vary for large number of threads.

 Performance of programs depends upon the

application characteristics such as the number of
threads & the number of condition variable

mutexes pairs for implementation of a barrier for n

threads.

Composite Synchronization Constructs

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 27 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 One decomposition of work using Multi-threads

 It consists of

 A thread Monitoring a network port for arriving data,

 A decompressor thread for decompressing packets

 Generating frames in a video sequence

 A rendering thread that displays frame at programmed intervals

Programming Aspects Examples

Source : Reference : [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 28 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 The thread must communicate via shared buffers –

• an in-buffer between the network and decompressor,

• an out-buffer between the decompressor and renderer

 It consists of

 Listen to port ……..Gather data from the network

 Thread generates frames with random bytes (Random string of

specific bytes)

 Render threads pick-up frames & from the out-buffer and calls the

display function

 Implement using the Thread Condition Variables

Programming Aspects Examples

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 29 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 OpenMP provides a layer on top of naïve threads to

facilities a variety of thread-related tasks.

 Using Directives provided by OpenMP, a programmer is

get rid of the task of initializing attribute objects, setting up

arguments to threads, partitioning iteration spaces etc….

(This may be useful when the underlying problem has a

static and /or regular task graph.)

 The overheads associated with automated generation of

threaded code from directives have been shown to be

minimal in the context of a variety of applications.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 30 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 An Artifact of Explicit threading is that data exchange is

more apparent. This helps in alleviating some of the

overheads from data movement, false sharing, and

contention.

 Explicit threading also provides a richer API in the form of

condition waits.

 Locks of different types, and increased flexibility for building

composite synchronization operations

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 31 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 Compiler support on Multi-Cores play an important role

 Issues related to OpenMP performance on Multi cores

need to be addressed.

 Inter-operability of OpenMP/Pthreads on Multi-Cores

require attention -from performance point of view

 Performance evaluation and use of tools and Mathematical

libraries play an important role.

Source : Reference [4]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 32 C-DAC hyPACK-2013

Common Errors /Solutions : Prog. Paradigms

Key Points

 Match the number of runnable software threads to the available

hardware threads

 Synchronization : In correct Answers ; Performance Issues

 Keeps Locks private

 Avoid dead-locks by acquiring locks in a consistent order

 Memory Bandwidth & contention Issues

 Lock contention (Using Multiple distributed locks)

 Design Lockless Algorithms – Advantages & dis-advantages

 Cache lines are – Hardware threads

 Writing synchronized code – Memory Consistency

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 33 C-DAC hyPACK-2013

Common Errors /Solutions : Prog. Paradigms

Key Points

 Set up all the requirements for a thread before actually creating the

thread. This includes initializing the data, setting thread attributes,

thread priorities, mutex, attributes, etc…

 Buffer management is required in applications such as producer

and consumer problems.

 Define synchronizations and data replication wherever it is possible

and address stack variables,

 Avoid Race Conditions in designing algorithms and implementation

 Extreme caution is required to avoid parallel overheads associated

with synchronization

 Design of asynchronous Programs and use of scheduling

techniques require attention.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 34 C-DAC hyPACK-2013

 Features and advantages of Pthreads is discussed.

 Pthreads – Synchronization Constructs are

discussed.

 Performance issues of Multi-threaded Programs

using POSIX Thread APIs.

 Thread Safety issues & Error handling are important

for producing correct results

Pthreads :Conclusions

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 35 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 36 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 37 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-IV 38 C-DAC hyPACK-2013

 Thank You
 Any questions ?

