
Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

Pthreads Part-III

Hybrid Computing – Co-Processors/Accelerators
Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 2 C-DAC hyPACK-2013

 Examples of Threaded Programs

 Understanding Pthreads implementation

 Pthread Synchronization Primitives

 Pthread - Performance issues

Lecture Outline

Following Topics will be discussed

The POSIX Threads (Pthreads) Model

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 3 C-DAC hyPACK-2013

Network

CPU0 CPU1 CPU2 CPU3

Memory

CPU0 CPU1 CPU2 CPU3

Memory

Multi core Node 0 Multi Core Node 1

 COMMUNICATION NETWORK

P • • • •

M

P

M

P

M

P

M

Shared Memory Non-Shared Memory

General-Purpose Clusters /Multi Cores

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 4 C-DAC hyPACK-2013

 Excessive communication

 Large number of remote memory accesses

 False sharing

 False data mapping

 Frequent synchronization

 Implicit synchronization of parallel constructs

 Barriers, locks, …

 Load balancing

 Uneven scheduling of parallel loops

 Uneven work in parallel sections

 Cost of communication in shared address space machines

 Costs are associated with read and write operations that may be

local or non-local data.

Common Performance Problems with Shared Memory

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 5 C-DAC hyPACK-2013

Multi Cores Today

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

Memory

Controller
Mem Mem

HyperTransport Link

Memory

Controller

Front Side

Bus

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 L2

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 L2

Core 2 Xeon Dual-Core Opteron Core 2 Quad/Extreme

Intel & AMD Systems

Source : Reference [4],[6], [7]

Source : http://www.intel.com; http://www.amd.com

http://www.intel.com/
http://www.amd.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 6 C-DAC hyPACK-2013

 Parallel Program comprised of multiple Concurrent

threads of Computation

 Work is partitioned amongst the threads

 Data communication between the threads via shared

memory or messages

Shared Memory ; more convenient than explicit
messages, but danger of Race Conditions

 Message Passing : More tedious than use of
Shared Memory, but lower likelihood of races

Examples : OpenMP, MPI, Pthreads, CUDA

Multi-threaded Programming Models

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 7 C-DAC hyPACK-2013

 Explicit Parallel Programming

Thread-based Programming Models.

Data Parallel Programming Models

Stream Programming Models

Programming Multicore Processors

 Automatic Parallelization

Features of Most compliers for SMP systems, but
currently see very little practical use

 Polyhedral framework for dependencies and loop
transformations – enabling composition of complex
transformations over multiple statements.

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 8 C-DAC hyPACK-2013

Parallel Code Block or a

section needs multithread

synchronization

. . .

 .

 .

 .

 .

 .

 .

Parallel Code Block

Implementation Source Code

Perform synchronization

operations using parallel

constructs Bi

Perform synchronization

operations using parallel

constructs Bj

T1 T2 Tn
. . .

T1
T2 Tn . . .

T1 …. p

Operational Flow of Threads

Operational Flow of Threads for an Application

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 9 C-DAC hyPACK-2013

Application software

Setup/initial
partitioning Compute

Rebalance
load

Rebalance
load

Compute

done

!done

OK

!OK

Load-balancing suite

Partitioning and dynamic load balancing
implementations/support tool

Application Perspective : Multi Cores

 Threads of Computation : Work is partitioned amongst

the threads – Data Handling & Synchronization Issues

 Computational

requirements

dynamically

changes –

• Cache Friendly

applications

• I/O Intensive

applications

Source : Reference [4],[6]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 10 C-DAC hyPACK-2013

Implementation specific issues of Pthreads :

 Synchronization

 Sharing Process Resources

 Communication

 Scheduling

Why Pthreads ? : Thread Model

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 11 C-DAC hyPACK-2013

Thread Pitfalls

 Shared data

 2 threads perform

 A = A + 1

Thread 1:

1) Load A into R1

2) Add 1 to R1

3) Store R1 to A

Thread 1:

1) Load A into R1

2) Add 1 to R1

3) Store R1 to A

 Mutual exclusion preserves

correctness

Locks/mutexes

Semaphores

Monitors

Java “synchronized”

 False sharing

 Non-shared data packed

into same cache line

int thread1data;

int thread1data;

 Cache line ping-pongs

between CPUs when

threads access their data

 Locks for heap access

 malloc() is expensive

because of mutual

exclusion

 Use private

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 12 C-DAC hyPACK-2013

 How does a thread know which thread it is? Does it

matter?

 Yes, it matters if threads are to work together

 Could pass some identifier in through parameter

 Could contend for a shared counter in a critical section

 pthread_self()returns the thread ID, but doesn’t help.

 How big is a thread’s stack?

 By default, not very big. (What are the ramifications?)

 pthread_attr_setstacksize()changes stack size

Thread Spawning Issues

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 13 C-DAC hyPACK-2013

 Main thread must join with child threads
(pthread_join)

 Why?

 Ans: So it knows when they are done.

 pthread_join can pass back a 32-bit value

 Can be used as a pointer to pass back a result

 What kind of variable can be passed back that way? Local?

Static? Global? Heap?

Join Issues

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 14 C-DAC hyPACK-2013

Thread-safe Functions and Libraries

 Memory Issues

 Bandwidth
 Avoid Memory Contention Issues

 How fast read and Write variables – I/O

 Working in Cache
 Cache Un-friendly Programming

 Loop Optimization techniques

 Memory Contention
 Read-write dependency (A core writes a cache line, and then

a different core reads it

 Write-write Dependency (Core write a cache line, and then a

different writes it)

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 15 C-DAC hyPACK-2013

 Stack Management (pthread_attr_getstacksize,

pthread_attr_setstacksize,

 Mutex Variables

Mutex variables are one of the primary means of
implementing thread synchronization and for
protecting write occur.

 A mutex variable acts like a “lock” protecting access
to a shared data resource.

Mutex can be used to prevent “race” conditions.

Creating and Destroying Mutexes

Locking and Unlocking Mutexes

The Thread Management

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 16 C-DAC hyPACK-2013

 Creating and Terminating Threads (pthread_create,

pthread_exit, pthread_attr_init, pthread_attr_destroy)

 Passing Arguments to Threads

 Joining and Detaching Threads (pthread_join,
pthread_detach, pthread_attr_setdetachstate,
pthread_attr_getdetachstate)

The Thread Management

Master

Thread

Worker

Thread

Worker

Thread

pthread_create() pthread_join()

pthread_join() DO WORK

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 17 C-DAC hyPACK-2013

.

.

.

.

.

.

A section
contains

shared data or
Critical Section

Synchronization
Operation to

Enter

Synchronization
Operation to

Leave

Source Code

Generic Representation of Synchronization Block
inside Source Code

 Two types of Synchronization operations are widely

used : Mutual exclusion and Condition synchronization

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 18 C-DAC hyPACK-2013

Synchronizing Primitives in Pthreads

Common Synchronization Mechanism

 Read/Write exclusion

 Thread safe data structures

 Condition variable functions

 Semaphores

Mutex Variables

 To protect a shared resource from a race condition, we use a type
of synchronization called mutex exclusion, or mutex fort short

 Critical section : Provide access to the code paths or routines that
access data -

 How large does a critical section have to be to require protection
through a mutex ?

 Pthread library operations such as mutex locks and unlocks work
properly regardless of the platform you are using and the number of
CPUs in the system.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 19 C-DAC hyPACK-2013

Producer/Consumer Problem : Synchronizing Issues

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 20 C-DAC hyPACK-2013

 Possibilities & Implementation Issues on Multi cores

 The producer thread must not overwrite the shared

buffer when the previous task has not been picked up

by a consumer thread

 The consumer threads must not pick-up tasks until

there is something present in the shared data

structure.

 Individual consumer threads should pick-up tasks

one at a time.

 Implementation can be done mutexes, condition Variables

Producer/Consumer Problem : Synchronizing Issues

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 21 C-DAC hyPACK-2013

 Controlling Thread Attributes and Synchronization

Attribute Objects for Threads

Attribute Objects for Mutexes

 Thread Cancellation

Clean-up functions are invoked for reclaiming the
thread data structures

Synchronization Primitives in Pthreads

 Composite synchronization Primitives

Read-Write Locks (Data Structure is read frequently
but written infrequently.

 Issues of Multiple reads /Serial writes

 Issues of Read Locks; read-write locks etc…

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 22 C-DAC hyPACK-2013

 Barriers

A barrier call is used to hold a thread until all other
threads participating in the barrier have reached the
barrier

Barriers can be implemented using a counter, a
mutex, and a condition variable.

 A single integer is used to keep track of the number
of threads that have reached the Barrier

 Remark :

Barrier implementation using mutexes may suffer
from the overhead of busy-wait.

Synchronization Primitives in Pthreads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 23 C-DAC hyPACK-2013

 Mutual Exclusion for Shared Variables

Thread APIs provide support for implementing
critical sections and atomic operations using mutex-
locks (mutual exclusion locks)

 Condition Variables for Synchronization

When thread performs a condition wait, it takes itself
off the runnable list – Does not use any CPU cycle

Synchronization Primitives in Pthreads

Remark :

Mutex Lock consumes CPU cycles as it polls for
the lock

 Condition wait consumes CPU cycles when it is
woken up

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 24 C-DAC hyPACK-2013

d
Shared Data

T = f (t)
d = f (t) = s(…,ti,tj,tk,tl,…)

Tj

ti

tl

tj

tk

Shared data d depends on synchronization functions of time

Shared Data Synchronization, Where Data d is protected
by a Synchronization Operation

Ti

Synchronization order

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 25 C-DAC hyPACK-2013

new

runnable

new

run method

exits

start

stop

blocked

resume

suspend

notify

wait

not available

wait for lock

I/O complete

block in I/O

sleep

done sleeping

Pthreads:Synchronization & Thread States

 I/O Requests

 Read-Write Locks

 Available CPU

 Release Locks

 Critical Sections

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 26 C-DAC hyPACK-2013

Thread 1

transfer

Thread 2 Thread 1 Thread 2

transfer

transfer

transfer

Unsynchronized Unsynchronized

Too little / too much

synchronization

 In-Correct

Results

Performance –

Slow done the

results

Comparison of unsynchronized / synchronized threads

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 27 C-DAC hyPACK-2013

Synchronization

Atomicity Control

Data

Barrier Mutual Exclusion

Semaphore

and Lock

Producer-

Consumer
Pool.

Queue

Pthreads : Various types of synchronization

 Use of Scheduling techniques as means of
Synchronization is not encouraged. – Thread Scheduling
Policy ,High Priority & Low Priority Threads

Remark :

Atomic operations are a fast and relatively easy alternative
to mutexes. They do not suffer from the deadlock.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 28 C-DAC hyPACK-2013

Performance depends on input workload :

 Increasing clients and contention

• Number of clients vs Ratio of Time to Completion

 Performance depends on a good locking strategy

• No locks at all;One lock for the entire data base;
One lock for each account in the data base

 Performance depends on the type of work threads do

• Percentage of Thread I/O vs CPU and Ratio of
Time to Completion

Pthreads:Performance issues-Synchronization Overhead

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 29 C-DAC hyPACK-2013

How do your threads spend their time ?

 Profiling a program is a good step toward
identifying its performance bottlenecks (CPU
Utilization, waiting for locks and I/O completion

 Do the threads spend most of their time blocked,
waiting for their threads to release locks ?

 Are they runnable for most of their time but not
actually running because other threads are
monopolizing the available CPUs ?

 Are they spending most of their time waiting on the
completion of I/O requests ?

Pthreads:Performance issues-Synchronization Overhead

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 30 C-DAC hyPACK-2013

Producer/Consumer Problem : Multi Threaded Program

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 31 C-DAC hyPACK-2013

Pthread APIs

 Semaphores : A semaphore is a counter that can have any

nonnegative value. Threads wait on a semaphore.

 When the semaphore’s value is 0, all threads are forced to wait.

When the value is non-zero, a waiting thread is released to work.

 Pthreads does not implement semaphores, they are part of a different

POSIX specification.

 Semaphores are used to conjunction with Pthreads’ thread-

management functionality

 Usage : Include <semaphore.h>

 - sem_init(*, *, …*);

 - sem_post(*, *, …*)

 - sem_wait(*, *, …*)

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 32 C-DAC hyPACK-2013

Semaphore s

void producer() {

 while (1) {

 <produce the nest data>

 s->release()

 }

}

void consumer () {

 while (1) {

 s->wait()

 <Consume the next data>

 }

}

Remarks : Neither producer nor consumer maintains an order. Synchronization

problem exists. Buffer Size needs to be within a boundary to handle.

Producer/Consumer Problem : Psuedo code

Producer & Consumer : (1). Using Semaphores; (2) Critical Directives

(Mutexes – Locks); (3). Condition Variables

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 33 C-DAC hyPACK-2013

Semaphore sEmpty, sFull

void producer() {

 while (1) {

 sEmpty->wait ()

 <produce the nest data >

 sFull->release()

 }

}

void consumer () {

 while (1) {

 sFull->release ()

 <Consume the next data>

 sEmpty->wait ()

 }

}

Producer/Consumer Problem : Dual Semaphores Solution

Remarks : Two independent Semaphores are used to maintain the boundary of
buffer. sEmpty, and sFull retain the constraints of buffer capacity for operating

threads.
Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 34 C-DAC hyPACK-2013

 What is a Data Race?

A data-race occurs under the following conditions:

 Two or more threads concurrently accessing the

same memory location.

 At least one of the threads is accessing the memory

 Location for writing

 The threads are not using any exclusive locks to

control their accesses to that memory.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 35 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

 Un-synchronized access to shared memory can

introduce Race conditions
 Results depends on relative timings of two or more threads

 Solaris, Posix Multi-threaded Programming

 Example :
 Two threads trying to add to a shared variable x, which have

an initial value of 0.

 Depending on upon the relative speeds of the threads, the final

value of x can be 1, 2, or 3.

 Parallel Programming would be lot of easier

 Multi-threaded Compiler & Tools may give clue to

programmer

Source : Reference [6]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 36 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

 The interactions of Memory, Cache, and Pipeline should

be examined carefully.

 Thread Private

 Thread shared read only

 Exclusive Access

 Read and Write by Unsynchronized threads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 37 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

Original Code Thread 1

 T = x

 Thread 2

 u = x

 x = u +2

Interleaving #1

(x is 0)

 t = x

 x= t + 1

(x is 1)

 u = x

 x = u +2

 (x is 2)

Deadlock conditions

1.A thread is allowed

to whole one

resource while

requesting another

2.No thread is willing

to relinquish a

resource that is

has acquired

3.Access to each

resource is

exclusive

Deadlock is caused by Cycle of operations

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 38 C-DAC hyPACK-2013

Data Races, Deadlocks & Live Locks

Interleaving #2

t = x

 x= t + 1

(x is 1)

 (x is 0)

 u = x

 x = u +2

 (x is 2)

Interleaving #3

(x is 0)

 t = x

 x= t + 1

(x is 1)

 u = x

 x = u +2

 (x is 3)

Thread 1 Thread 2

Deadlock Conditions

4.There is a cycle of

threads trying to

acquire resources,

where each

resource is held by

one thread and

requested by

another

Deadlock Conditions

can be avoided by

breaking any one of

the conditions

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 39 C-DAC hyPACK-2013

 Locks : Locks are similar to semaphores except that a single thread

handles lock at one instance. Two basic atomic operations get

performed on a lock are acquire() & release ().

Mutexes : The mutex is the simplest lock an implementation can use.

 Recursive Locks : Recursive locks are locks that may be

repeatedly acquired by the thread that currently owns the lock withut

causing the thread to deadlock.

 Read-Write Locks : Read-Write locks are also called shared-

exclusive or multiple-read/single-write locks or non-mutual exclusion

semaphores. Read-Write locks allow simultaneous read access to

multiple threads but limit the write access to only one thread.

 Spin Locks : Spin locks are non-blocking locks owned by a thread.

Spin locks are used mostly on multiprocessors .

Data Races, Deadlocks & Live Locks

Source : Reference [4],[6]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 40 C-DAC hyPACK-2013

 Creating and Destroying Condiiton Variables

(pthread_cond_init, pthread_cond_destroy,

pthread_condattr_init, , pthread_condattr_destroy,

 Waiting and Signaling on Condition Variables

 Thread Scheduling

 Thread Specific Data

The Thread Management- Condition Variables

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 41 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Thread-safe Functions and Libraries

Cache Related Issues

Cache Line (Estimate the cache line size of the Multi core Systems

(Remark : Dual Core Processors share L1 Cache)

False Sharing (The data can be pushed into different cache lines,

thereby pushing reduce the false sharing overhead.)

Performance Impact may vary from problem to problem. (Cache

friendly programs such as Dense Matrix Computations & Producer

–Consumer using condition variables, mutexes – have different flow

of computation and synchronization.)

Use of Scheduling techniques as a means of synchronization may

give rise to Memory in-consistency when two threads share the data

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 42 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Core #0

Cache line
Core #1

1 0

x[0]++

. . .

. . .

Thread-safe Functions and Libraries

1 1

x[1]++

. . .

. . .

x[1]++

1 0

1 0

Cache Related Issues

 Cache Line

False Sharing

Memory consistency

Performance Impact

Correctness of the Results

Source : Reference [4],[6]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 43 C-DAC hyPACK-2013

Cache Line Ping-Pong Caused by False Sharing

Thread-safe Functions and Libraries

Remark : Multiple threads manipulates a single piece of data

Multiple threads manipulate different parts of large data structure,

the programmer should explore ways of breaking it into smaller data

structures and making them private to the thread manipulating them

Making memory consistency across the threads is an important

and it is for hardware efficiency.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 44 C-DAC hyPACK-2013

Common Errors /Solutions : Prog. Paradigms

Key Points

 Match the number of runnable software threads to the available

hardware threads

 Synchronization : In correct Answers ; Performance Issues

 Keeps Locks private

 Avoid dead-locks by acquiring locks in a consistent order

 Memory Bandwidth & contention Issues

 Lock contention (Using Multiple distributed locks)

 Design Lockless Algorithms – Advantages & dis-advantages

 Cache lines are – Hardware threads

 Writing synchronized code – Memory Consistency

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 45 C-DAC hyPACK-2013

 Important issues in Shared parallel programming -Pthreads

 Common Synchronization problems with Pthreads

 Pthreads Performance issues on Multi Core Processors

Conclusions

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 46 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 47 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 48 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-III 49 C-DAC hyPACK-2013

 Thank You
 Any questions ?

