
Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 1 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors : Shared Memory Prog:

Pthreads Part-II

Hybrid Computing – Co-Processors/Accelerators

Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 2 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors : Shared Memory Prog:

Pthreads Part-II

Heterogeneous Computing –

Many Core / Multi GPU

 Performance Algorithms, Application Kernels

C-DAC Five Days Technology Workshop

ON

 hyPACK-2013
(Mode-1 : Multi-Core)

Venue : CMSD, UoHYD ; Dates : Oct 17-21, 2012

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 3 C-DAC hyPACK-2013

 What is Thread ?

 What are Pthreads?

 Pthread APIs on Different OS

 Compilation, Linking and Execution of Pthread Programs

 Example codes using Pthreads

Lecture Outline

Following Topics will be discussed :

Shared Memory Programming – Pthreads

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 4 C-DAC hyPACK-2013

 What is Thread ?

 A thread is a discrete sequence of related instructions that

is executed independently of other instruction sequences.

 It is an entity that can be scheduled by an operating

system to run independently.

 What is Thread ?

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 5 C-DAC hyPACK-2013

Microsoft Windows using C /C++ languages

 Win 32 / Microsoft Foundation Class Library (MFC)

wrapped Windows API functionality in C++ classes

 Provides Developers with C/C++ interface for
developing windows applications

 Performance Issues – Concept of Virtual Machine
op-codes & Overhead Minimization

 Performance Issues – run in a Managed runtime
environment

 Legacy Application Support

Threading APIs for Windows

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 6 C-DAC hyPACK-2013

Microsoft Windows using C /C++ languages

 Creating Threads

 CreateThread();

 Terminate the Thread

 ExitThread();

 Managing Threads

 Thread Communication using Windows events

 Thread Synchronization

 Thread Atomic Operations

 Thread Pools; Thread Priority & Thread Affinity

Threading APIs for Windows

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 7 C-DAC hyPACK-2013

Threading APIs for Microsoft .NET Framework

Threading APIs for Microsoft .NET Framework

 Provide common execution environment for all the
major languages : C++ & Visual Basic; C#

 ThreadStart() – Constructs a new thread

 Microsoft .NET framework Class Library – provides
examples of the APIs

 Managing Threads

 Thread Synchronization

 Thread Atomic Operations

 Thread Pools; Thread Affinity

 Thread Priority - .Net framework supports five
levels thread priority

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 8 C-DAC hyPACK-2013

What are Pthreads?

 POSIX threads or Pthreads is a portable threading

 library which provides consistent programming

 interface across multiple operating systems.

 It is set of C language programming types and

 procedure calls,implemented with pthread.h file

 and a thread library.

 Set of threading interfaces developed by IEEE
committee in charge of specifying a portable OS
Interface.

 Library that has standardized functions for using
threads across different platform.

POSIX Threads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 9 C-DAC hyPACK-2013

Pthread APIs

 Pthread APIs can be informally grouped into three major

classes:

 1.Thread Management

 - thread creation,joining,setting attributes etc.

 2.Thread Synchronization

 - functions that deal with Mutex

 3.Condition Variables

 - functions that deal with condition variables

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 10 C-DAC hyPACK-2013

Pthread APIs

 All identifiers in the thread library begins with pthread_

Condition variable related pthread_cond_

Mutex related routines pthread_mutex_

Thread Attribute objects pthread_attr_

Threads themselves and misc

subroutines

 pthread_

 Functional Group Routine Prefix

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 11 C-DAC hyPACK-2013

 Thread Management Routines :

 pthread_create():

 Syntax: pthread_create(thread,attr,start_routine,arg)

 where,

 thread - an unique identifier for the new thread

 attr – an attribute object that is used to set thread attributes

 start_routine- the C routine that the thread will execute once created

 arg- an argument that may be passed to start_routine.

Pthread APIs

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 12 C-DAC hyPACK-2013

Pthread APIs

 pthread_exit():

 Syntax: pthread_exit(void *value_ptr)

 - is used to terminate a thread. It is called after thread has

completed its work and is no longer required to exist.

 pthread_join():

 Syntax: pthread_join(threadId , status)

 Blocks the calling thread until specified threadId thread terminates.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 13 C-DAC hyPACK-2013

pthread_detach():

 Syntax:

 pthread_detach(pthread_t thread_to_detach)

 - is used to detach the thread from other threads when it has no
need to interact with them.

Pthread APIs

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 14 C-DAC hyPACK-2013

Pthread APIs

 Thread Synchronization Routines :

 pthread_mutex_init():

 Syntax -

 pthread_mutex_init(mutex , attr)

 - initializes the mutex and sets its attributes

 pthread_mutex_destroy():

 Syntax -

 pthread_mutex_destroy(mutex)

 - destroy the mutex

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 15 C-DAC hyPACK-2013

Pthread APIs

 pthread_mutex_lock():

 Syntax - : pthread_mutex_lock(mutex)

 - Locks a mutex.

 - If the mutex is already locked, the calling thread

 blocks until the mutex becomes available.

 pthread_mutex_trylock():

 Syntax - : pthread_mutex_trylock(mutex)

 - Tries to lock a Mutex.

 - If the mutex object referenced by mutex is currently locked by

any thread, the call returns immediately.

 pthread_mutex_unlock():

 Syntax - : pthread_mutex_unlock(mutex)

 - Unlocks a Mutex.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 16 C-DAC hyPACK-2013

Pthread APIs

 Condition Variable Routines : A condition variable is a time

mechanism that is tightly bound to a mutex and a data item. It is

used when one or more threads are waiting for the value of data

item to change.

 Example : The code listed in Producer /Consumer statuaries

 pthread_cond_init():

 Syntax : pthread_cond_init(condition,attr)

 - initializes condition variables.

 pthread_cond_destroy():

 Syntax : pthread_cond_destroy(condition,attr)

 - destroys condition variables.

 Remark : Pthreads has no built in thread pool mechanism

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 17 C-DAC hyPACK-2013

Pthread APIs

 Semaphores : A semaphore is a counter that can have any

nonnegative value. Threads wait on a semaphore.

 When the semaphore’s value is 0, all threads are forced to wait.

When the value is non-zero, a waiting thread is released to work.

 Pthreads does not implement semaphores, they are part of a

different POSIX specification.

 Semaphores are used to conjunction with Pthreads’ thread-

management functionality

 Usage : Include <semaphore.h>

 - sem_init(*, *, …*);

 - sem_post(*, *, …*)

 - sem_wait(*, *, …*)

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 18 C-DAC hyPACK-2013

Pthread APIs – Key Points

 Threads can communicate with one another using events

 A care is needed to terminate the Thread while using the C runtime

library.

 Thread synchronizations can be accomplished through the use of

Mutexes, Semaphores, Critical Sections, and Interlocked functions

 Windows support multiple thread-priority levels

 Processor affinity is a mechanism that allows the programmer to

specify which processor a thread should try to run on. – OS play an

important role on Multi Core processor

 POSIX Threads (Pthreads) is a portable threading APIs that is

supported on a number of platforms.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 19 C-DAC hyPACK-2013

Compiling and Executing Pthread Programs

 The compilation and execution details of Pthreads programs will

vary from one system to another. The essential steps are common to

all the systems: In case of gcc the steps are :

 For compiling:

 $ gcc -o < executable name > < name of source file > -lpthread

 or

 make

Note : Pthreads code should include the pthreads.h header file.

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 20 C-DAC hyPACK-2013

 To compile pthread code

 pthread-helloworld.c

 Use the command

 gcc -o helloworld pthread-helloworld.c -lpthread

 In order to execute we need to give,

 . / name_of_executable

 . / helloworld

Compiling and Executing Pthread Programs

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 21 C-DAC hyPACK-2013

 Example 3.4 (pthread-demo-datarace.c) (Illustrate data

race condition in a situation which occurs when more than

one thread are trying to work with or update global variable

 #include <pthread.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <stdio.h>

 int myglobal; // declaration of global variable

 pthread_mutex_t mymutex=PTHREAD_MUTEX_INITIALIZER;

Pthreads : Data Race - Example Program

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 22 C-DAC hyPACK-2013

void *thread_function_datarace(void *arg)

{

 int i,j;

 for (i=0; i<n; i++)

{

 j=myglobal;

 j=j+1;

 printf("\n In thread_function_datarace..\t");

 sleep(1);

 myglobal=j;

 }

 return NULL;

}

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 23 C-DAC hyPACK-2013

void *thread_function_mutex(void *arg)

 {

int i,j;

 for (i=0; i<n; i++)

 {

 pthread_mutex_lock(&mymutex);

 j=myglobal;

 j=j+1;

 printf("\n In thread_function_mutex..\t");

 sleep(0.1);

 myglobal=j;

 pthread_mutex_unlock(&mymutex);

 }

 return NULL;

 }

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 24 C-DAC hyPACK-2013

int main(void)

{

 pthread_t mythread;

 int i;

 if (pthread_create(&mythread, NULL, thread_function_datarace, NULL))

{

 printf("error creating thread.");

 abort();

 }

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 25 C-DAC hyPACK-2013

 for (i=0; i<n; i++)

{

 myglobal=myglobal+1;

 printf("\n In main..\t");

 sleep(1);

 }

 if (pthread_join (mythread, NULL))

{

 printf("error joining thread.");

 abort();

 }

 printf("\n Value of myglobal in thread_function_datarace is : %d\n",myglobal);

printf("\n--\n");

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 26 C-DAC hyPACK-2013

 myglobal = 0;

 if (pthread_create(&mythread, NULL, thread_function_mutex, NULL)) /

 {

 printf("error creating thread.");

 abort();

 }

 for (i=0; i<n; i++)

 {

 pthread_mutex_lock(&mymutex);

 myglobal = myglobal+1;

 pthread_mutex_unlock(&mymutex);

 printf("\n In main..\t");

 sleep(1);

 }

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 27 C-DAC hyPACK-2013

 if (pthread_join (mythread, NULL))

 {

 printf("error joining thread.");

 abort();

 }

printf("\n");

 printf("\n Value of myglobal in thread_function_mutex is : %d\n",myglobal);

 exit(0);

 }

Pthreads : Data Race - Example Program

Example 3.4

continued …

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 28 C-DAC hyPACK-2013

 An Overview of Threading APIs

 Summary of POSIX Threads (Pthreads) Model

 Threads on Windows and Different platforms is possible and
Multi Core processors systems with different OS can be used

 Compilation and Linking of Pthread Programs

 Example codes using Pthreads

 Different platforms support Pthreads capabilities. Features may
not be available in all Pthreads environments.

Shared Memory Programming: Pthreads

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 29 C-DAC hyPACK-2013

 Important issues in Shared parallel programming -Pthreads

 Common Synchronization problems with Pthreads

 Pthreads Performance issues on Multi Core Processors

Conclusions

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 30 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 31 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 32 C-DAC hyPACK-2013

13. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

22. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

23. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable
Memory Allocator for Multi-threaded Applications ; The Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX).
Cambridge, MA, November (2000). Web site URL : http://www.hoard.org/

24. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

25. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

26. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

27. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

28. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

29. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

30. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II 33 C-DAC hyPACK-2013

