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 What is Thread ? 

 What are Pthreads? 
 

 Pthread APIs on  Different OS 
 

 Compilation, Linking and Execution of  Pthread Programs 
 

 Example codes using Pthreads 

 

 

Lecture Outline  

Following Topics will be discussed : 

Shared Memory Programming – Pthreads  

Source : Reference [4],[6], [7] 
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  What is Thread ? 

 

 A thread is a discrete sequence of related instructions that 

is executed independently of other instruction sequences. 

  

 It is an entity that can be scheduled by an operating 

system to run independently. 
 

 

   What is Thread ? 
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Microsoft Windows using C /C++ languages 

 

 Win 32 / Microsoft Foundation Class Library (MFC) 

wrapped Windows API functionality in C++ classes  

 Provides Developers with C/C++ interface for 
developing windows applications        

 Performance Issues – Concept of Virtual Machine 
op-codes & Overhead Minimization 

 Performance Issues – run in a Managed runtime 
environment 

  Legacy Application Support  

Threading APIs for Windows  

Source : Reference [4],[6], [7] 
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Microsoft Windows using C /C++ languages 

 Creating Threads   

 CreateThread();     

 Terminate the Thread 

 ExitThread(); 

 Managing Threads  

 Thread Communication using Windows events 

 Thread Synchronization  

 Thread Atomic Operations 

 Thread Pools; Thread Priority & Thread Affinity  

Threading APIs for Windows  

Source : Reference [4],[6], [7] 
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Threading APIs for Microsoft .NET Framework 

Threading APIs for Microsoft .NET Framework 

 Provide common execution environment for all the 
major languages : C++ & Visual Basic; C# 

 ThreadStart() – Constructs a new thread 

 Microsoft .NET framework Class Library – provides 
examples of the APIs  

 Managing Threads  

 Thread Synchronization  

 Thread Atomic Operations 

 Thread Pools;  Thread Affinity  

 Thread Priority - .Net framework supports five 
levels thread priority 

Source : Reference [4],[6], [7] 
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What are Pthreads? 

  POSIX threads or Pthreads is a portable threading        

  library which provides consistent programming    

  interface across multiple operating systems.  

  It is set of C language programming types and 

    procedure calls,implemented with pthread.h file 

    and a thread library. 

 Set of threading interfaces developed by IEEE 
committee in charge of specifying a portable OS 
Interface.  

 Library that has standardized functions for using 
threads  across different platform. 

POSIX Threads  
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Pthread APIs  

 Pthread APIs can be informally grouped into three major 

classes: 

  1.Thread Management 

                   - thread creation,joining,setting attributes etc. 

  2.Thread Synchronization 

                  - functions that deal with Mutex 

  3.Condition Variables 

                  - functions that deal with condition variables 
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Pthread APIs  

 All identifiers in the thread library begins with pthread_ 

 

Condition variable related  pthread_cond_ 

Mutex related routines  pthread_mutex_ 

Thread Attribute objects  pthread_attr_ 

Threads themselves and misc   

subroutines 

  pthread_ 

     Functional Group       Routine Prefix 
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 Thread Management Routines : 

 

    pthread_create(): 

    Syntax:        pthread_create(thread,attr,start_routine,arg) 

         

      where, 

        thread - an unique identifier for the new thread 

        attr – an attribute object that is used to set thread attributes 

        start_routine- the C routine that the thread will execute once created 

        arg- an argument that may be passed to start_routine. 

         

Pthread APIs  
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Pthread APIs  

  pthread_exit(): 

 Syntax:   pthread_exit( void *value_ptr ) 

    - is used to terminate a thread. It  is called after thread has 

completed    its work and is no longer required to exist. 

 

  pthread_join(): 

  Syntax:   pthread_join( threadId , status ) 

  Blocks the calling thread until specified threadId thread terminates. 
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pthread_detach(): 

 

 Syntax: 

     pthread_detach( pthread_t thread_to_detach) 

 

  - is used to detach the thread from other threads when it has no 
need to interact with them. 

 

Pthread APIs  
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Pthread APIs  

 Thread Synchronization Routines : 

  pthread_mutex_init(): 

   Syntax -  

        pthread_mutex_init(mutex , attr ) 

               - initializes the mutex and sets its attributes 

 

   pthread_mutex_destroy(): 

    Syntax -  

           pthread_mutex_destroy(mutex) 

             - destroy the mutex  
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Pthread APIs  

  pthread_mutex_lock(): 

   Syntax - :    pthread_mutex_lock(mutex) 

               -  Locks a mutex. 

               - If the mutex is already locked, the calling thread      

 blocks until the mutex becomes available.  

  pthread_mutex_trylock(): 

    Syntax - :       pthread_mutex_trylock(mutex) 

             -  Tries to lock a Mutex. 

              - If the mutex object referenced by mutex is currently locked by                

any thread, the call returns immediately.  

  pthread_mutex_unlock(): 

   Syntax - :  pthread_mutex_unlock(mutex) 

               -   Unlocks a Mutex. 
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Pthread APIs  

  Condition Variable Routines :  A condition variable is a time 

mechanism that is tightly bound to a mutex and a data item. It is 

used when one or more threads are waiting for the value of data 

item to change.  

 Example : The code listed in Producer /Consumer statuaries  
 

  pthread_cond_init(): 

  Syntax :       pthread_cond_init(condition,attr) 

       -  initializes condition variables. 

 pthread_cond_destroy(): 

  Syntax :       pthread_cond_destroy(condition,attr) 

       - destroys condition variables. 

 Remark : Pthreads has no built in thread pool mechanism 
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Pthread APIs  

 Semaphores : A semaphore is a counter that can have any 

nonnegative value. Threads wait on a semaphore. 

 When the semaphore’s value is 0, all threads  are forced to wait. 

When the value is non-zero, a waiting thread is released to work.  

 Pthreads does not implement semaphores, they are part of a 

different POSIX specification. 

  Semaphores are used to conjunction with Pthreads’ thread-

management functionality 

  Usage :  Include <semaphore.h> 

       -  sem_init(*, *, …*);  

   -   sem_post(*, *, …*) 

       -   sem_wait(*, *, …*) 
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Pthread APIs – Key Points  

 Threads can communicate with one another using events 

  A care is needed to terminate the Thread while using the C runtime 

library. 

 Thread synchronizations can be accomplished through the use of 

Mutexes, Semaphores, Critical Sections, and Interlocked functions 

 Windows support multiple thread-priority levels  

 Processor affinity is a mechanism that allows the programmer to 

specify which processor a thread should try to run on. – OS play an 

important role on Multi Core processor 

 POSIX Threads (Pthreads) is a portable threading APIs that is 

supported on a number of platforms. 
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Compiling  and  Executing Pthread Programs 

 The compilation and execution details of Pthreads programs will 

vary from one system to another. The essential steps are common to 

all the systems: In case of gcc the steps are : 

      For compiling: 

      $ gcc -o < executable name > < name of source file > -lpthread  

       or  

       make 

Note : Pthreads code should include the pthreads.h  header file. 
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     To  compile pthread code 

           pthread-helloworld.c 

      Use the command  

   gcc -o helloworld pthread-helloworld.c -lpthread 

    In order to execute we need to give, 

       . / name_of_executable  

      . / helloworld 

Compiling  and  Executing Pthread Programs 



Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II  21 C-DAC   hyPACK-2013 

     Example 3.4 ( pthread-demo-datarace.c) (Illustrate data 

race condition in a  situation which occurs when more than 

one thread are trying to work with or update global variable 

     #include <pthread.h> 

 #include <stdlib.h> 

 #include <unistd.h> 

 #include <stdio.h> 

  

      int myglobal;                               // declaration of global variable 

      pthread_mutex_t mymutex=PTHREAD_MUTEX_INITIALIZER;   

Pthreads : Data Race - Example Program 

Source : Reference [4],[6], [7] 



Multi-Core Processors : Shared Memory Prog.: Pthreads Part-II  22 C-DAC   hyPACK-2013 

void *thread_function_datarace(void *arg)  

{ 

   int i,j;                                         

   for ( i=0; i<n; i++ )  

{ 

      j=myglobal; 

      j=j+1;                                          

      printf("\n In thread_function_datarace..\t");    

                sleep(1); 

      myglobal=j; 

   } 

   return NULL; 

} 

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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void *thread_function_mutex(void *arg)   

 { 

int i,j; 

         for ( i=0; i<n; i++ )  

         { 

         pthread_mutex_lock(&mymutex);              

 j=myglobal;  

         j=j+1; 

      printf("\n In thread_function_mutex..\t"); 

 sleep(0.1); 

      myglobal=j; 

 pthread_mutex_unlock(&mymutex); 

   } 

    return NULL; 

  } 

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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int main(void)  

{ 

 

   pthread_t mythread; 

   int i; 

 

  if ( pthread_create( &mythread, NULL, thread_function_datarace, NULL) )   

{ 

      printf("error creating thread."); 

      abort(); 

   } 

 

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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       for ( i=0; i<n; i++)  

{ 

      myglobal=myglobal+1; 

      printf("\n In main..\t"); 

                sleep(1); 

   } 

        if ( pthread_join ( mythread, NULL ) )  

{ 

      printf("error joining thread."); 

      abort(); 

   } 

       printf("\n Value of myglobal in thread_function_datarace is :  %d\n",myglobal); 

printf("\n------------------------------------------------------------------------------------\n");  

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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       myglobal = 0; 

       if ( pthread_create( &mythread, NULL, thread_function_mutex, NULL) ) / 

       { 

                printf("error creating thread."); 

                abort(); 

        } 

      for ( i=0; i<n; i++) 

        { 

              pthread_mutex_lock(&mymutex); 

      myglobal = myglobal+1; 

      pthread_mutex_unlock(&mymutex); 

      printf("\n In main..\t"); 

    sleep(1); 

        } 

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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       if ( pthread_join ( mythread, NULL ) ) 

        { 

                printf("error joining thread."); 

                abort(); 

        } 

 

printf("\n"); 

        printf("\n Value of myglobal in thread_function_mutex is :  %d\n",myglobal); 

 

 

   exit(0); 

 

 } 

Pthreads : Data Race - Example Program 

Example 3.4 

continued … 
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 An Overview of Threading APIs 

 Summary of POSIX Threads (Pthreads) Model  
 

 Threads on Windows and  Different platforms is possible and 
Multi Core processors systems with different OS can be used 

 

 Compilation and Linking of  Pthread Programs 
 

 Example codes using Pthreads 
 

 Different platforms support Pthreads capabilities. Features may 
not be available in all Pthreads environments. 

 

Shared Memory Programming:  Pthreads 
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 Important issues in Shared parallel programming -Pthreads 
 

 

 Common Synchronization problems with Pthreads 

 

 Pthreads Performance issues on Multi Core Processors 
 

Conclusions 
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